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Abstract

Despite the effectiveness of data selection for pretraining and instruction fine-tuning
large language models (LLMs), improving data efficiency in supervised fine-tuning
(SFT) for specialized domains poses significant challenges due to the complexity
of fine-tuning data. To bridge this gap, we introduce an effective and scalable
data selection method for SFT, SMALLTOLARGE (S2L), which trains a small
model, clusters loss trajectories of the examples, and samples from these clusters to
guide data selection for larger models. We prove that during fine-tuning, samples
within the same loss trajectory cluster exhibit similar gradients. Then, we show
that S2L subsets have a bounded gradient error w.r.t. the full data, hence guarantee
convergence to the neighborhood of the optimal solution. We demonstrate through
extensive experiments that S2L significantly improves data efficiency in SFT for
mathematical problem-solving, reducing the training data requirement to just 11%
of the original MathInstruct dataset [64] to match full dataset performance while
outperforming state-of-the-art data selection algorithms by an average of 4.7%
across 6 in- and out-domain evaluation datasets. Remarkably, selecting only 50K
data for SFT, S2L achieves a 32.7% accuracy on the challenging MATH [19]
benchmark, improving Phi-2 [28] by 16.6%. In clinical text summarization on the
MIMIC-III dataset [21], S2L again outperforms training on the full dataset using
only 50% of the data. Notably, S2L can perform scalable data selection using a
reference model 100× smaller than the target model, proportionally reducing the
computational cost. 1

1 Introduction

In recent years, large language models (LLMs) have revolutionized artificial intelligence by demon-
strating an unprecedented ability to understand and generate human language [7]. Among all the
contributing factors, the quality and selection of data is becoming increasingly recognized for its
importance in training LLMs effectively. Recent research indicates that LLMs benefit more from
training for additional epochs on carefully curated data rather than on larger, uncurated ones during
pretraining [48] and instruction fine-tuning [67], making data selection one of the most promising
means to unlock the next level of LLMs’ language capability. However, while generalist models
obtained through pre-training or instruction fine-tuning excel in general language tasks, they may
not deliver optimal outcomes in specialized domain, such as mathematics [3, 31, 63, 30, 64], code
[42, 32], medicine [43, 44, 9], or finance [57, 9]. These domains are not only critical for real-world
applications but also hold substantial economic and societal impacts.

1Code is available at https://github.com/BigML-CS-UCLA/S2L.
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Figure 1: Existing data selection methods depend heavily on the feature representations from a
reference model, which makes their effectiveness vulnerable to the quality of training on the target
domain [34]. For supervised fine-tuning (SFT), while pretrained models can effectively separate
topics (shown in different colors) in natural language (Figure 1a), they struggle with fine-tuning
data that deviates from the pretraining distribution (Figure 1b). Additionally, the cost of training a
reference model escalates with model size (Figure 1c), making existing data selection methods for
large models prohibitively expensive.

To maximize performance in specialized domains, models fine-tuned on domain data offer superior
capabilities over generalist models [20]. Yet, maximizing the data efficiency in supervised fine-tuning
(SFT) for specialized domains remains a challenging and under-explored problem. Firstly, heuristic
approaches that are effective in the instruction fine-tuning stage, like manual curation [67] or using
advanced models such as GPT-4 for dataset evaluation [8], are less reliable due to the need for
specialized knowledge and become costly with large volumes of uncurated fine-tuning data. Beyond
these heuristic methods, other approaches rely on generating representations for each training example
using a reference model, often utilizing metrics like perplexity [34], confidence [46, 53], or hidden
states [1, 48, 61, 4] as features. However, these techniques also fall short in SFT for specialized
domains for two reasons: (1) the significant shift between pretraining and SFT data can render
these metrics less informative (Figure 1b), and (2) the computation and memory demands associated
with generating representations for each training example become prohibitive, as these specialized
domains often require larger models, some with up to 540 billion parameters [10, 43], leading to
substantial scalability challenges (Figure 1c).

To tackle the challenges of data efficiency in SFT for specialized domains, we present
SMALLTOLARGE (S2L), an effective and scalable data selection algorithm. S2L operates by
first gathering training loss trajectories for each training example using a small model. These trajecto-
ries are then clustered, and similar number of examples are selected from these clusters uniformly at
random. This process is grounded in our theoretical findings that examples within the same cluster
exhibit similar gradients during training, thereby affecting the model similarly. Consequently, subsets
sampled from these clusters have a bounded gradient error w.r.t. the full data, allowing for training a
comparable model with only a subset of data. Furthermore, we provide a convergence rate analysis
for training on these subsets, establishing a robust theoretical foundation for S2L’s effectiveness and
efficiency.

To validate S2L’s effectiveness, we applied it to the challenging tasks of SFT for (1) mathematical
problem-solving and (2) clinical text summarization. Our experiments on MathInstruct [64] shows
that S2L can significantly reduce the required training data size to just 11% of the original dataset size
while still matching the performance levels of the full dataset, outperforming current state-of-the-art
one-shot and online data selection algorithms by an average of 4.7% across 6 in- and out-domain
evaluation datasets. Remarkably, on the MATH benchmark [19], S2L attained a 32.7% accuracy
with just 50K data points, improving the best open-sourced model under 3 billion parameters, Phi-2,
by 16.6%. For clinical text summarization tasks on the MIMIC-III [21] dataset, S2L outperforms
training on the full dataset, using only half of the data. Unlike existing methods that require training
and getting features from large models, S2L achieves superior data efficiency using a model with as
few as 70 million parameters, which is 100× smaller than the largest target model we train with 7
billion parameters.
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2 Related Work

Foundations of Data Selection. Data selection has been well studied for small models and classifica-
tion tasks. There are one-shot algorithms that select data based on rankings of the proposed training
statistics, for example, the L2-norms of error and gradient vectors (EL2N and GraNd) [39], confidence
and its variability across epochs [46], and the number of times each example is learned but then forgot
at the subsequent training step [49]. Besides these heuristic indicators, there are embedding-based
pruning algorithms [45] and online selection algorithms with theoretical performance guarantees
for efficiency [35, 23, 24, 40, 60] and robustness [59, 62, 16]. Coleman et al. proposed to use the
intermediate feature representation of a small proxy model to select data for image classification.
Most recently, data selection has shown great potential in more substantial training speedup when
implemented on near-storage hardware [41], and data selection beyond supervised learning of image
data, e.g., for self-supervised learning [22] and multimodal learning [1, 33], also emerged.

Data Efficient Training of Large Language Models. For the pre-training of LLMs, Marion et al.
studied data quality indicators including Perplexity, Error L2-Norm (EL2N) [39], and memorization
ranking [5], and found training on examples with middle Perplexity rankings outperforms training on
examples selected based on the other two metrics, and sometimes even outperforms training on the
entire dataset. Tirumala et al. uses pre-trained model embeddings to select data for LLM pre-training.
The proposed algorithm, D4, first applies an embedding-based data de-duplication algorithm [1] and
then discards data points that are the closest to the K-Means cluster centroids in the embedding space
[45] to ensure diversity. On fine-tuning LLMs, existing work on data efficiency primarily focused on
manually curating high-quality instructions [67], or using strong closed-source models (e.g., GPT-4
[2] or ChatGPT) to rate the quality of each training example [18, 27, 8]. Bhatt et al. implemented
an experimental design framework to evaluate the existing data selection methods for instruction
fine-tuning of LLMs and found selecting facility locations based on hidden representations (i.e.,
embeddings) is the most effective. As the only data selection algorithm for specialized domains, SCIP
[61] focuses on pruning low-quality code data for training code LLMs. Since it relies on breaking the
code syntax to understand the characteristics of low-quality code in the embedding (i.e, hidden states)
space, adapting SCIP to domains other than Python code data is non-trivial.

