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Abstract
Data poisoning causes misclassification of test
time target examples, by injecting maliciously
crafted samples in the training data. Existing de-
fenses are often effective only against a specific
type of targeted attack, significantly degrade the
generalization performance, or are prohibitive for
standard deep learning pipelines. In this work, we
propose an efficient defense mechanism that sig-
nificantly reduces the success rate of various data
poisoning attacks, and provides theoretical guar-
antees for the performance of the model. Targeted
attacks work by adding bounded perturbations
to a randomly selected subset of training data to
match the targets’ gradient or representation. We
show that: (i) under bounded perturbations, only
a number of poisons can be optimized to have a
gradient that is close enough to that of the target
and make the attack successful; (ii) such effective
poisons move away from their original class and
get isolated in the gradient space; (iii) dropping
examples in low-density gradient regions during
training can successfully eliminate the effective
poisons, and guarantees similar training dynamics
to that of training on full data. Our extensive ex-
periments show that our method significantly de-
creases the success rate of state-of-the-art targeted
attacks, including Gradient Matching and Bulls-
eye Polytope, and easily scales to large datasets1.

1. Introduction
The impressive success of modern machine learning systems
is highly dependent on the quality of their large training data.
Many large datasets are scraped from the internet, or other
public and user-provided sources. Models trained on such
datasets are susceptible to data poisoning attacks, wherein
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an adversary places specially-constructed poisoned exam-
ples into the training data with the intention of manipulating
the behavior of the system at test time. These attacks create
security vulnerabilities that cannot be detected even if the
data is labeled and checked by human supervision. This
makes data poisoning arguably one of the most concern-
ing threats to deep learning systems deployed in security-
and safety-critical applications, such as financial services,
security cameras, autonomous cars, and medical devices.

Various types of poisoning attacks have been proposed in re-
cent years. Most attacks fall into one of two main categories:
backdoor or triggerless poisoning. Backdoor data poisoning
augments the training data by a set of poisoned examples
that contain a (not necessarily visible) trigger pattern (Gu
et al., 2017; Turner et al., 2018; Souri et al., 2021). Finetun-
ing the model on the augmented training data causes a model
to misclassify test-time samples containing the trigger. On
the other hand, triggerless poisoning attacks work by craft-
ing small per-example perturbations so that the perturbed
training examples collide with the adversarially labeled tar-
get in the feature or gradient space (Shafahi et al., 2018;
Zhu et al., 2019; Huang et al., 2020; Geiping et al., 2021b;
Aghakhani et al., 2021). Triggerless poisoning attacks cause
misclassification of particular instances and do not require
modification at inference time. In both cases, the poisoned
examples may be seemingly innocent and properly labeled,
and hence are hard to be detected by expert observers.

Existing defense mechanisms against data poisoning attacks
mainly rely on either anomaly detection based on nearest
neighbors, training loss, singular-value decomposition, fea-
ture and activation clustering (Cretu et al., 2008; Steinhardt
et al., 2017; Tran et al., 2018; Chen et al., 2019; Peri et al.,
2020), or robust training based on strong data augmenta-
tion, randomized smoothing, ensembling, and adversarial
training (Weber et al., 2020; Levine & Feizi, 2020; Abadi
et al., 2016; Ma et al., 2019; Li et al., 2021; Tao et al.,
2021). However, such methods either drastically degrade
the generalization performance of the model (Geiping et al.,
2021a), or can only protect the model against certain types
of poisoning attacks (Koh et al., 2018; Tran et al., 2018),
or are computationally prohibitive for standard deep learn-
ing pipelines (Geiping et al., 2021a). Importantly, these
methods do not provide any theoretical guarantee for the
performance of the model (Weber et al., 2020; Levine &
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Feizi, 2020; Abadi et al., 2016; Geiping et al., 2021a).

We develop an efficient and principled defense framework
that effectively prevents various types of targeted poisoning
attacks, and provide theoretical guarantee for the perfor-
mance of the model. To successfully prevent poisoning
attacks, we make the following key observation: not all
poisons are effective in making the attack successful. In
particular, targeted attacks add bounded perturbations to ran-
domly selected subsets of training data to match the gradient
of the adversarially labeled target. We show that for a poison
to be effective, it needs to fall close enough to the target in
the gradient space. However, under bounded perturbations,
only a small number of poisons can be optimized to get close
enough to the target and make the attack successful. Such
effective poisons get far away from their original class and
get isolated in the gradient space. Eliminating the effective
poisons can successfully break various types of attacks.

To prevent data poisoning while maintaining the general-
ization performance of the network, we aim to identify and
eliminate the effective poisons. We show that effective poi-
sons can be identified as isolated medoids of each class, in
the gradient space. Medoids are the most centrally located
examples of a dataset, that minimize the sum of dissimi-
larity between every data point to its nearest medoid. The
set of medoids can be efficiently extracted by maximizing
a submodular function. To eliminate effective poisons, we
iteratively find medoids of every class in the gradient space
during the training. Then, we assign every data point to the
closest medoid in its class, and drop the medoids to which
no other data point is assigned. We show that our Effective
Poison IdentifiCation (EPIC) method can successfully elim-
inate effective poisons. We also prove that training on large
gradient clusters of each class guarantees similar training
dynamics to that of training on the full data.

