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Abstract

Increasing the size of overparameterized neural
networks has been a key in achieving state-of-the-
art performance. This is captured by the double
descent phenomenon, where the test loss follows
a decreasing-increasing-decreasing pattern (or
sometimes monotonically decreasing) as model
width increases. However, the effect of label
noise on the test loss curve has not been fully
explored. In this work, we uncover an intriguing
phenomenon where label noise leads to a final
ascent in the originally observed double descent
curve. Specifically, under a sufficiently large
noise-to-sample-size ratio, optimal generalization
is achieved at intermediate widths. Through
theoretical analysis, we attribute this phenomenon
to the shape transition of test loss variance induced
by label noise. Furthermore, we extend the final
ascent phenomenon to model density and provide
the first theoretical characterization showing that
reducing density by randomly dropping trainable
parameters improves generalization under label
noise. We also thoroughly examine the roles of reg-
ularization and sample size. Surprisingly, we find
that larger ℓ2 regularization and robust learning
methods against label noise exacerbate the final
ascent. We confirm the validity of our findings
through extensive experiments on ReLu networks
trained on MNIST, ResNets/ViTs trained on
CIFAR-10/100, and InceptionResNet-v2 trained
on Stanford Cars with real-world noisy labels.

1 INTRODUCTION

Training neural networks of ever-increasing size on large
datasets has played a pivotal role in achieving state-of-the-
art generalization performance across various tasks [Devlin

et al., 2018, Dosovitskiy et al., 2020, Brown et al., 2020,
Radford et al., 2021]. While large unlabeled data can often
be easily collected, obtaining high-quality labels for these
datasets is prohibitively expensive, leading to the use of la-
beling techniques, such as crowd-sourcing and automatic la-
beling, that introduce a significant amount of label noise [Kr-
ishna et al., 2016]. Unfortunately, the impact of label noise
on the generalization behavior of neural networks in relation
to model size has not been comprehensively examined.

Recent research has aimed to reconcile the generalization
benefits of increasing the size of overparameterized neural
networks with the classical bias-variance trade-off that
advocates for intermediate model size. To this end, the
double descent phenomenon [Belkin et al., 2019, Spigler
et al., 2019] has been proposed, suggesting that the test loss
initially follows a U-shape but then descends again once
the model is overparameterized. At times, the U-shaped
behavior may not be evident, and the curve may seem
to be monotonically decreasing[Nakkiran et al., 2021].
The works of [Yang et al., 2020, Adlam and Pennington,
2020a] attribute the double descent to the combination of
decreasing bias and the unimodal variance of the test loss
w.r.t. model width. However, the effect of label noise on the
double descent phenomenon has not been fully explored.

In this work, we reveal that label noise can significantly alter
the shape of the loss curve. Our study uncovers an intriguing
phenomenon, which we refer to as the final ascent, manifest-
ing either a U-shape or a decreasing-increasing-decreasing-
increasing pattern. In a wide range of settings, label noise
leads to an eventual ascent in the original loss curve, distin-
guishing it from both the double descent or monotonically
decreasing curve. Through theoretical analysis, we show
that this occurs because sufficiently large noise-to-sample
size ratio transforms the variance of the test loss from
unimodal to an increasing-decreasing-increasing shape. We
also provide further insights into the final ascent. Firstly,
perhaps surprisingly, applying stronger ℓ2 regularization
only exacerbates the phenomenon as it enables intermediate
model sizes to achieve lower test loss. Secondly, increasing



the sample size can alleviate the final ascent.

Furthermore, we add model density, the fraction of weights
that are trainable, as a new dimension to the discussion on
generalization. We provide the first theoretical character-
ization of final ascent w.r.t. model density, showing that
optimal generalization occurs at intermediate density levels
under label noise. We also make two significant findings.
Firstly, as density decreases, the optimal width increases
and achieves lower test loss, highlighting the advantage of
wider but sparser models. Secondly, while reducing density
has a similar effect to stronger ℓ2 regularization in theory, in
practice, adjusting the density of neural networks achieves
even lower density compared to adjusting the regularization.