Adapting Large Language Models for Specialized Domains. The rapid development of large
language models (LLMs) gives rise to new state-of-the-art models in specialized domains. For
mathematical reasoning, Galactica [47], MINERVA [26] and Llemma [3] continue to train an LLM
on large-scale math-related web data to improve a model’s general scientific reasoning; WizardMath
[31] and TinyGSM [30] fine-tune LLMs using supervised data. Similarly for medical LLMs, Cheng
et al. continued training pre-trained LLMs on medical text, and [43, 44] fine-tuned PaLM with
instruction prompt tuning on medical domain data.

3 Problem Formulation

LLM Fine-tuning Objective. Consider a transformer-based language model, parameterized by θ,
and denoted as pθ . This model, when provided with a sequence of prompt tokens x = (x1, . . . , xM ),
generates a sequence of response tokens y = (y1, . . . , yL). The conditional probability of generating
y given x is then formulated as

pθ(y|x) =
L∏

l=1

pθ(yl|y1:l−1,x). (1)

Note that y1:0 is an empty sequence. To adapt the pre-trained LLM for a specialized domain of
distribution D, supervised fine-tuning (SFT) is usually employed with a domain-specific training
dataset Dtrain = {(x,y)i}ni=1 ∼ D containing pairs of prompt x and annotated response y. The
fine-tuning objective is thus to minimize the following negative log likelihood loss, expressed as:

min
θ
L(θ, Dtrain) = −

1

n

∑
(x,y)i∈Dtrain

[
log pθ(yi|xi)

]
. (2)

Data Selection Objective. In a general setting for data selection, we consider a target language
model pθ with parameters θ. Given a fixed data budget B, which constrains the number of data points
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that can be used for training, our objective is to select a subset S ⊆ Dtrain to train the target model,
such that it obtains a superior generalization performance. In practice, the subset S is selected based
on a reference model rϕ parameterized by ϕ, which generates representations, confidence scores, or
other metrics for each data point (x,y)i ∈ Dtrain, denoted by rϕ((x,y)i), which will be utilized by a
data selection algorithm to produce S.

In existing data selection algorithms, ϕ is commonly either weights of the pre-trained target model or
a target model that has been fully trained on the dataset Dtrain. However, as evidenced by Figure 1,
representations generated by the pretrained model may not always be good enough for data selection
in specialized domains, and fine-tuning the target model significantly increases the computational
cost of data selection.

4 Methodology

Training a large target model to obtain feature representations for each example in Dtrain can be
computationally intensive. However, a recent finding demonstrates that the training dynamics of most
examples are consistent across differently sized models of the same family, and this phenomena even
generalizes across different model families [58]. Our proposed method, SMALLTOLARGE (S2L),
leverages loss trajectories of training examples collected during fine-tuning a small reference model
on the full or a subset of training data.

Loss Trajectory. Let ϕ(t) be the parameters of a small LM during training on Dtrain at times
tq, q ∈ {1, ..., T}. S2L records the loss trajectory for each data point i at times tq during training the
reference model [Lproxy

i (ϕ(t1)), . . . ,Lproxy
i (ϕ(tT ))] where

Lproxy
i (ϕ(t)) = Lproxy(ϕ(t), (xi,yi)) = − log pϕ(t)(yi|xi), (3)

and T is the length of the loss trajectory. Note that ϕ(t) is trained for a fixed number of iterations
from ϕ(t−1).

Assume the parameter vector θ(t) represents the parameters of the target model at the time t. Define
Lproxy
i = [Lproxy

i (ϕ(t1)), . . . ,Lproxy
i (ϕ(tT ))] and Ltarget

i = [Ltarget
i (θ(t1)), . . . ,Ltarget

i (θ(tT ))] as the
training loss trajectory of the example i on the small proxy model and the large target model,
respectively. Let Hi ∈ Rd×d be the Hessian matrix for each example i and assume that the loss
function for each example during fine-tuning can be modeled by a second-order Taylor approximation
with bounded curvature (c ≤ ∥Hi∥ ≤ C), a reasonable assumption in fine-tuning settings. The
following lemma shows that examples with similar loss trajectories on the proxy model have similar
gradients throughout the training of the target model.
Theorem 4.1. If examples i and j have similar loss trajectories on the proxy model, i.e., ∥Lproxy

i −
Lproxy
j ∥ ≤ ϵ, and their loss trajectories on the proxy and target model is similar, i.e., ∥Lproxy

p −
Ltarget
p ∥ ≤ δ for p ∈ {i, j}, then i and j have similar gradients throughout training the target model:

∥∇Ltarget
i (θ)−∇Ltarget

j (θ)∥ ≤ 2ϵ′ + 2CD2

d
= ∆. (4)

where ϵ′ = ϵ+ 2δ and ∥θ∥ ≤ D for all t.

The proof of Theorem 4.1 can be found in Appendix A.1. Theorem 4.1 shows that examples with
similar loss trajectories have similar gradients during the training, thereby influencing the model in a
similar manner.

Data selection from Loss Trajectory Clusters. Once the loss trajectories are recorded on the
proxy model, we apply a clustering algorithm to group examples based on the similarity of their
loss trajectories. This results in a set of clusters {C1, C2, . . . , CK}, where each cluster Ci contains
examples with similar loss and gradient trajectory throughout the training:

Ci = {(x,y)j ∈ Dtrain|i = arg min
j∈[K]

d(Lj ,LC̄j
)}, (5)

where LC̄i
is the centroid of the loss trajectories in cluster Ci, and d(·, ·) is a distance metric, such as

Euclidean distance, used for clustering. For datasets that contain different sources of data, we cluster
each source separately.
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Figure 2: Examples in the same clusters have very
similar loss trajectories (Figure 2a) while the loss
trajectories of examples in different clusters are
very different (Figure 2b).
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Figure 3: Examples in the same clusters of train-
ing trajectories on a small model (Pythia-70M)
also have similar training trajectories on a large
model (Pythia-2.8B), even if the trends may not
be the same on both models.

Algorithm 1 Data Selection Based on Training Trajecto-
ries (S2L)

Require: Training dataset Dtrain with corresponding
training trajectories, a fixed data budget B, number
of clusters K.

Ensure: Subset S ⊆ Dtrain, |S| ≤ B.
1: Initialize S as an empty set.
2: Train a small proxy model and cluster examples

in (each data source of) Dtrain based on their
loss trajectories and sort them by size to get
C = {C1, C2, . . . , CK}.

3: for each cluster Ck in C do
4: Calculate Rk, the number of exam-

ples to randomly sample from Ck, i.e.,
Rk = (B − |S|)/(K − k + 1).

5: if |Ck| ≤ Rk then
6: S ← {S

⋃
Ck}.