Compared to existing defense strategies, our method does
not require a pre-trained clean model, is not attack specific,
can be applied very efficiently during the training, and pro-
vides quality guarantee for the performance of the trained
model. Our extensive experiments show that our method
renders state-of-the-art targeted attacks, including Gradient
Matching, Bullseye Polytope, and Feature Collision inef-
fective, with only a slight decrease in the performance. We
note that, EPIC is the only effective defense method against
state-of-the-art attacks that can efficiently scale to standard
deep learning pipelines. Compared to the state-of-the-art
(Geiping et al., 2021a), EPIC is 6.9x faster, and maintains
similarly high test accuracy and low attack success rate.

2. Related Work
2.1. Targeted Data Poisoning

Attacks on deep networks can be generally divided into trig-
gered and triggerless attacks. Triggered or backdoor attacks

augment the training data with a small set of examples that
contain a trigger patch and belong to a specific target label.
Models trained on the augmented data will misclassify test
examples with the same patch. While early backdoor attacks
were not clean-label (Chen et al., 2017; Gu et al., 2017; Liu
et al., 2017; Souri et al., 2021), recent backdoor attacks
produce poison examples which do not contain a visible
trigger (Turner et al., 2018; Saha et al., 2019). Triggerless
poisoning attacks add small adversarial perturbations to base
images to make their feature representations or gradients
match that of the adversarially labeled target (Shafahi et al.,
2018; Zhu et al., 2019; Huang et al., 2020; Geiping et al.,
2021b; Aghakhani et al., 2021). Such poisons are very simi-
lar to the base images in the input space, cannot be detected
by observers, and do not require modification to targets at
inference time. The most prominent poisoning attacks we
test our defense against are:

Feature Collision (FC) crafts poisons by adding small per-
turbations to base examples so that their feature representa-
tions collide with that of the target (Shafahi et al., 2018).

Bullseye Polytope (BP) is similar to FC, but instead crafts
poisons such that the target resides close to the center of
their convex hull in feature space (Aghakhani et al., 2021).

Gradient Matching (GM) produces poisons by approx-
imating this bilevel objective using “gradient alignment”,
encouraging gradients of the clean-label poisoned data to
align with that of the adversarially labeled target (Geiping
et al., 2021b). This attack is shown to be effective against
data augmentation and differential privacy.

Sleeper Agent (SA) is a hidden-trigger backdoor attack
that also craft poisons based on the “gradient alignment”
between patched poisons and targets (Souri et al., 2021).

2.2. Defense Strategies
Commonly used data sanitization defenses work by detect-
ing anomalies that fall outside a spherical radius in the fea-
ture space (Steinhardt et al., 2017), spectrum of the feature
covariance matrix (Tran et al., 2018), or activation space
(Chen et al., 2019). They may also filter points that are la-
beled differently from their nearest neighbors in the feature
space (Peri et al., 2020). Such defense mechanisms rely
on the assumption that poisons are far from the clean data
points in the input or feature space. Hence, they can be
easily broken by stronger data poisoning attacks that place
poisoned points near one another, or by optimization meth-
ods that craft poisons to evade detection (Koh et al., 2018;
Shafahi et al., 2018; Saha et al., 2019).

Robust training methods rely on strong data augmentation
(Borgnia et al., 2021), apply randomized smoothing (We-
ber et al., 2020), use an ensemble of models for predic-
tion (Levine & Feizi, 2020), or bound gradient magnitudes
and minimize differences in orientation (Hong et al., 2020).
Such methods often incur a significant performance penalty
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(Jayaraman & Evans, 2019), and can even be adaptively at-
tacked by modifying gradient signals during poison crafting
(Veldanda & Garg, 2020). Other identify backdoor attacks
early in training and revert their effect by gradient ascent
(Li et al., 2021), use adversarial training (Madry et al., 2018;
Tao et al., 2021), or create poisons during training and inject
them into training batches (Geiping et al., 2021a).

Existing defense methods either drastically degrade the the
model’s performance (Geiping et al., 2021a), only protect
the model against certain type of poisoning attack (Koh
et al., 2018; Tran et al., 2018), are prohibitive for larger
datasets (Geiping et al., 2021a), or do not provide any theo-
retical guarantee for the performance of the model (Weber
et al., 2020; Levine & Feizi, 2020; Abadi et al., 2016; Geip-
ing et al., 2021a). On the other hand, our method is fast
and scalable, and successfully eliminates various poisoning
attacks while allowing the model to effectively learn from
the clean examples with rigorous theoretical guarantees.