We also empirically examine the final ascent phenomenon
when models are trained with robust learning algorithms
that are designed to counteract the effect of label noise. Our
results demonstrate that, similar to the impact of ℓ2 reg-
ularization, SOTA robust algorithms [Liu et al., 2020, Li
et al., 2020] amplify the final ascent phenomenon. Notably,
reducing model density can further improve the SOTA per-
formance for robust training methods, such as DivideMix
[Li et al., 2020] and ELR [Liu et al., 2020], as shown in Fig-
ures 30 and 32. This suggests that models with intermediate
width or density can be even more beneficial when these
algorithms are used, which is typically the case in practical
scenarios.

Our findings are supported by extensive experiments. We
confirm the validity of our results across various settings,
including training two-layer networks on MNIST [LeCun,
1998], ResNets [He et al., 2016] and ViT [Dosovitskiy et al.,
2020] on CIFAR-10 and CIFAR-100 [Krizhevsky et al.,
2009], and InceptionResNet-v2 [Szegedy et al., 2017] on
Stanford Cars with real label noise[Jiang et al., 2020]. We
provide an in-depth discussion of how different factors affect
the final ascent. Notably, the final ascent can even occur with
only 20% label noise.

Our results highlight the following important messages:

• It is important to use large models with care in presence
of label noise,

• Wider but sparser models contribute to improved gen-
eralization under label noise,

• Above considerations are of increased significance
when data is limited, or when strong regularization
or robust methods are used.

2 RELATED WORK

Double descent. Contrary to the classical learning theory
that advocates for intermediate model size, recent works
have shown that increasing the size of overparameterized
neural networks only improves generalization [Neyshabur
et al., 2014]. This is explained by the double descent phe-
nomenon [Belkin et al., 2019, Spigler et al., 2019], which

posits that the test loss initially follows a U-shape and then
descends again once the model is overparameterized. This
phenomenon has been theoretically investigated in various
regression settings, including one-layer linear [Belkin et al.,
2020, Derezinski et al., 2020, Kuzborskij et al., 2021],
random feature [Hastie et al., 2019, Mei and Montanari,
2019, Adlam and Pennington, 2020a, Yang et al., 2020,
d’Ascoli et al., 2020], and NTK [Adlam and Pennington,
2020b] regressions. While the primary focus has been on
the behavior of the test loss [Hastie et al., 2019, Belkin
et al., 2020, Derezinski et al., 2020, Adlam and Pennington,
2020b], some works have decomposed it into bias and
variance [Mei and Montanari, 2019, Yang et al., 2020], and
a few have further decomposed the variance into multiple
sources, including label noise [Adlam and Pennington,
2020a, d’Ascoli et al., 2020]. However, prior studies primar-
ily focused on how label noise intensifies the double descent
curve’s peak [Adlam and Pennington, 2020a, Nakkiran et al.,
2021]. We discover the novel concept of final ascent, for the
first time, and show that increased regularization—via ℓ2 or
robust methods—that is essential to train robustly in pres-
ence of label noise, exacerbates the final ascent. This makes
our study distinct from prior work [Adlam and Pennington,
2020a, Nakkiran et al., 2021, d’Ascoli et al., 2020], which
did not account for the role of regularization/robust methods,
and hence failed to observe the final ascent. [Nakkiran et al.,
2020] considered regularization, but explored a different
phenomenon than us, showing that optimal regularization
tuned for each width can eliminate the peak in a double
descent curve. In summary, our finding challenges the
prevailing view that larger models always perform better,
showing that increasing model size can have detrimental
effects under noise and regularization. Moreover, our study
is the first to assess model density’s effect, showing its po-
tential to achieve SOTA with robust methods (Fig 30 31 32).