7: else
8: S ← {S

⋃
Sk}, where Sk ⊂ Ck is selected

uniformly at random from Ck and |Sk| = Rk

9: end if
10: end for
11: Return S

As shown in Figure 2, clustering algo-
rithms can effectively find groups of ex-
amples with similar training dynamics. In
Figure 3, we empirically show that we
can identify groups of examples with sim-
ilar training dynamics on a larger model
by clustering the training trajectories of
Dtrain on a smaller proxy model. With the
clusters formed, the data selection strat-
egy selects equal number of examples at
random from all clusters, as detailed in
Algorithm 1. In doing so, it effectively pri-
oritizes selecting examples from smaller
clusters. This is particularly important for
datasets containing multiple imbalanced
sources. In this setting, training and test
distributions often differ, and balanced se-
lection from clusters ensures superior test
performance on all groups in the test data.

The following theorem shows that, under
the assumptions of Theorem 4.1, training
with Incremental Gradient (IG) methods
on the subset selected by S2L converges
to a close neighborhood of the optimal
solution found by training the target model

on the full dataset. IG methods such as Stochastic Gradient Descent (SGD) update parameters
iteratively based on the gradient of the loss of individual examples, multiplied by stepsize α. Formally,

θt+1 = θt − α∇Ltarget
i (θt). (6)

Corollary 4.2. Under the assumptions of Theorem 4.1, applying IG with stepsize α to subsets found
by S2L, converges to the neighborhood of the optimal solution, as follows:

∥θt+1 − θ∗∥2 ≤ (1− αc)t+1∥θt − θ∗∥2 + 2ξR/c2 + αB2(rmin/k)
2g2

max (7)
where c ≤ ∥H∥, B = k · K is the total size of the subset, gmax is the largest gradient norm of
individual examples during training, rmin = minj |Cj |, rmax = maxj |Cj |, R = min{d0, Bgmax +
ξ/c} and d0 = ∥θ0 − θ∗∥ is the initial distance to the optimal solution θ∗, and ξ is given by:

ξ = K[rmin∆+ (rmax − rmin)gmax]. (8)

The proof can be found in Appendix A.2.

5 Experiments

In this section, we present the comprehensive experiments conducted to evaluate the efficacy of
the proposed data selection method, SMALLTOLARGE (S2L), across two challenging domains
(mathematical reasoning and clinical text summarization).
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5.1 Baselines

We systematically compare S2L against a comprehensive set of open-sourced data selection methods.
These methods are categorized based on the type of representation they use and selected as the
most representative or best-performing methods as identified in prior work. These include: (1)
Random Sampling; selecting examples with the (2) Least Confidence [4] or (3)Middle Perplexity
[34]; (4) High Learnability, determined by the loss decrease before and after full fine-tuning [68];
and (5) Facility Locations selection based on hidden states [4]. Additionally, we incorporate one
online selection techniques: (6) Confidence Curriculum proposed by Varshney et al., which selects
examples with decreasing confidence during the training. Given that the optimal reference model may
vary for each one-shot selection method, we ensure a fair comparison by adopting the approach used
in [34], which runs each method with both the fully fine-tuned target model and an early fine-tuning
checkpoint as the reference model. We report the best results from these setups.

5.2 Specialized Domain 1: Mathematical Reasoning

Training Settings. We focus on fine-tuning using the MathInstruct dataset [64] with 262,040
training examples for its comprehensive coverage of diverse mathematical fields and its capability
in training models to achieve state-of-the-art performance on the standard evaluation benchmarks.
We employ the open-source model suites Pythia [6], Phi-2 [28], Llama-2 [50] as our base models to
validate our S2L algorithm and directly compare its performance against the state-of-the-art.

Evaluation Datasets. We follow the framework established in [64] for a comprehensive assessment
using several well-regarded datasets, including in-domain and out-of-domain datasets. For the
in-domain datasets, we consider GSM8K [11], MATH [19], and NumGLUE [36]. For the out-
of-domain datasets, we consider SVAMP [38], Mathematics [13], SimulEq [25]. These datasets
collectively span a diverse range of mathematical subjects, such as algebra, probability, number
theory, calculus, and geometry. Additionally, some questions in these datasets require the application
of commonsense, reading comprehension, and multi-step reasoning. All questions are open-formed.

Evaluation Metric. We use the standard evaluation metric for open-formed questions, exact match,
which measures the model’s accuracy by comparing its generated answers against the correct solutions.
For an answer to be considered correct, it must match the reference solution precisely.

More details about the settings and baseline implementations can be found in Appendix B.

5.2.1 Setting 1: Less Data for Better Models

Facility Location S2L (Ours)0

2

Ti
m

e 
(h

ou
rs

)

Train Ref Model
Select Data

Figure 5: Wall-clock time re-
quired to train the reference
model and select 100K data
from MathInstruct for training
Pythia-410M.

In the first setting, we standardize the number of training steps to
correspond to 3 epochs on the full dataset, aligning with [64]. This
allows us to maintain a consistent training schedule across different
methods and data budgets, ensuring fair and accurate comparisons
of the quality of data.

SCALING THE DATA: SOTA algorithms fail with small data
budgets while S2L stands out across data scales. In Figure 4,
we compare S2L against the baselines from Section 5.1 on Pythia-
410M across varying data sizes. The training trajectories used by
S2L are based on Pythia-70M, a model approximately 6x smaller
than Pythia-410M. With the same number of training steps as the
full training, S2L exceeds the full dataset’s performance using only
30K examples, only 11% of the full dataset. It leads the runner-up
baselines by an average of 4.7%, 4.6% and 2.4% with data budget
30K, 50K and 100K across all six evaluation datasets. While state-of-the-art data selection algorithms
like Facility Locations [4] and High Learnability [68] have decent performance with a large enough
data budget (i.e., 100K), all SOTA algorithms except S2L cannot even outperform the random
sampling baseline when the allowed data size is small (i.e., 30K). Unlike the existing algorithms, S2L
consistently outperforms all baselines and even full training across all data sizes. Note that compared
to the runner-up algorithm in this setting, Facility Locations, the cost of S2L is much lower in both
training the reference model and data selection stages (Figure 5), and therefore more scalable to both
larger target models or larger data sizes.
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Figure 4: Data Scaling: Accuracies (↑) on in-domain and out-of-domain datasets using Pythia-410M.
Data size refers to the total number of unique training examples used. All experiments in this table
share the same total training steps and learning rate schedule (see Section 5.2). See breakdowns in
Figure 14.

Table 1: Less Data, Same Compute: Zero-shot accuracies (%, ↑) when S2L and the baselines select
50K data to train with the same number of iterations as the full-data training. Results surpassing full
training are highlighted in bold. Figure 4 follows the same setting but uses the Pythia-410M model.