3. Robust Training against Data Poisoning
Let Dc = {(xi, yi)}ni=1 be the set of all clean training data,
where xi ∈ Rm. Targeted data poisoning attacks aim to
change the prediction of a target image xt in the test set to
an adversarial label yadv, by modifying a fraction (usually
less than 1%) of data points in the training data within an
l∞-norm ϵ-bound. We denote by V = {1, · · · , n}, and
Vp ⊂ V the index set of the entire training data and poi-
soned data points, respectively. For small ϵ, this constraint
enforces the perturbed images to visually look similar to the
original example. Such attacks remain visually invisible to
human observer and are called clean-label attacks. Targeted
clean label data poisoning attacks can be formulated as the
following bilevel optimization problem:

min
δ∈C
L(xt, yadv, θ(δ)) s.t. (1)

θ(δ)=argminθ
∑
i∈V

L(xi+δi, yi, θ),

where C={δ∈ Rn×m:∥δ∥∞≤ ϵ, δi=0 ∀i /∈ Vp} is the con-
straint set determining the set of valid poisons. Intuitively,
the perturbations change the parameters θ of the network
such that minimizing the training loss on RHS of Eq. (1)
also minimizes the adversarial loss on LHS of Eq. (1).

We assume that the network is trained by minimizing the
training loss L(θ) =

∑
i∈V L(xi + δi, yi, θ) over the entire

set of clean and poisoned training examples i ∈ V, δi =
0 ∀i /∈ Vp. Applying gradient descent with learning rate η
to minimize the training loss L(θ), iteration τ take the form:

θτ+1 = θτ − η∇L(θτ ). (2)

Attack and defense assumptions. We consider a worst-
case scenario, where the attacker has knowledge of the de-

fender’s training procedure (e.g. learning rate, optimization
algorithm), architecture, and defense strategy, but cannot
influence training, initialization, or mini-batch sampling.
In transfer learning where the defender uses a pre-trained
model and only trains the last layer, we assume the pa-
rameters of the pre-trained model is known to the attacker.
However, the defender is not aware of the target example or
the specific patch chosen by the attacker. We also assume
that the defender does not have access to additional clean
data points.

3.1. Motivation

For a targeted poisoning attack to be successful, the target
needs to be misclassified as the adversarial class yadv. Ef-
fectively, the poisons need to pull the representation of the
target toward the poison class. To do so, they need to mimic
the gradient of the adversarially labeled target. Formally,

∇L(xt, yadv, θ) ≈
1

|Vp|
∑
i∈Vp

∇L(xi + δi, yi, θ) (3)

needs to hold for any θ encountered during training.

This is the motivation behind the poison generation in the
end to end training scenario. In particular, Gradient Match-
ing (Geiping et al., 2021b) and Sleeper Agent (Souri et al.,
2021) explicitly minimize the alignment (cosine similarity)
between poison and target gradient as in Eq. (3), using a
clean pre-trained model. Although the poisons are gener-
ated using a pre-trained clean model, (Geiping et al., 2021a)
empirically showed that the alignment between the gradient
of adversarial and training loss remains large during the
training. MetaPoison (Huang et al., 2020) uses a number of
partially-trained models to generate poisons that minimize
the adversarial loss at different stages during the training.
Bullseye Polytope (Aghakhani et al., 2021) maximizes the
similarity between representations of the poisons and tar-
get. In doing so, it implicitly minimizes the alignment
between poison and target gradients w.r.t. the penultimate
layer, which captures most of the gradient norm variation
(Katharopoulos & Fleuret, 2018).

In the transfer learning scenario, the poisons are crafted to
have a similar representation to that of the target. Here, a
linear layer is trained on the poisoned data using the rep-
resentations obtained from a pre-trained clean model. The
gradient of the linear model is proportional to the repre-
sentations learned by the pre-trained model. Therefore, by
maximizing the similarity between the representations of
the poisons and the adversarially labeled target, the attack
indeed increases the alignment between their gradients.

Crucially, the better the poisons can surround the target in
the gradient space, the more effective the attack becomes.
This is demonstrated by the superior success rate of Bulls-
eye Polytope (Aghakhani et al., 2021) and Convex Polytope
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Figure 1. 500 effective (red) and ineffective (purple) poisons crafted by GM and BP in from-scratch and transfer learning scenarios on
CIFAR10. (a) Number of effective vs. ineffective poisons and their distance to the target in the (last layer) gradient space of a clean
model; (b) Embeddings of effective (red) and ineffective (purple) poisons, and clean examples of the target (blue) and poison (green)
class, projected on the first 2 principal components. Effective poisons are not examples with lowest confidence or highest loss.

(Zhu et al., 2019), compared to that of Feature Collision
(Shafahi et al., 2018). While Feature Collision only opti-
mizes the poisons to have a similar representation to that
of the adversarially labeled target, Convex Polytope moves
poisons until the target is inside their convex hull, and Bulls-
eye Polytope makes further refinements to move the target
away from the polytope boundary.

3.2. Not all the poisons are created equal

To successfully prevent poisoning attacks, we make the fol-
lowing key observation: Not all the poisoned examples are
responsible for the success of the attack. We define effec-
tive poisons as examples that make the attack successful.
That is, if the model is trained with the effective poisons,
the attack will be successful even if all the other poisons
are removed. In contrast, if the effective poisons are elimi-
nated, the remaining (ineffective) poisons cannot make the
attack successful. Fig. 1a shows 500 effective and inef-
fective poisons generated by Gradient Matching (GM) and
Bulleyes Polytope (BP) in the training from scratch and
transfer learning scenarios. We tried different combinations
of the poisons and identified the smallest subset of poisons
that is responsible for the success of the attack. We observe
that indeed not all poisons are effective. While for from-
scratch training only 8% of the poisons are effective, for
transfer learning around 90% of the poisons are effective.