Neural Network Density. [Frankle and Carbin, 2018,
Lee et al., 2018, Frankle et al., 2019, Wang et al., 2020,
Frankle et al., 2020, Tanaka et al., 2020] proposed methods
to reduce model density (pruning) for improved training
and inference efficiency. [Jin et al., 2022] empirically
investigated the impact of density on generalization using
a pruning technique [Renda et al., 2020] involving training
and rewinding. However, the effect of density as a factor
of model size has remained poorly understood, as pruning
techniques incorporate additional information from training,
initialization, or gradients. In contrast, we randomly
drop weights thus isolating the effect of model size from
other factors. We provide theoretical analysis of random
feature regression, complementing the empirical nature
of the aforementioned works. Exploring the effects of
specific pruning techniques on the final ascent phenomenon
uncovered in this paper is an interesting future work.

Robust Methods. Extensive efforts have been made to
develop methods for robust learning against noisy labels
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Figure 1: Decomposition of test loss. Risk = Bias2 + Variance.
Bias2 always monotonically decreases. Variance exhibits a transi-
tion from a unimodal shape to an increasing-decreasing-increasing
pattern as noise increases, leading to the final ascent in test loss.

[Zhang and Sabuncu, 2018, Jiang et al., 2018, Han et al.,
2018, Mirzasoleiman et al., 2020, Liu et al., 2020, Li
et al., 2020, Xia et al., 2019]. These methods serve as a
regularization to mitigate label noise. We will demonstrate
that robust methods exacerbate the final ascent, i.e.,
reducing the model width or density can yield even greater
benefits when employing robust methods.

3 THEORETICAL ANALYSIS OF
RANDOM FEATURE RIDGE
REGRESSION

We conduct a theoretical analysis of label noise’s effect on
the test loss curve in a linear neural network with a random
first layer. Random feature regression has been the go-to
model in studying the double descent phenomenon [Hastie
et al., 2019, Mei and Montanari, 2019, Yang et al., 2020, Ad-
lam and Pennington, 2020a, d’Ascoli et al., 2020], owing to
its theoretical tractability. We note that studying regression
tasks is a widely adopted approach for understanding neural
networks’ generalization behavior [Hastie et al., 2019, Mei
and Montanari, 2019, Advani et al., 2020, Bartlett et al.,
2020] and yields meaningful conclusions that extend to clas-
sification tasks, as is confirmed by prior work Yang et al.
[2020], d’Ascoli et al. [2020], Nakkiran et al. [2020] and
we will also show experimentally.

We start by showing that sufficiently large noise-to-sample-
size ratio introduces a final ascent to the loss curve, and ex-
plain it through the shape of variance. Then, we provide the
first theoretical study on the effect of model density, showing
the benefit of reducing density. These findings will be vali-
dated in various neural network classification tasks in Sec 4.

3.1 EFFECT OF WIDTH: THE FINAL ASCENT

Suppose we have a training dataset (X,y) where X =
[x1,x2, . . . ,xn] and y = [y1, y2, . . . , yn]

⊤. Each input
xi ∈ Rd is independently drawn from a Gaussian dis-
tribution N (0, Id/d). Each label yi ∈ R is generated as
yi = x⊤

i θ + ϵi. Here, θ ∈ Rd has entries independently
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Figure 2: Decomposition of variance. Variance =
Varianceclean + Variancenoise. Varianceclean is always uni-
modal. Variancenoise monotonically increases with width, and its
scale grows with noise level, leading to the increasing-decreasing-
increasing pattern of Variance at sufficient noise.

drawn from N (0, 1), and ϵi ∈ R is the label noise drawn
from N (0, σ2) for each xi. We learn a two-layer linear net-
work where the first layer W ∈ Rp×d has entries randomly
drawn from N (0, 1/d) and the second layer is given by

β̂ =argmin
β∈Rp

∥(WX)⊤β − y∥2 + λ∥β∥2

=(WXX⊤W⊤ + λI)−1WX(X⊤θ + ϵ),

where ϵ = [ϵ1, ϵ2, . . . , ϵn]
⊤. Given a test example with non-

noisy label (x, y) where x ∼ N (0, Id/d) and y = x⊤θ,
the prediction of the learned model is given by f(x) =

(Wx)⊤β̂. The expected risk (test loss) can be written as

Risk =EθExEX,W ,ϵ(f(x)− y)2 (1)