TARGET FINE-TUNING IN-DOMAIN OUT-DOMAIN
MODEL DATA GSM8K MATH NUMGLUE AVG SVAMP MATHEMATICS SIMULEQ AVG

PHI-2 (2.7B)
(PRETRAINED) 53.4 16.1 34.9 34.8 67.9 31.1 27.4 38.5

RANDOM 67.9 30.1 60.7 52.9 77.1 51.2 37.5 54.1
HIGH LEARNABILITY 59.4 25.2 62.1 48.9 76.6 41.8 27.2 48.7
MIDDLE PERPLEXITY 66.4 29.5 54.1 50.0 74.8 50.4 39.8 52.5
LEAST CONFIDENCE 61.7 24.7 67.0 51.1 76.5 43.3 52.5 54.3

FACILITY LOCATIONS 66.2 31.3 62.4 53.3 74.4 58.4 34.6 54.5
S2L(OURS) 69.1 32.6 65.7 55.8 79.6 56.4 40.1 57.3
FULL-262K 68.3 32.6 64.3 55.1 78.4 58.4 44.2 57.7

SCALING THE MODEL: Data selected by S2L can transfer to larger models in different model
suites. We also test whether this subset, chosen using Pythia-70M, can effectively train larger models
beyond 410M and models outside the Pythia suite. As shown in Table 1, our experiments with Phi-2
reveal that fine-tuning on only 50K S2L-selected data again outperforms full dataset training on the
most challenging MATH [19] benchmark improving the pretrained Phi-2 by 16.6% and is more data
efficient than training on the full MathInstruct dataset to get the same performance.

5.2.2 Setting 2: Less Data for Faster Training
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Figure 6: Distribution of the coverage of
top-1 topic in each cluster. Taller bars on
the right end of the plot indicate clusters
with a higher concentration of a single
topic and therefore suggest a grouping
of similar examples.

The second setting we consider is when fixing the num-
ber of times each example can be seen over the entire
course of training, directly translating smaller datasets
into reduced training and storage costs. This is particularly
beneficial for large models that would require extensive
training times without data selection. By experimenting
with models of larger sizes than the previous setting, we
observe in Table 2 that S2L can achieve comparable per-
formance to full-data training when using only 50% data
and thereby reducing both the data storage space and the
training time by half.

5.2.3 Why is S2L So Effective?

Examples in Clusters Encode the Same Knowl-
edge/Skill. In Appendix C, we compare actual training
examples in MathInstruct that get clustered together due
to their similar training trajectories on the small Pythia-
70M model. We observe that examples in the same cluster
are of the same type and related to the same knowledge/skill, e.g., open-formed algebra questions
(Figure 15), examples requiring extracting useful information from long text and writing programs
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Table 2: Less Data, Same Epochs: Zero-shot accuracies (%, ↑) when S2L trains 50% data for
the same number of epochs as the full-data training. S2L can achieve comparable performance to
full-data training while reducing both the data storage space and the training time by half.

TARGET FINE-TUNING IN-DOMAIN OUT-DOMAIN
MODEL DATA GSM8K MATH NUMGLUE AVG SVAMP MATHEMATICS SIMULEQ AVG

PHI-3-MINI (3.8B)
(PRETRAINED) 74.5 26.5 52.1 51.1 83.7 44.3 34.8 52.7

S2L-50%(OURS) 76.3 42.5 76.4 65.1 83.8 62.1 51.6 65.4
FULL 76.4 42.9 75.3 64.9 84.6 60.2 51.9 65.2

LLAMA-2-7B
(PRETRAINED) 3.1 4.2 16.5 7.9 14.1 8.3 2.3 8.1

S2L-50%(OURS) 53.3 28.9 65.0 49.1 65.1 45.2 31.9 48.2
FULL-262K [64] 52.2 30.4 60.5 47.7 65.3 43.9 50.2 50.4

(Figure 16), and multiple choice questions that require multi-step reasoning (Figure 17), etc. There-
fore, by sampling from different clusters, we make sure the selected examples cover the knowledge
required for all topics and skills required for all types of questions.

Loss Trajectories can Capture the Similarity Between Data Points As Much As Embeddings
of a Fully Fine-tuned Model. We conducted a quantitative analysis to assess how effectively S2L
identifies similar examples using loss trajectories from a small model. Assuming math problems under
the same topic require similar knowledge and share question formats, we used unknown topic labels
during S2L’s data selection to check if each cluster predominantly contains a single topic. By calcu-
lating the fraction of the most common topic in each cluster and plotting this in Figure 6 (with K=100,
excluding clusters of size one), we compared the loss trajectory clusters from S2L (in blue) against
those from the embeddings of a fully fine-tuned Phi-2 model (in orange)—considered the ground truth
for similarity. Results show that most clusters formed by S2L using the Pythia-70M model are based
on a single topic and capture topic similarities more effectively than those from the Phi-2 model’s em-
beddings. This analysis not only confirms the homogeneity within S2L clusters but also highlights the
computational efficiency of using loss trajectories on small models to identify representative examples.

5.3 Specialized Domain 2: Clinical Text Summarization

S2L can improve data efficiency not only for fine-tuning data not only in mathematics but also in other
specialized domains. This subsection explores its application to clinical text summarization within
radiology reports. This task involves processing the detailed analysis and results listed in the findings
section of a radiology report and distilling them into a concise impression section. Such summaries
are crucial for providing clinicians with quick and actionable insights from radiological studies.

Dataset & Setup. We use the MIMIC-III dataset [21], a comprehensive collection of radiology
reports and findings authored by attending physicians in routine clinical care. We use the same
preprocessing procedures as [14, 15] to extract the findings and impression sections and remove
invalid reports. Given that access to MIMIC-III requires specific credentials, we provide a synthetic
example of a radiology report generated by GPT-4 [2] for illustrative purposes in Table 3. We employ
the Pythia-1B model and keep the training setting consistent with the mathematical reasoning task.

Evaluation. Our evaluation of generated clinical summaries on the MIMIC-III dataset’s test split
employs three key metrics as recommended in [52, 51]: (1) BLEU [37], which measures word
sequence overlap between the generated and reference texts; (2) ROUGE-L [29], assessing the
longest common word sequence; and (3) BERTScore [65], evaluating semantic similarity using
BERT’s contextual embeddings. These metrics together offer a comprehensive evaluation, ensuring
our summaries are not only precise in language but also meaningful and coherent in the context
of clinical information. We compare S2L to random selection, a surprisingly strong baseline as
evidenced in Section 5.2, to check the validity of the data selection problem on this dataset and then
compare it to training on the full dataset to assess its effectiveness.

Results. We compare using 30K examples selected by random vs. selected through S2L. Even
with only half of the data, the model trained with S2L selected data achieves similar BLEU and
significantly higher ROUGE-L and BERTSCore compared to the model trained on the entire 61.5K
data. Meanwhile, training on randomly selected 30K examples performs worse than training on the
full dataset on all 3 metrics. These results together demonstrate S2L’s effectiveness.

5.4 Ablation Studies
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Figure 7: Performance (↑) of models trained on
(1) randomly selected 30K examples, (2) S2L se-
lected 30K examples, and (3) full 61K examples
(none) evaluated with 3 different metrics. The
minimum value on the y-axis is the performance
of the model before fine-tuning. S2L improves
the data efficiency for the clinical text summariza-
tion task by outperforming training on the full
dataset with only less than half of the data.

We conduct ablation studies on MathInstruct
and Pythia-410M to further understand the best
practices for using S2L.

S2L is robust w.r.t. the length of the trajecto-
ries but can benefit more from longer trajec-
tories. Figure 8 compares models trained with
data selected by S2L based on training trajecto-
ries of different lengths. The shorter trajectories
are derived from a uniform sample of the longer
trajectories. From the small slopes of the lines,
we can conclude that S2L is relatively robust to
the length of the training trajectories. Neverthe-
less, we can also observe a slight increase in the
performance on some of the datasets when longer
trajectories are used, so having longer trajectories
is still preferred.