We explain the above observation as follows: not all the
randomly selected examples can be modified by bounded
perturbations to have a gradient that closely matches that
of the target. When training from scratch, attacks can only
craft a handful of effective poisons as the poisons need to
match the very high-dimensional gradient of the target with
bounded perturbations. On the other hand, during transfer
learning, poisons are optimized to match the much lower-
dimensional gradient of the target. Hence, attacks can craft
a much larger number of effective poisons.
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Figure 2. Fraction of effective poisons dropped vs fraction of all
examples dropped during training on CIFAR10 poisoned with GM,
for our method (EPIC) vs lowest-confidence and highest-loss with
thresholds .25,.5/1,2 shown by transparent colors, and their average
shown in opaque. Left: from-scratch. Right: transfer learning.

3.3. Effective poisons are not examples with highest loss
or lowest confidence

It is important to note that effective poisons are not the data
points around the decision boundary for which the model is
not confident, or outliers that have a higher loss than other
data points in their class. Fig. 1b shows the embedding of
clean and poisoned examples of the poison and target class
during training from scratch. We see that effective poisons
can be within the poison or target class, or at the boundary
of the classes, at different training iterations. Fig. 2 shows
the fraction of effective poisons eliminated when we drop
examples with highest loss or lowest confidence with var-
ious thresholds during the training. We see that dropping
lowest-confidence or highest-loss examples during the train-
ing indeed removes a larger number of clean data points,
and cannot successfully eliminate the effective poisons.

3.4. Effective poisons become isolated in gradient space

Attacks exploit the non-convex nature of the neural network
loss to optimize poisons that match the target gradient. For
ineffective poisons, attacks cannot successfully modify the
base example with bounded perturbations to match the target
gradient. This is the case where loss is relatively smooth
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Figure 3. Training with EPIC on CIFAR10 poisoned with GM. (a) Similarity between effective poisons’ gradients to each other becomes
small (they get isolated) after the warmup period, (b) EPIC effectively eliminates effective poisons while dropping a smaller fraction of
clean examples, (c) EPIC preserves main gradient components, hence remaining examples have a closer gradient to that of the full data,
compared to random subsets of the same size. Thus, EPIC preserves the training dynamics.

in a ball of radius ϵ around the base. Thus, for ineffective
poisons attacks can only increase the alignment between
the gradients of ineffective poisons with that of the target to
some extent. In doing so, the similarity between ineffective
poisons’ gradients becomes larger. Hence, they form larger
gradient clusters in the poison class, as shown by Fig. 1b.

On the other hand, effective poisons can be modified under
bounded perturbations to match the target gradient. This is
the case where there are sharp regions in a ball of radius ϵ
around a base example. Here, the base can be perturbed and
taken to such sharp regions, and its gradient can be further
optimized there to match the target gradient. During the
training on the poisoned data, the gradients of effective poi-
sons move far away from their class and get close to the tar-
get. But, they each have a different trajectory (starting from
difference base examples) for interpolating between their
base and the target gradients. These trajectories are neither
similar to each other (as they start from different bases), nor
similar to other examples in the base class (as they end up
matching target’s gradient in another class). Fig. 3a shows
that while the similarity between gradients of effective poi-
sons and target increases during the training, the gradient
of effective poisons is very different from each other after a
few epochs of training, and before the model gets poisoned.
Hence, effective poisons’ gradients become isolated in the
gradient space, early in training. Such isolated points in low-
density gradient regions can be best identified by proximity-
based methods, such as k-medoids, as we discuss next.

3.5. Eliminating the effective poisons

To prevent data poisoning while maintaining the general-
ization performance of the network, we aim at identifying
and removing the effective poisons. To do so, our key idea
is to drop data points that have a different gradient com-
pared to other examples in their class, i.e., are isolated in

Algorithm 1 Effective Poison Identification (EPIC)

Input: Training data indexed by V , submodular facility
location function F , loss functionL(·), warmup iterations
K, poison drop interval T , number of medoids k.
Output: Subset S ⊆ V
Train the network for K epochs on V .
for every T epochs do

for examples Vc in class c ∈ [C] do
Initialize S ← ∅, Z ← ∅
while |S| < k/C do

j ∈ argmaxe∈Vc\S F (e|S)
S = S ∪ {j}

end while
for j = 1 to |S| do
γj=

∑
i∈Vc

I[j=argmins∈S ||∇L
f Li(θ)−∇L

f Ls(θ)||]
if γi == 1 then

Z = Z ∪ {j}
end if

end for
V = V \ Z

end for
Train on V for T epochs.

end for

the gradient space during training. As we discuss next,
dropping such points effectively eliminates the majority of
poisoning attacks with only a slight impact on the gradient
of the full training loss. By preserving the important gra-
dient components, we guarantee similar training dynamics
and convergence to a close neighborhood of the solution
obtained by training on full data. To find the effective
poisons that do not have a similar gradient to the other data
points in their class, we train the model for a few epochs
(warmup). Then, we iteratively find and drop the isolated
points in low-density gradient regions. To do so, we find the
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Figure 4. Fraction of clean vs Gradient Matching poisons in gradient clusters of different sizes, during from-scratch learning with EPIC

for 200 epochs. Effective poisons become isolated during training and can be iteratively eliminated by EPIC.
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Figure 5. Fraction of clean vs Bullseye Polytope poisons in gradient clusters of different sizes, during transfer learning with EPIC for 40
epochs. Effective poisons become isolated during training and can be iteratively eliminated by EPIC.