=EθEx(EX,W ,ϵf(x)− y)2︸ ︷︷ ︸
Bias2

+EθExVX,W ,ϵf(x)︸ ︷︷ ︸
Variance

=
1

d
∥EX,WB − I∥2F︸ ︷︷ ︸

Bias2

+
1

d
EX,W ∥B − EX,WB∥2F︸ ︷︷ ︸

Varianceclean

+
σ2

d
EX,W ∥A∥2F︸ ︷︷ ︸
Variancenoise

, (2)

where A := W⊤(WXX⊤W⊤ + λIII)−1WX and B :=
AX⊤ (see the derivation in Appendix A.1). Eq. 1 decom-
poses the risk into bias and variance, and Eq. (2) subse-
quently breaks down the variance into two terms. The sec-
ond term, Variancenoise, captures the impact of label noise.

Our analysis is conducted under the high-dimensional
asymptotic limit where n, d, and p tend to infinity, while
maintaining the ratios n

d = ψ, p
d = γ, and σ2

(n/d) = κ con-
stant. To simplify the analysis further, we set ψ = ∞. This
limit is consistent with the one used in [Yang et al., 2020],
which has been shown to capture important features of the
double descent. Our numerical experiments in Sec 4.1 con-
firms that our conclusions hold in a broader range of settings
outside of this regime. We note that the noise-to-sample
size ratio κ remains finite, despite the infinite value of ψ.
The explicit expression of Variancenoise is shown below.



Theorem 3.1. For a 2-layer linear network with p hidden
neurons and a random first layer, consider learning the
second layer by ridge regression with regularizer λ on n
training examples with feature dimension d, and label noise
with variance σ. Let λ = n

dλ0 and σ2 = n
dκ for some fixed

λ0 and κ. The asymptotic expression (where n, d, p → ∞
with n

d = ∞ and p
d = γ) of Variancenoise is given by

κ

2

(
γ + 2λ0 + 1− γ2 + (3λ0 − 2)γ + 2λ20 + 3λ0 + 1√

γ2 + (2λ0 − 2)γ + λ20 + 2λ0 + 1

)

We provide the derivation of Variancenoise in Appendix A.3.
Note that Bias2 monotonically decreases and Varianceclean
is unimodal [Yang et al., 2020] (see Appendix A.2 for ex-
pressions of Bias2 and Varianceclean). By plotting the theo-
retical expressions, we make the following key observations.

The Noise-dependent Variance Shapes the Final Ascent.
Fig 2 shows Variance by solid purple, Varianceclean in
solid gray, and Variancenoise in dashed gray. We see that
Varianceclean is unimodal, while Variancenoise monotoni-
cally increases with width. Thm 3.1 tells that Variancenoise
scales with noise-to-sample size ratio (κ). Intuitively, vari-
ance measures the sensitivity to fluctuations in data and
training. As the noise level increases, it has the potential
to introduce greater inconsistency among the outputs of
models, and this inconsistency grows as the model size
increases. We see that as κ increases, Variancenoise be-
comes more pronounced in the total variance, resulting in
an increasing-decreasing-increasing trend. Therefore, the
risk, which is the sum of Variance and the monotonically in-
creasing Bias2 (Fig 1), finds its minimum at an intermediate
width under sufficiently large κ.
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Figure 3: With stronger
regularization, the op-
timal width increases
and achieves lower loss,
making the final ascent
more pronounced.

Regularization Exacerbates
Final Ascent. Regularization
is often used to improve ro-
bustness to noise, leading to
the expectation that it would
mitigate the impact of label
noise and alleviate the final
ascent. However, Fig.3 shows
that stronger ℓ2 regularization
actually exacerbates the final
ascent. We see that the fi-
nal ascent is hardly visible
with very small regulariza-
tion, but becomes more pro-
nounced as regularization in-

creases. Specifically, larger regularization amplifies the ad-
vantage of intermediate widths, allowing them to achieve
lower test loss. In Section 4.5, we show a similar observa-
tion for robust learning algorithms, which can be viewed as
using very strong regularization.