S2L can utilize training trajectories collected
at any stage of training but preferably denser
ones. With the length of the trajectories fixed to 4,
we can observe in Figure 9 that denser trajectories

recorded at any training stage (early, middle, or late) are more helpful for S2L than trajectories
recorded sparsely throughout the training.
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Figure 8: S2L is robust
to the length of training
trajectories.
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Figure 9: S2L prefers
dense trajectories over
sparse ones.

S2L does not require the full training data
to train the proxy and can scale efficiently to
larger datasets. To further demonstrate the scala-
bility of the proposed S2L method, we conducted
experiments by training the proxy on a smaller
sample of the data (100K examples) for the same
number of epochs (3 epochs) and saving the loss
for all examples. The results, shown in Figure 10,
confirm that S2L remains effective when the proxy
model is trained on a smaller subset of training
data and therefore is scalable to larger datasets
without a proportional increase in computational
costs.

S2L is robust across different clustering pa-
rameter values for K. We conducted detailed
experiments varying the clustering parameter K, as shown in Figure 11. The results demonstrate that
S2L maintains high performance across different values of K, highlighting the robustness of our
method to different clustering parameter choices. We chose K=100 for our experiments as it provided
the best average accuracy across the evaluation datasets for the math reasoning task.

S2L remains effective and efficient compared to using full data when trained for the same
number of epochs. Figure 12 illustrates the relative accuracy to full data across different epochs,
comparing S2L-selected data and full data with the same number of epochs. Both in-domain and
overall average accuracy are shown. S2L demonstrates superior performance with fewer data and
fewer training iterations.

S2L supports a range of small models as effective proxies. To understand whether different
small models could serve as effective proxies, we used GPT-2 (124M) and Pythia-160M as proxy
models for data selection to train Pythia-410M. The results, illustrated in Figure 13, show that both
proxy models perform comparably in guiding the data selection, demonstrating the versatility and
effectiveness of using different small models for S2L.

6 Conclusion and Limitations
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Figure 11: Per-dataset and average accuracy
across different values of the clustering param-
eter K. S2L is relatively robust to the choice of
K.

4 5 6
Epoch

0.98

1.12

1.26

Re
l. 

Ac
c.

to
 Fu

ll 
Da

ta S2L (Ours)
Full Data
Full Data,
Same # Iterations

(a) In-domain Average Accuracy

4 5 6
Epoch

1.03

1.16

1.29

Re
l. 

Ac
c.

to
 Fu

ll 
Da

ta S2L (Ours)
Full Data
Full Data,
Same # Iterations

(b) Overall Average Accuracy

Figure 12: Relative accuracy to full data across different epochs, comparing S2L-selected data and
full data. S2L achieves superior performance with fewer data and fewer training iterations.

In this work, we introduced SMALLTOLARGE (S2L), a scalable data selection method to improve
the data efficiency of supervised fine-tuning (SFT) for large language models (LLMs) in specialized
domains. By clustering data points based on their training dynamics on smaller models and balanced
sampling from all clusters, S2L significantly reduces the required training data size without compro-
mising performance compared to using the entire training dataset. Our comprehensive experiments
across the mathematical problem-solving and clinical text summarization domains demonstrate the
effectiveness of S2L.
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Figure 13: Per-dataset and average accuracy
comparison between using different proxy mod-
els (Pythia-160M and GPT-2 (124M)) for data
selection. Using both proxy models show com-
parable performance, demonstrating the effec-
tiveness of different small models as reference
models for S2L.

Our study does come with its limitations. S2L has
been only tested within two domains, mathemat-
ics and medicine, and on models up to 7 billion
parameters, constrained by our computational re-
sources. Additionally, our experiments employed
a fixed training schedule across all methods with-
out further optimization or hyperparameter tuning
for each method, including S2L. This unified ap-
proach, while it ensures a fair comparison, may not
fully capture the potential performance improve-
ment that could be achieved with more tailored
training strategies. We encourage further research
to extend the application of S2L across a broader
spectrum of domains and investigate the impact of
hyperparameter tuning on its effectiveness.
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A Proofs

A.1 Proof of Theorem 4.1

Proof. From the assumption that the loss trajectories of examples on the proxy and target models are
close:

∥Lproxy
i − Ltarget

i ∥ ≤ δ, ∀i. (9)
Since i and j are in the same cluster Ck based on the proxy model, we have:

∥Lproxy
i − Lproxy

j ∥ ≤ ϵ. (10)
Using the triangle inequality:

∥Ltarget
i − Ltarget

j ∥ ≤ ∥Ltarget
i − Lproxy

i ∥+ ∥Lproxy
i − Lproxy

j ∥+ ∥Lproxy
j − Ltarget

j ∥ ≤ 2δ + ϵ = ϵ′.

(11)
Therefore, at any iteration t:

|Ltarget
i (θ(t))− Ltarget

j (θ(t))| ≤ ϵ′, ∀t. (12)
Assuming that the loss functions can be approximated by:

Ltarget
i (θ) =

1

2
dθ⊤Hidθ + g⊤

i dθ + ci, (13)

where ci is the loss of example i at the beginning of fine-tuning, and dθ is the distance between the
parameters of the pretrained model and those during fine-tuning. Similarly for Ltarget

j (θ). The loss
difference between i and j is:

Ltarget
i (θ)− Ltarget

j (dθ) =
1

2
dθ⊤(Hi −Hj)dθ + (gi − gj)

⊤dθ + (ci − cj). (14)

Given that |Ltarget
i (θ)− Ltarget

j (θ)| ≤ ϵ′, we can write:∣∣∣∣12dθ⊤(Hi −Hj)dθ + (gi − gj)
⊤dθ + (ci − cj)

∣∣∣∣ ≤ ϵ′. (15)

Let us choose two different values, θ(1) and θ(2), to generate two inequalities. For dθ(1), we have:∣∣∣∣12(dθ(1))⊤(Hi −Hj)dθ
(1) + (gi − gj)

⊤dθ(1) + (ci − cj)

∣∣∣∣ ≤ ϵ′, (16)

and for dθ(2), we have:∣∣∣∣12(dθ(2))⊤(Hi −Hj)dθ
(2) + (gi − gj)

⊤dθ(2) + (ci − cj)

∣∣∣∣ ≤ ϵ′. (17)

Subtracting these two inequalities, we get:∣∣∣∣12 (
(dθ(1))⊤(Hi −Hj)θ

(1) − (dθ(2))⊤(Hi −Hj)dθ
(2)

)
+ (gi − gj)

⊤(dθ(1) − dθ(2))

∣∣∣∣ ≤ 2ϵ′.