medoids—the most centrally located data points—of each
class, in the gradient space. Then, we assign every data
point to its closest medoid, and drop the medoids to which
no other data point is assigned. In our experiments, we show
that selecting small subsets (10%-30% of data) of medoids
at every iteration can successfully prevent various types of
data poisoning attacks. Fig. 4, 5 show that during training
from scratch or transfer learning, effective poisons are iso-
lated medoids of the gradient space. Hence, our strategy
successfully identifies the majority of the effective poisons
in both from scratch and transfer learning settings, while
only dropping a small number of clean examples (Fig. 2,3b).

The set of medoids of a class minimizes the average gradient
dissimilarity to all the other data points in the class. For a
specific value of k, the set of k-medoids can be found as:

S∗
τ ∈argminS⊆V

|S|≤k

∑
i∈V

min
j∈S
∥∇Li(θτ )−∇Lj(θτ )∥2, (4)

where Li(θ) = L(xi, yi, θ) is the loss associated with (po-
tentially poisoned) training example i ∈ V . The minimiza-
tion problem (4) is NP-hard. However, it can be turned into
maximizing a submodular2 facility location objective:

S∗
τ ∈ argminS⊆V |S|, s.t. (5)

F (S) =
∑
i∈V

max
j∈S

c0 − ∥∇Li(θτ )−∇Lj(θτ )∥2,

2A set function F : 2V → R+ is submodular if F (S ∪{e})−
F (S) ≥ F (T ∪{e})−F (T ), for any S ⊆ T ⊆ V and e ∈ V \T .
F is monotone if F (e|S) ≥ 0 for any e∈V \S and S ⊆ V .

where c0 is a constant satisfying c0 ≥ ∥∇Li(θτ ) −
∇Lj(θτ )∥2, for all i, j ∈ V . For maximizing a mono-
tone submodular function, the greedy algorithm provides
a (1− 1/e) approximation guarantee (Wolsey, 1982). The
greedy algorithm starts with the empty set S0 = ∅, and at
each iteration t, it chooses an element e ∈ V that maximizes
the marginal utility F (e|St) = F (St ∪ {e})− F (St). For-
mally, St = St−1 ∪ {argmaxe∈V F (e|St−1)}. The com-
putational complexity of the greedy algorithm is O(nk).
However, its complexity can be reduced to O(|V |) using
stochastic methods (Mirzasoleiman et al., 2015), and can be
further improved using lazy evaluation (Minoux, 1978) and
distributed implementations (Mirzasoleiman et al., 2013).

During the training, the gradients of data points change at
every iteration. To identify the effective poisons, we need to
update the gradient medoids iteratively. The gradient vectors
can be very high-dimensional, in particular when training
from scratch. To efficiently solve Eq. (5), we rely on a recent
results showing that the variation of the gradient norms is
mostly captured by the gradient of the loss w.r.t. the input
to the last layer (Katharopoulos & Fleuret, 2018). Hence,
upper-bound on the normed difference between pairwise
gradient dissimilarities can be efficiently calculated:

∥∇Li(θτ )−∇Lj(θτ )∥2 ≤ O
(
∥∇L

f Li(θτ )−∇L
f Lj(θτ )∥2

)
where ∇L

f Li is gradient of the loss function L w.r.t. the
input to the last layer L for data point i. The above upper-
bound is marginally more expensive to calculate than loss.
Hence, upper-bounds on the gradient dissimilarities can be
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efficiently calculated. Alg. 1 illustrates the pseudocode.

Iteratively eliminating the isolated medoids during the train-
ing allows to successfully prevent various types of attacks.
At the same time, as EPIC drops scattered gradient outliers
and doesn’t skew larger (main) gradient clusters, it only
introduces a small limited error (ρ) on the full training gra-
dient. Fig. 3c shows that the gradient of the remaining
training examples during training with EPIC is much closer
to the full training gradient, compared to that of random
subsets of the same size. Theorem 3.1 leverages this idea to
upper-bound the difference between loss of model trained
with EPIC and the model trained on the full data, at every
step of training. This ensures similar training (loss) dynam-
ics to that of training on the full data, and allows the network
to obtain a similar generalization performance.

Theorem 3.1. Assume that the loss function L(θ) is µ-PL∗

on a set Θ, i.e., 1
2∥∇L(θ)∥

2 ≥ µL(θ),∀θ ∈ Θ. Assume ρ is
the maximum change in the gradient norm due to dropping
points. Then, applying gradient descent with a constant
learning rate η has similar training dynamics to that of
training on the full data. I.e.,

L(θt) ≤ (1− ηµ)tL(θ0)−
1

2µ
(ρ2 − 2ρ∇max). (6)

The proof can be found in the Appendix.

Compared to existing defense strategies, our method do not
require a pre-trained clean model, is not attack specific, can
be applied very efficiently during the training, and provides
quality guarantee for the performance of the trained model.