Increasing Sample Size Alleviates Final Ascent. In our
setting, although n

d → ∞ , the impact of sample size is still

evident through the constant noise-to-sample-size ratio κ.
Theorem 3.1 reveals that Variancenoise scales with κ, rather
than solely with the noise σ2. Thus, increasing the sample
size reduces the scaling of Variancenoise, mitigating the final
ascent. We will confirm this empirically in Section 4.2.

In Section 4.1, we will conduct numerical experiments
confirming that the final ascent is not limited to finite n

d . It
can occur in many other settings, even when n < d.

3.2 BEYOND WIDTH: EFFECT OF DENSITY

Next, we investigate the scenario where the model width is
fixed, but the model density—fraction of weights that are
trainable—is decreased by masking a predetermined set of
weights during training. Studying density holds importance
for several reasons: Firstly, it provides the flexibility to
achieve any capacity, unlike changing width which only
results in (width ×m) parameters, where m is the number
of parameters at width 1. Secondly, changing density is less
constrained by the model architecture, which is particularly
relevant for complex architectures like InceptionResNet-v2
(which we use in our experiments in Section 4.3), where
reducing width is difficult. Most importantly, as we show
theoretically and empirically, density has a distinct effect on
generalization compared to width. Lower density enables us
to employ wider models, leading to improved generalization
even under label noise.

We randomly drop a fraction of trainable parameters instead
of following certain criteria as in [Jin et al., 2022], thus
isolating the effect of model size from any other factors.

The setting in Theorem 3.1, where the trainable layer has
a scalar output, cannot differentiate between reducing
density and reducing width. To address this, we consider
a three-layer linear network in which the first layer
yields random features, the second layer is randomly
masked and trained, and the last layer is also random. The
function represented by the network is formally defined
as f(x) = ((V ⊙M)Wx)

⊤
µ. The first layer parameters

W and input data X are the same as in Theorem 3.1.
V ∈ Rq×p represents the second-layer parameters, and
M ∈ {0, 1}q×p is the mask applied to V . The entries in
M are independently drawn from a Bernoulli distribution
with parameter α ∈ [0, 1], where α represents the density.
µ ∈ Rq represents the last-layer parameter, and its entries
are independently drawn from N (0, 1/q) (the variance is
set to 1/q so that q does not appear in the final expressions).
We study other variants, such as setting it to 1/d and letting
q = p in Appendix A.6. We show that the risk and its
decomposition in this setting can be derived by replacing λ0
in Theorem 3.1 with λ0/α. See the proof in Appendix A.4.

Theorem 3.2. For a 3-layer linear network with p hidden
neurons in the first layer and random first and last layers,
consider learning the second layer by ridge regression with
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Figure 4: (a), (b): The risk curve changes from decreasing to U-shaped as the noise-to-sample-size ratio (κ) increases, for different values
of width (p). (c) The total variance changes from unimodal to increasing as κ increases. (d) Under lower density, the optimal width tends
to be larger, and achieves lower test loss compared to the optimal width at higher density.

random masks drawn from Bernoulli(α). Let λ, n and
σ be the ridge regression parameter, number of training
examples and noise level, respectively. Let λ = n

dλ0
and σ2 = n

dκ for some fixed λ0 and κ. The asymptotic
expressions (where n, d, p → ∞ with n

d = ∞ and p
d = γ)

of Risk, Bias2, Varianceclean and Variancenoise are given
by their counterparts in the setting of Theorem 3.1 with λ0
substituted with λ0/α.

Reducing Density Can Improve Generalization Under
Label Noise. In Fig 4, we set λ0 to 0.05 and plot the risk
and variance based on Theorem 3.2. When there is no noise,
we observe a decrease in risk as density (α) increases (Fig
4a), accompanied by a unimodal behavior of the variance
(Fig 4c). However, when the noise-to-sample size ratio (κ)
is sufficiently large, the risk exhibits a U-shape (Fig 4b),
while the variance monotonically increases (Fig 4d).