(18)∣∣∣(dθ(1))⊤(Hi −Hj)dθ
(1) − (dθ(2))⊤(Hi −Hj)dθ

(2)
∣∣∣ ≤ ∥Hi −Hj∥

(
∥dθ(1)∥2 + ∥dθ(2)∥2

)
≤ (∥Hi∥+ ∥Hj∥)

(
∥dθ(1)∥2 + ∥dθ(2)∥2

)
≤ 4CD2

(19)
This gives us: ∣∣∣(gi − gj)

⊤(dθ(1) − dθ(2))
∣∣∣ ≤ 2ϵ′ + 2CD2. (20)

Assuming ∥dθ(1) − dθ(2)∥ ≥ d, we get:

∥gi − gj∥ ≤
2ϵ′ + 2CD2

d
= ∆. (21)
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A.2 Proof of Corollary 4.2

Without loss of generality, assume we select k example from each cluster and we have k ≤
minj∈[K] |Cj |. Then the error of the subset in capturing the full gradient will be

ξ ≤
∑
j

(|Cj | − k)(ḡj +∆), (22)

where ḡj is the norm of the average gradient of the selected examples from Cj . In practice, we can
weight elements of the subset by rmin/k, which has a similar effect to scaling the step size when
training on the subset. Let gmax = maxj ∥gj∥ be the maximum gradient norm during training,
rmax = maxj |Cj |, rmin = minj |Cj |. Then, we get

ξ′ ≤
∑
j

(rmin − k)∆ + (|Cj | − rmin)(ḡj +∆) (23)

≤ K[rmin∆+ (rmax − rmin)gmax] (24)

The first term in RHS of Eq (23) is the error of the subset selected from Cj to capture its full gradient
and the second term is due to selecting the same number of examples, k, from the larger clusters.

Using the above error and following the proof of Theorem 1 in [35], for a constant step size α ≤ 1/c
we get:

∥θt+1 − θ∗∥2 ≤ (1− αc)t+1∥θt − θ∗∥2 + 2ξ′R/c2 + αB2(rmin/k)
2g2

max, (25)

where c ≤ ∥H∥, and B = k ·K is the total size of the subset, R = min{d0, Bgmax + ξ′/c} and
d0 = ∥θ0 − θ∗∥ is the initial distance to the optimal solution θ∗.

If k ≥ |Cj | for any cluster Cj , one can simply add (rmin/k − 1) · ĝj to ξ′ for the corresponding
clusters, where ĝj is the norm of the total gradient of cluster Cj and we replace rmin in Eq (23) with
the size of smallest cluster that has larger than k examples.

B Experiment Details

B.1 Models

Pythia. The Pythia models [6] are a suite of large language models (LLMs) developed by EleutherAI
licensed under the Apache License 2.0. These models range in size from 70 million to 12 billion
parameters and are designed to enable controlled scientific research on transparently trained LLMs
across various scales.

Phi. The Phi models [28] developed by Microsoft are under the MIT License. Phi-1.5, a transformer-
based model with 1.3 billion parameters, and its successor, Phi-2, with 2.7 billion parameters, have
been trained on a diverse set of data sources, including synthetic texts and curated websites. The
Phi models underscore the potential of small yet powerful language models in understanding and
generating human language, empowering a range of NLP tasks. Phi-2, in particular, has raised the bar
for reasoning and language understanding among foundation models, matching or even exceeding
the performance of models 25 times its size on complex benchmarks.

LLaMA 2. The LLaMA 2 models [50], released by Meta AI and licensed under the LLaMA 2
Community License Agreement, are designed for improved natural language understanding and
generation. LLaMA 2-7B, the smallest in this series with 7 billion parameters, has demonstrated
competitive performance across various NLP benchmarks despite its moderate size.

B.2 Datasets

MathInstruct. The MathInstruct dataset [64] is compiled from 13 diverse math rationale datasets,
using both chain-of-thought (CoT) and program-of-thought (PoT) rationales. It ensures compre-
hensive coverage across various mathematical fields in the 262K training examples, making it a
popular resource for fine-tuning large language models (LLMs) for general math problem-solving.
MathInstruct is licensed under the MIT license.
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Table 3: A synthetic radiology report (MRI of the brain), generated by the GPT-4 model [2] to
demonstrate the typical data format and content used in the clinical text summarization task. It is not
suitable for clinical or diagnostic use.

Findings The brain parenchyma demonstrates normal morphology with no evidence of mass effect
or midline shift. No acute infarcts are seen on diffusion-weighted images. There are
no signs of intracranial hemorrhage. Mild generalized cerebral atrophy is noted. The
ventricles and sulci appear within normal limits for the patient’s age. The pituitary gland
and sella turcica are unremarkable. There are no abnormal signal intensities within the
brain parenchyma. The orbits, paranasal sinuses, and mastoid air cells are clear.

Impression Normal MRI of the brain. Mild cerebral atrophy, likely age-related. No acute intracranial
pathology.

MIMIC-III. The MIMIC-III (Medical Information Mart for Intensive Care III) dataset [21] is a
comprehensive collection of de-identified health data associated with over 40,000 patients who stayed
in critical care units of the Beth Israel Deaconess Medical Center in Boston, Massachusetts. This
large dataset includes information such as demographics, vital signs, laboratory tests, medications,
and more, making it an invaluable resource for a wide range of research in healthcare, including
clinical decision support systems, medical procedure efficacy studies, and patient care optimization
strategies.

The MIMIC-III dataset is made freely available to the research community under the Health Insurance
Portability and Accountability Act (HIPAA) compliance, ensuring patient confidentiality and data
protection. Access to the dataset is granted under a data use agreement (DUA) to individuals affiliated
with an institution that approves the use of the data for research purposes. Researchers seeking to
utilize the MIMIC-III dataset must complete a required training course on human research protections,
which ensures that all researchers are aware of the responsibilities involved in handling sensitive
patient data.

B.3 Implementation Details

S2L The training trajectories for both MathInstruct and MIMIC-III are gathered from training
a Pythia-70M model, the smallest model in the Pythia model suite, recorded every 500 training
iterations. We utilize the Faiss library [17] to perform efficient K-means clustering of loss trajectories
with Euclidean distance with K = 100 and 20 iterations. The hyperparameter K is tuned in the
range of {50, 100, 200} based on the average accuracy of the model trained on 30K selected data.
We found K = 100 worked the best for both datasets we studied in this paper. Ablations studies on
the length and the best time in the training to record the trajectories can be found in Section 5.4.

Comparing Reference Models for the Baselines For one-shot selection methods (excluding S2L),
we use representations from either step 1000 or the end of fine-tuning Pythia-410M on MathInstruct
and reported the better result in Figure 4 and Table 1. In Table 4, we include the complete comparison
between using early-fine-tuning vs. end-of-fine-tuning model checkpoints as the inference model. For
Facility Locations, we further compared using the first hidden states as the feature representation as
suggested in [4] to using the last hidden states [56] for the tasks we studied.The ranges for confidence,
perplexity, and learnability are chosen according to the best-performing intervals reported in prior
research (Section 5.1).

Due to memory and computational constraints, for Facility Locations, we calculate pairwise similarity
and perform greedy selection on a per-data-source basis. We found this per-source selection approach
also yields benefits for S2L as different data sources within MathInstruct exhibit distinct common
patterns in their training trajectories. Therefore, we implement S2L also on a per-source basis for
MathInstruct, and recommend applying S2L per source when dealing with datasets composed of
multiple data sources.

Hyperparameters Following the setup used in [64], we adopt a training regimen with a learning
rate of 2e-5, a batch size of 128, a maximum length of 512, and a cosine scheduler with a 3% warm-up
period.
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Experiments Compute Resources We fine-tune all the models with the Huggingface transformers
library [55] with Fully Sharded Data Parallel (FSDP) [66] on 4 48G NVIDIA RTX A6000.

Table 4: Complete results used for selecting the best reference model for each one-shot data selection
baseline. The choice of early-fine-tuning (step 1000) and end-of-fine-tuning checkpoint follows [34].
The best results selected for Figure 4 are highlighted in cyan.