3.6. Adaptive attacks

Adaptive attacks can generate more powerful poisons by
taking into account the knowledge of the particular defense
mechanisms in place. For example, Gradient Matching
(Geiping et al., 2021b) and Sleeper Agent (Souri et al.,
2021) include augmented data points that are transformed
with e.g. crop and flip in addition to the original ones during
poison crafting in Eq. (3). In doing so, the attack can suc-
cessfully poison the model even when data augmentations
like crops and flips are applied to the learning pipeline. For
adaptive attacks to be successful in presence of EPIC, they
need to generate clusters of effective poisons. To do so,
the attacker may craft poisons with similar gradient trajec-
tories during the training, or optimize the choice of base
examples that result in clustered poison gradients. However,
crafting poisons with similar gradient trajectories during the
training makes the poison optimization prohibitive and may
result in less effective attacks. While selecting similar base
images does not lead to clustered effective poisons due to
non-convex nature of loss, optimizing the choice of base
examples worth further investigation in future work.

Next, we show that our method achieves a superior perfor-

mance compared to existing defense techniques.

4. Experiments
4.1. Against Data Poisoning Attacks

We evaluate the effectiveness of defense methods against
data poisoning attacks, during from-scratch training, trans-
fer learning and finetuning. For our evaluation, we use
the standardized data poisoning benchmark (Schwarzschild
et al., 2020), with 200 training epochs, starting learning rate
of 0.1 and decaying factor of 10 at epochs 100, 150. As
several defense methods are prohibitive to be applied to stan-
dard learning pipeline with 200 epochs, we also consider
a proxy setup used by (Geiping et al., 2021a) which trains
for only 40 epochs, with a starting learning rate of 0.1 and
decaying factor of 10 at epochs 25, 35.

4.1.1. FROM-SCRATCH TRAINING

We model the from-scratch training experiments based on
the benchmark setting (Schwarzschild et al., 2020). For
our attack model, we select 1% of the training examples as
poisons, which are perturbed within the l∞ ball of radius
ϵ = 8/255. The defender initializes a model based on a
random seed and trains on the poisoned dataset using SGD.
To maximize reproducibility, we only use publicly available
poisoned datasets generated by authors of the attacks.

Unless otherwise specified, we augment training images
with random horizontal flip followed by random cropping,
and per-channel normalization. For our proposed defense,
we run EPIC with T =2 in a 40-epoch training pipeline, or
T =10 in a 200-epoch training pipeline.

Warmup The more medoids we select for each class, the
longer warmup period (K) we need for EPIC. In the experi-
ments, we set K = 10 for EPIC-0.1, K = 20 for EPIC-0.2
and K = 30 for EPIC-0.3.

Gradient Matching (GM) GM is currently the state-of-
the-art among data poisoning attacks for from-scratch train-
ing (Schwarzschild et al., 2020). (Geiping et al., 2021b)
shows it significantly outperform the other effective attack,
MetaPoison (Huang et al., 2020). We test 100 datasets pro-
vided by the authors . The datasets were generated based on
the 100 preset benchmark settings, each with 500 specific
base and a target image. We follow the training hyperparam-
eters specified by the benchmark to train ResNet-18 from
scratch with 128 examples per mini-batch. Table 1 shows
that the average attack success rate of GM on these 100
datasets is 45% and the average test accuracy is 94.95%. We
see that our proposed defense, EPIC, is able to successfully
drop the the average attack success rate to only 1% while
keeping the test accuracy above 90%.

Bullseye Polytope (BP) Schwarzschild et al. (2020)
shows the superiority of BP attack in traning VGG mod-
els (Simonyan & Zisserman, 2014) from scratch on Tiny-
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Table 1. Average attack success rate and validation accuracy for EPIC against various data poisoning attacks (200-epoch pipeline).

ATTACK SENARIO UNDEFENDED DEFENDED
ATT SUCC.↑ TEST ACC.↑ ATT SUCC.↓ TEST ACC.↑

GRADIENT MATCHING FROM-SCRATCH 45% 94.95% 1% 90.26%
SLEEPER AGENT (BACKDOOR) FROM-SCRATCH 78.54% 94.42% 11.55% 88.28%

BULLSEYE POLYTOPE TRANSFER 86% 94.69% 1% 94.80%
FEATURE COLLISION TRANSFER 40% 94.68% 0% 94.81%

BULLSEYE POLYTOPE FINETUNE 80% 92.24% 0% 92.38%

Table 2. Avg. Poison Success versus validation accuracy for various defenses against the gradient matching attack of (Geiping et al.,
2021b) in the from-scratch setting. The proposed Robust Training Against Data Poisoning is listed as EPIC.