3.3 ADVANTAGE OF WIDER BUT SPARSER
MODELS

Theorem 3.2 demonstrates that reducing density is equiv-
alent to a stronger ℓ2 regularization. Although in Section
4.3 we will empirically demonstrate that reducing density
has effects beyond ℓ2 regularization for neural networks, it
is already evident here that reducing density has a differ-
ent effect than reducing width, even though both control
the number of parameters. Furthermore, we observe from
Figure 4b that the optimal density at a fixed width results
in lower test loss as the width increases. Additionally, Fig-
ure 4d shows that the optimal width for a given density
increases as the density decreases, yielding lower test loss.
This highlights the advantages of wider but sparser networks.

4 EXPERIMENTS

4.1 FINAL ASCENT IN RANDOM FEATURE
RIDGE REGRESSION WITH DIFFERENT n

d ’S

In section 3.2, we theoretically showed that the final ascent
can occur in the limit where n

d → ∞, while p
d remains con-

Table 1: Shape and scale of Variancenoise
σ2 for different n/d and

σ. Scale is the value of Variancenoise
σ2 at p = 104.

n/d 0.2 0.5 1 2 4

λ=0.01
Shape ↗↘ ↗↘ ↗ ↗ ↗
Scale 0.26 1.0 50.2 1.0 0.33

λ=0.2
Shape ↗↘ ↗ ↗ ↗ ↗
Scale 0.25 1.0 10.5 1.0 0.33

stant. However, a natural question arises regarding whether
the same conclusion holds when n

d is finite. Characterizing
the variance exactly is extremely troublesome when λ > 0,
as it involves finding solutions for a complicated fourth-
degree equation when and taking derivatives, as shown by
[Adlam and Pennington, 2020a]. Hence, we conduct numer-
ical experiments with finite values of d and n with varying
n
d . Our results indicate that the final ascent can occur in
many other settings, even when n < d. We plot the test loss
(Figure 5) and total variance (Figure 17) against p. Legends
show the values of σ2, and titles show the values of n/d. We
can clearly observe the final ascent when n

d = 0.5, 1, 2, 4.

Effects of n/d and λ on the shape of Variancenoise. Ta-
ble 1 summarizes the shape and scale of 1

σ2 Variancenoise
(i.e., 1

dEX,W ∥A∥2F according to Eq. 2) w.r.t. p for differ-
ent values of n

d and λ (plots are in Figures 18 and 19).
Note that according to the decomposition in Eq. 2, whether
the final ascent can possibly occur depends solely on if
1
σ2 Variancenoise increases in the end. We make the follow-
ing observations: (1) Neither n/d nor λ alone can deter-
mine the shape of 1

σ2 Variancenoise; (2) When both n
d and

λ are small, 1
σ2 Variancenoise is unimodal, and the final as-

cent never occurs; (3) The effect of n on the occurrence of
the final ascent is non-monotonic: when n

d ≤ 1, increas-
ing n turns 1

σ2 Variancenoise from unimodal to monotoni-
cally increasing, leading to the final ascent. However, when
n/d > 1, increasing n scales down 1

σ2 Variancenoise while
preserving its monotonically increasing shape, resulting in
the final ascent being less pronounced. This second half of
the observation is captured by Theorem 3.1 showing that
Variancenoise scales with σ2

n/d . These observations reveal a
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Figure 5: Final ascent in random feature ridge regression with Different n
d

Ratios. We plot the test loss while fixing d = 100 and λ = 0.2,
and varying σ2. Legends show the values of σ2, and titles show the values of n/d.

complex behavior of the variance and highlight the need for
future theoretical research to fully explain it.

4.2 FINAL ASCENT IN NNS: EFFECT OF WIDTH

Next, we empirically demonstrate the occurrence of the final
ascent in neural networks trained with label noise across var-
ious settings. Although our theoretical results (Section 3.1)
are based on regression, our empirical findings confirm that
the theoretical insights hold for classification with neural
networks.