REF DATA IN-DOMAIN OUT-DOMAIN
SELECTION MODEL SIZE GSM8K MATH NUMGLUE AVG SVAMP MATHEMATICS SIMULEQ AVG

LEAST
CONFIDENCE

EARLY
30K 2.3 1.7 15.5 6.5 13.6 1.2 0.5 5.8
50K 1.7 2.6 20.5 8.3 16.0 4.0 1.8 7.8

100K 3.9 2.7 22.5 9.7 19.2 8.0 3.3 9.9

END
30K 2.7 1.3 18.0 7.0 13.7 3.3 1.4 6.7
50K 2.1 1.7 21.0 8.3 14.5 3.5 1.0 7.3

100K 2.5 3.3 23.5 9.8 20.8 6.3 3.7 10.0

MIDDLE
PERPLEXITY

EARLY
30K 3.3 3.8 17.5 8.2 11.8 1.2 1.2 6.5
50K 2.9 4.1 19.6 8.9 15.6 7.6 2.9 8.8

100K 4.8 7.1 20.4 10.8 19.6 16.1 3.9 12.0

END
30K 5.3 3.7 16.2 8.4 14.2 8.7 1.2 8.2
50K 3.2 5.9 20.5 9.9 18.1 11.3 5.1 10.7

100K 5.4 7.2 20.9 11.2 23.8 15.3 3.3 12.6

HIGH
LEARNABILITY

EARLY
30K 6.1 1.6 19.1 8.9 10.7 9.9 1.4 8.1
50K 6.1 2.1 18.6 8.9 14.5 14.0 2.1 8.9

100K 7.4 9.2 29.8 15.5 20.7 19.4 10.3 16.1

END
30K 3.0 1.4 14.7 6.4 2.1 6.8 1.8 5.0
50K 1.3 2.1 16.0 6.5 4.7 6.9 3.1 5.7

100K 4.3 7.2 23.0 11.5 16.7 16.1 4.3 11.9

FACILITY
LOCATION

EARLY (FIRST) 50K 3.9 7.6 12.4 8.0 11.1 14.6 1.9 8.6

EARLY (LAST) 50K 5.7 9.1 12.4 9.1 15.4 18.6 1.6 10.5

END (FIRST) 50K 3.8 7.7 14.8 8.7 19.2 11.4 2.3 9.9

END (LAST) 50K 5.2 9.7 11.8 8.9 12.4 18.2 1.0 9.7

B.4 Evaluation

B.4.1 MathInstruct

Datasets. We utilize 6 diverse datasets with open-formed questions for evaluating the mathematical
reasoning capabilities of models trained with both the full MathInstruct dataset and selected subsets.
These datasets, detailed in Table 5, span a range of mathematical disciplines from early algebra
to calculus and linear algebra, covering various types of questions such as multi-step reasoning,
arithmetic word problems, and problems from mathematics competitions. This variety ensures a
comprehensive assessment across both in-domain and out-domain tasks.

Pipeline. We utilize the pipeline provided by [64]2, designed to first determine whether the model
can be prompted to generate a code snippet. This code snippet, if successfully generated, should be
executable and produce the correct answer when run. This code-based evaluation is also used for Phi
models [28]. In cases where the model does not directly produce a viable code solution, we employ
a “think step-by-step" prompting strategy [54]. This method prompts the model to break down its
reasoning process, a technique that has been widely proven effective in fully exploiting the model’s
problem-solving capacity.

B.4.2 MIMIC-III

Following [14, 15], we include the six most common modality/anatomy pairs: CT head, CT abdomen,
CT chest, MRI head, CT spine, and CT neck, and five less common pairs in the text data: MRI spine,
CT sinus, MRI abdomen, MRI pelvis, and MRI neck in the evaluation. There are in total 13.7K test
examples after data preprocessing and train-test splitting.

2https://github.com/TIGER-AI-Lab/MAmmoTH?tab=readme-ov-file#large-scale-evaluation
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Table 5: Types of questions in the evaluation datasets for the mathematical reasoning task.

DATASET SIZE LEVEL TASKS

GSM8K 1319 Early Algebra Multi-step reasoning using basic arithmetic
operations

MATH 5000 Early Algebra, Intermedi-
ate Algebra, Algebra, Prob-
ability, NumTheory, Calcu-
lus, Geometry

Problems from mathematics competitions, in-
cluding the AMC 10, AMC 12, AIME

NumGLUE 1042 Early Algebra Commonsense, Domain-specific, Arithmetic
Reasoning, Quantitative Comparison, Fill-
in-the-blanks Format, Reading Comprehen-
sion, Numerical Reasoning, Quantitative
NLI, Arithmetic Word Problems

SVAMP 1000 Early Algebra Arithmetic Word Problems

Mathematics 1000 Early Algebra, Intermedi-
ate Algebra, NumTheory,
Calculus

Arithmetic Reasoning

SimulEq 514 Linear Algebra Single and multiple equation word problems

C Examples in Different Clusters

We compare data points in the same and different clusters based on training trajectories, in Figure 15,
Figure 16 and Figure 17. We can observe that examples with similar training trajectories have the
same question format. Therefore, balanced sampling from all clusters can ensure different types of
examples can be covered in the selected subset of training data.
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Figure 14: Break-down accuracies (↑) on in-domain and out-of-domain datasets using Pythia-410M.
Data size refers to the total number of unique training examples used. All experiments in this table
share the same total training steps and learning rate schedule (see Section 5.2).

D Topic Distribution of Data Selected by S2L

Beyond qualitative examples from different clusters, we study how S2L changes the data distribution
to outperform using the full fine-tuning dataset as well as using random subsets of the same size that
have the same distribution as the original dataset. In Figure 18, we can observe that S2L not only
guarantees a thorough and balanced coverage across the spectrum of topics but also ensures sufficient
representation of foundational topics, such as pre-algebra, which lays the groundwork for tackling
more complex subjects.

E Broader Impacts

This paper introduces a data selection method for large language models (LLMs), aiming to enhance
the data efficiency in the supervised fine-tuning (SFT) of these models.
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Camden went swimming 16 times in March and Susannah went 24 times. If the number of times they went 
throughout the month was divided equally among 4 weeks, how many more times a week did Susannah swim 
than Camden?
Camden went swimming 16/4 = 4 times a week
Susannah went swimming 24/4 = 6 times a week
Susannah went 6 - 4 = 2 more times a week than Camden
The answer is 2

What is the perimeter of a Koch snowflake curve after five iterations, if the initial side length of the equilateral 
triangle used to construct the curve is 8 cm?
The Koch snowflake is a fractal curve constructed by iteratively replacing each side of an equilateral triangle with 
a smaller equilateral triangle. After each iteration, the number of sides increases by a factor of 4, and the length of 
each side is reduced by a factor of 3.
After five iterations, the number of sides in the Koch snowflake is given by:
number of sides = 3 * (4^5) = 3 * 1024 = 3072
The length of each side after five iterations is given by:
side length = initial side length / (3^5) = 8 / 243
The perimeter of the Koch snowflake after five iterations is the product of the number of sides and the length of 
each side:
perimeter = number of sides * side length = 3072 * (8 / 243) ≈ 101.3333 cm

Lilly and Fiona are cleaning a room. Between them, it takes 8 hours to clean the room. A quarter of the time spent 
cleaning was by Lilly and Fiona was responsible for the rest of the cleaning. How long, in minutes, was Fiona 
cleaning?
8 hours is 8*60=480 minutes.
Lilly cleaned for 480/4=120 minutes.
This means that Fiona was cleaning for 480-120=360 minutes.
The answer is 360

Figure 15: Examples in the cluster shown in Figure 7a: open-formed algebra. Questions are in black
and answers are in cyan.