EPOCH DEFENSE ATTACK SUCC.↓ TEST ACC.↑ TIME(HR:MIN)

40 NONE 25% 92.48% 00:15

40 DEEPKNN (PERI ET AL., 2020) 21% 91.86% 02:25
40 SPECTRAL SIGNATURES (TRAN ET AL., 2018) 17% 90.13% 00:40
40 ACTIVATION CLUSTERING (CHEN ET AL., 2019) 9% 84.20% 00:31
40 DIFF. PRIV. SGD (HONG ET AL., 2020) 2% 70.34% 00:16

40 ADV. POISONING-0.25 (GEIPING ET AL., 2021A) 4% 91.48% 01:53
40 ADV. POISONING-0.5 (GEIPING ET AL., 2021A) 1% 90.67% 02:02
40 ADV. POISONING-0.75 (GEIPING ET AL., 2021A) 0% 87.97% 02:26

40 EPIC-0.1 (PROPOSED) 2.7%±0.6% 90.92%±0.26% 00:22
40 EPIC-0.2 (PROPOSED) 1.3%±0.6% 88.95%±0.08% 00:19
40 EPIC-0.3 (PROPOSED) 1.0%±0.0% 87.03%±0.11% 00:17

200 NONE 45% 94.95% 01:18

200 SPECTRAL SIGNATURES (TRAN ET AL., 2018) 10% 92.99% 03:22
200 ACTIVATION CLUSTERING (CHEN ET AL., 2019) 11% 90.88% 02:33
200 DIFF. PRIV. SGD (HONG ET AL., 2020) 2% 80.71% 01:23

200 EPIC-0.1 (PROPOSED) 2.3%±0.6% 92.50%±0.03% 01:50
200 EPIC-0.2 (PROPOSED) 1.0%±1.0% 89.71%±0.06% 01:35
200 EPIC-0.3 (PROPOSED) 0.7%±0.6% 87.05%±0.05% 01:28

Table 3. Defending against the BP attack on TinyImageNet while
training from scratch. Our method (EPIC) can train more accurate
models than the SOTA defense (AP) without increasing the success
rate of poisoning attacks, and is more scalable.

DEFENSE ATTACK SUCC.↓ TEST ACC.↑ TIME↓

NONE 40% 61.80% 1HR
AP-0.5 0% 53.54% 7HRS
EPIC-0.2 0% 57.50% 1HR

ImageNet, a subset of the ILSVRC2012 classification
dataset (Deng et al., 2009). We tested the first 10 example
datasets provided by the benchmark, and observed attack
success rate of 40%. Training with EPIC drops the attack
success rate significantly to 0%, as shown in Table 3.
Sleeper Agent (SA) SA is the only backdoor attack that
can achieve higher than single-digit success rate on CIFAR-
10 in the from-scratch setting. We generated 20 poisoned
datasets with SA (ϵ = 16) using the source-target class
pairs in the first 20 CIFAR-10 benchmark settings. For
backdoor attacks, we evaluate the attack success rate over
1000 patched test images. The average attack success rate is
78.54% without defenses and 11.55% with EPIC.

4.1.2. TRANSFER LEARNING

Here, we use the 40-epoch pipeline of (Geiping et al., 2021a)
to evaluate defense methods. The same pretrained model is
used for generating the attack and for transfer learning onto
the defender. Similar to the from-scratch setting, the attacker
can modify 1% of 50000 training examples in CIFAR10
with ϵ = 8. The linear layer (classifier) of the pretrained
model is then re-initialized and trained with the poisoned
dataset with all the other layers (feature extractor) fixed
during the training. This white-box setup allows attacks to
produce stronger poisons. Here, we apply EPIC with T =1.

Bullseye Polytope (BP) According to (Schwarzschild
et al., 2020), Bullseye Polytope attack (Aghakhani et al.,
2021) has the highest average attack success rate in the
white-box setting. When evaluated on all 100 benchmark
setups, BP succeeded in 86 of them. Table 1 shows that
EPIC could successfully drop the attack success rate to only
1% while even increasing the test accuracy of the model.

Feature Collision (FC) As imposing the l∞ constraint
ϵ = 8 will greatly reduce the power of Feature Collison
attack (Schwarzschild et al., 2020), we keep the l2 regu-
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larization term in their original optimization objective to
impose a soft rather than hard constraint on the l∞ pertur-
bation. We generate 20 poisoned datasets using the first 20
benchmark setups (indexed from 0 to 19). With the default
seed used by the benchmark, the attack success rate of these
20 datasets generated by FC is 40% before and 0% after we
apply our EPIC defense, as shown in Table 1.

4.1.3. FINETUNING

We also consider the finetuning scenario in which the clas-
sifier is re-initialized and the feature extractor is not fixed
during the training. We follow the same setup in (Geiping
et al., 2021a), test 20 datasets poisoned with BP, and report
the result in Table 1. Again, EPIC successfully prevents all
attacks in this scenario without decreasing the test accuracy.

4.2. Comparison to SOTA Defenses against GM
Table 2 compares the effectiveness of our model with exist-
ing defense methods against the state-of-the-art GM attack,
in both 200 epoch and 40 epoch training scenarios. We see
that EPIC can successfully drop the success rate of GM
while allowing the model to achieve a superior performance.
We note that unlike existing defense methods, our method
is easily scalable to standard deep learning pipelines.