Passage: The U.S. Institute of Medicine (IOM) updated Estimated Average Requirements (EARs) and Recommended 
Dietary Allowances (RDAs) for iron in 2001. The current EAR for iron for women ages 14–18 is 7.9 mg/day, 8.1 for 
ages 19–50 and 5.0 thereafter (post menopause). For men the EAR is 6.0 mg/day for ages 19 and up. The RDA is 15.0 
mg/day for women ages 15–18, 18.0 for 19–50 and 8.0 thereafter. For men, 8.0 mg/day for ages 19 and up. RDAs are 
higher than EARs so as to identify amounts that will cover people with higher than average requirements. RDA for 
pregnancy is 27 mg/day and, for lactation, 9 mg/day. For children ages 1–3 years 7 mg/day, 10 for ages 4–8 and 8 
for ages 9–13. As for safety, the IOM also sets Tolerable upper intake levels (ULs) for vitamins and minerals when 
evidence is sufficient. In the case of iron the UL is set at 45 mg/day. Collectively the EARs, RDAs and ULs are 
referred to as Dietary Reference Intakes. Question: How many years does an RDA of 8 last for children? 
Let's write a Python program to solve it.
child = 4
print(child)

Passage:  The Raiders began their 2011 campaign at Sports Authority Field at Mile High, for a Week 1 AFC West 
duel with the Denver Broncos in the second game of Monday Night Football's doubleheader.  Oakland trailed early 
in the first quarter as Broncos kicker Matt Prater got a 28-yard field goal.  The Raiders answered in the second 
quarter as quarterback Jason Campbell found fullback Marcel Reece on a 3-yard touchdown pass, followed by a 
37-yard, a 21-yard, and an NFL record tying 63-yard field goal from kicker Sebastian Janikowski. Janikowski's leg 
helped put the Raiders up 16-3 at halftime. Denver answered in the third quarter as wide receiver Eric Decker 
returned a punt 90 yards for a touchdown, followed by Prater getting a 30-yard field goal. Oakland struck back in 
the fourth quarter with Campbell's 1-yard touchdown.  The Broncos tried to rally with quarterback Kyle Orton 
completing a 9-yard touchdown pass to running back Lance Ball, yet the Raiders' offense was able to run out the 
clock. With the win, not only did Oakland begin their season at 1-0, but they also snapped their 8-straight opening 
day losing streak. Question: How many yards was the second longest field goal? 
Let's write a program.
second = 37
print(second)

Figure 16: Examples in the cluster shown in Figure 7b: reading comprehension + coding. Questions
are in black and answers are in cyan; instructions are highlighted in orange.

Positive Impacts: Our method, by reducing the data requirements for training LLMs, can make
fine-tuning LLMs more effective and accessible. This could lead to broader participation in AI
research and application development across various fields, including healthcare and education.

Negative Impacts: Our method does not inherently involve or encourage applications with direct
negative societal impacts. The focus is on a generic improvement in the field of machine learning,
particularly in the training of LLMs.
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If there are n rays and all of them are reversed after 2006 reversals, then a possible value of n is
Answer Choices: (A) 2237 (B) 3777 (C) 2002 (D) 3772 (E) 8822
Let's reason about the multi-choice question.
has to be same number less than (or equal to) k and of the same type as k.
k = 2006 then n = 2002.
The answer is C

Stephanie, Regine, and Brian ran a 20 mile race. Stephanie and Regine's combined times exceeded Brian's time by 
exactly 2 hours. If nobody ran faster than 8 miles per hour, who could have won the race?
I. Regine
II. Stephanie
III. Brian
Answer Choices: (A) I only (B) II only (C) III only (D) I or II only (E) II, or III
Let's solve the multi-choice question step by step.
Given that S+R=B+2, where S, R, and B are times in which Stephanie, Regine, and Brian completed the race.
Min time one could complete the race is 20/8=2.5 hours. Let's see if Brian could have won the race: if he ran at the 
fastest rate, he would complete the race in 2.5 hours, so combined time needed for Stephanie and Regine would be 
S+R=B+2=4.5 hours, which is not possible as sum of two must be more than or equal the twice the least time: 
2*2.5=5. So Brian could not have won the race.
There is no reason to distinguish Stephanie and Regine so if one could have won the race, another also could. So 
both could have won the race.
The answer is E.

If m is the average (arithmetic mean) of the first 10 positive multiples of 4 and if M is the median of the first 10 
positive multiples of 4, what is the value of M – m ?
Answer Choices: (A)  0 (B)  -5 (C)  5 (D)  25 (E)  27.5
Let's think about the multi-choice question step by step.
The first 10 positive multiples of 4 is an evenly spaced set. One of the most important properties of evenly spaced 
set (aka arithmetic progression) is:in any evenly spaced set the arithmetic mean (average) is equal to the median.
Hence M=m --> M-m=0.
The answer is A.

Figure 17: Examples in the cluster shown in Figure 7c: multiple-choice + multi-step reasoning.
Questions are in black and answers are in cyan; instructions are highlighted in orange.
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(a) Topic distribution of the full MathInstruct dataset.
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(b) Topic distribution of 30K data selected by S2L.
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(c) Topic distribution of 50K data selected by S2L.
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(d) Topic distribution of 100K data selected by S2L.

Figure 18: Compared to the original topic distribution, S2L prioritized easier topics (e.g., pre-algebra
over intermediate algebra, algebra over other more advanced topics) while always ensuring complete
and more balanced coverage of all topics.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The theoretical results provided in Section 4 (and Appendix A) and the
experimental results provided in Section 5 support the main claims made in the abstract
and introduction. We also conducted experiments with both different data scales and model
scales (Section 5.2.1), in both the math and medical domains (Section 5.2 and Section 5.3),
and ablation studies (Section 5.4), to reflect how much the results can be expected to
generalize to other settings.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations of the work in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The complete proof for each theoretical result is provided in Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All information needed to reproduce the main experimental results of the paper
to the extent that it affects the main claims and/or conclusions of the paper is provided in
Section 5.2, Section 5.3 and Appendix B. Additionally, the anonymized code is provided
with the instructions in the Supplementary Material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The anonymized code is provided with the instructions in the Supplementary
Material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental settings for different tasks we considered are presented in
the corresponding sections in the main paper (Section 5.2 and Section 5.3). More details are
provided in
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not reported because it would be too computationally expensive.
We ran every experiment independently from the data selection to the target model training
without pre-defining random seeds to avoid over-fitting to one selected subset or cherry-
picking the seeds.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Information about the GPU including the memory is provided in Appendix B.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have reviewed the NeurIPS Code of Ethics and confirmed that the
research conducted in the paper conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: The broader impacts of the work are discussed in Appendix E.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks because it does not release new data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets used in this paper are properly cited. The license for each model
and dataset is provided in Appendix B.1 and Appendix B.2 respectively. The code used for
evaluation is introduced in Appendix B.4 with the URL provided in the footnote.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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