Scalability As many defense methods (Geiping et al.,
2021a; Peri et al., 2020) are prohibitive when applied to
the standard 200-epoch pipeline under time or space con-
straints, they are evaluated using a 40-epoch pipeline. How-
ever, as Table 2 shows, training a model on the same poi-
soned datasets for more epochs increases attack success rate.
Therefore, defenses that are successful within 40 epochs are
not guaranteed to have the same effectiveness when models
are trained for longer. On the contrary, our proposed defense
requires nearly no extra time compared to normal training.
Time spent on running EPIC every few epochs is usually
well compensated by training time saved every epoch on
the examples we drop. Table 2 includes the time for each
defense on CIFAR10 poisoned with GM, and Table 3 com-
pares EPIC with AP on TinyImagenet poisoned with BP.
We report the wall-clock time of training a model with each
defense on single NVIDIA A40 GPU with 4 workers. We
see that EPIC effectively reduces various attacks’ success
rate while having substantially faster run time.

Strength of Defense Due to computational constraints
and the scalability problem mentioned above, we only scale
the two general adversarial training methods, Adversarial
Training (Madry et al., 2018) and DP-SGD (Hong et al.,
2020) to the standard 200-epoch training pipeline. Accord-
ing to Table 2, 3 and Fig. 6, our method provides the best
tradeoffs between the defended attack success rate and the
overall test accuracy. Adversarial Poisoning (Geiping et al.,
2021a) can give equally good tradeoffs but requires 6x train-
ing time. Other defenses either cannot guarantee a low
attack success rate or have a high computation cost.

Table 4. Comparison of avg. poison accuracy, validation accuracy
and time against the strongest attack GM (Geiping et al., 2021b)
with ϵ = 16 in the from-scratch setting for 40 epochs. Our pro-
posed defense is listed as EPIC.

DEFENSE ATTACK SUCC.↓ TEST ACC.↑

NONE 90% 92.01%

AP-0.25 35% 91.21%
AP-0.5 10% 90.58%
AP-0.75 0% 87.97%

EPIC-0.1 10% 91.15%
EPIC-0.2 0% 89.07%

Figure 6. Attack success rate vs. running time of different defenses,
for GM attack on CIFAR-10 with the 40 Epochs pipeline.

4.3. Comparison under Larger Perturbations
Attacks usually have higher success rates when al-
lowed to perturb the base images within a larger ϵ con-
straint (Schwarzschild et al., 2020). We generate 20 poi-
soned datasets with a larger ϵ = 16 with GM. We use the
default 20 seeds used in (Geiping et al., 2021b) to sample
500 base and 1 target images from CIFAR10. Table 4 shows
that for larger ϵ, EPIC achieves a superior performance
compared to the strongest baseline, adversarial poisoning.

5. Conclusion
We proposed an efficient defense mechanism against vari-
ous data poisoning attacks. We showed that under bounded
perturbations, only a small number of poisons can be op-
timized to have a gradient that is close enough to that of
the target and make the attack successful. Such examples
move away from their original class and get isolated in the
gradient space. Consequently, we showed that training on
large gradient clusters of each class successfully eliminates
the effective poisons, and guarantees similar training dy-
namics to that of training on the full data. Our experiments
showed that our method significantly decreases the success
rate of the state-of-the-art targeted attacks, including Gradi-
ent Matching, Bullseye Polytope. We note that our method
is the only effective defense against strong poisoning attacks,
which easily scales to standard deep learning pipelines.
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A. Proof of Theorem 3.1
A loss function L(w) is considered µ -PL on a set S, if the following holds:

1

2
∥g∥2 ≥ µ (L(w)− L (w∗)) ,∀w ∈ S (7)

where w∗ is a global minimizer. When additionally L (w∗) = 0, the µ-PL condition is equivalent to the µ-PL∗ condition

1

2
∥g∥2 ≥ µL(w),∀w ∈ S. (8)

For Lipschitz continuous g and µ-PL condition, gradient descent on the entire dataset yields

L(wt+1)− L(wt) ≤ −
η

2
∥gt∥2 ≤ −ηµL(wt), (9)

and,

L(wt) ≤ (1− ηµ)tL(w0), (10)

which was shown in (Liu et al., 2020). We build upon this result.

For the subset we have

L(wt+1)− L(wt) ≤ −
η

2
∥gS

t ∥2 (11)

By substituting Eq. [Y:(9)] we have.

≤ −η

2
(∥gt∥ − ρ)2 (12)

= −η

2
(∥gt∥2 + ρ2 − 2ρ∥gt∥) (13)

≤ −η

2
(∥gt∥2 + ρ2 − 2ρ∇max) (14)

≤ −η

2
(2µL(wt) + ρ2 − 2ρ∇max) (15)

where we can upper bound the norm of gt in Eq. (13) by a constant∇max. And Eq. (15) follows from the µ-PL condition
from Eq. (7). While loss is very non-convex during the first part of training, it becomes nearly-convex afterwards (Fort et al.,
2020). EPIC starts dropping points after a few epochs of training, where Lipschitzness, µ-PL condition, and norm-bounded
gradients are likely to hold. In Eq. (10), LHS directly results from Lipschitzness (Boyd et al., 2004).

Hence,

L(wt+1) ≤ (1− ηµ)L(wt)−
η

2
(ρ2 − 2ρ∇max) (16)

Since,
∑k

j=0(1− ηµ)j ≤ 1
ηµ , for a constant learning rate η we get

L(wt+1) ≤ (1− ηµ)t+1L(w0)−
1

2µ
(ρ2 − 2ρ∇max) (17)