We conduct a comprehensive set of experiments to thor-
oughly investigate the factors influencing the final ascent.
Our study involve 3 datasets: MNIST [LeCun, 1998],
CIFAR-10, and CIFAR-100 [Krizhevsky et al., 2009].
We train two-layer ReLu networks on MNIST, and train
ResNet34 [He et al., 2016] and ViT [Dosovitskiy et al.,
2020] on CIFAR-10/100. We examine two types of loss
functions: mean squared error (MSE) loss and cross-entropy
(CE) loss. MSE loss enables more accurate measurement
of the bias and variance in test loss [Yang et al., 2020] (see
Appendix C.2 ), allowing us to empirically observe the tran-
sition in the shape of variance shown in Thm 3.1. We con-
sider two types of noise: symmetric noise generated through
random label flipping and asymmetric noise generated in a
class-dependent manner (see Appendix C.1). Asymmetric
noise better resembles real-world noise distributions [Patrini
et al., 2017]. Further experimental details can be found in
Appendix C.

Final Ascent Occurs in Various Settings. Fig 6 to 9 demon-
strate the presence of final ascent across architectures, loss
functions, and noise types. E.g., in Fig 6 and 7, as the noise
level increases, we observe a transition in the loss curve
from double descent or monotonically decreasing to a curve
with final ascent. The corresponding test accuracy plots can
be found in Appendix D.2. Results for ViT are in Fig 20.

Transition of the Variance Shape as Label Noise In-
creases. As discussed in Sec 3.1, the final ascent in the
test loss is attributed to the increasing-decreasing-increasing
pattern of the variance. The results in Fig 6c and 7c confirm
that this holds true for NNs. The shape of the variance curve
turns from unimodal to increasing-decreasing-increasing as

the noise increases, matching our theoretical results.

Stronger ℓ2 Regularization Exacerbates Final Ascent.
Our theoretical analysis in Sec 3.1 demonstrates that
stronger regularization exacerbates final ascent. This find-
ing is further corroborated by our experimental results, as
shown by comparing Fig 6a and 6b, as well as Fig 7a and 7b.
For example, on CIFAR-10 with 20% noise, the test loss ex-
hibits the well-known double descent when λ = 0.0005 (the
parameter of l2), while it demonstrates the final ascent phe-
nomenon when λ = 0.001. Note that using regularization
often yields a better generalization.

Asymmetric Noise May Exacerbate Final Ascent. Fig 8
shows that asymmetric noise significantly exacerbates the
final ascent on CIFAR-10. Under 40% noise, the final ascent
is absent for symmetric noise but present for asymmetric
noise. However, this trend is not obvious on CIFAR-100,
possibly due to the different noise generation process (Ap-
pendix C.1) where the noise on CIFAR-100 is less skewed.

Larger Sample Size Alleviates Final Ascent. As shown
in Thm 3.1, the scale of Variancenoise is determined by the
noise-to-sample-size ratio rather than the noise level itself,
implying that increasing the sample size can counteract the
impact of noise and alleviate final ascent. Our experiments
further confirm this. Fig 9 shows the test loss with varying
sample sizes on MNIST (MSE loss) and CIFAR-10 (CE
loss). The final ascent occurs when only 1/20 of the original
data are used, but not when 1/2 are used on MNIST and
1/5 on CIFAR-10. This is also observed with ViTs (Fig 20).

Required Noise Level for Final Ascent. Based on the
preceding discussions, it is evident that the required noise
level depends on several factors, including the degree of
regularization, the sample size, and the nature of the noise
distribution. In general, a lower noise level is required with
strong regularization, smaller sample sizes, and strong noise
types. Notably, the required noise level can be as low as
20% (Fig 6, 7). On CIFAR-10, even with full data and
the commonly used small regularization (5e−4), final
ascent occurs under only 30% asymmetric noise (Fig 8).
In practice, where the noise typically resembles asymptotic
noise and strong regularization is applied in the presence of
noise, final ascent is highly likely to occur under low noise
levels.
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4.3 FINAL ASCENT IN NNS: EFFECT OF
DENSITY

Next, we study the effect of density through experiments on
three datasets: MNIST, CIFAR-10, and Red Stanford Cars
[Jiang et al., 2020] containing real-world label noise (see Ap-
pendix C.1). We train an InceptionResNet-v2 on Red Stan-
ford Cars . Since the InceptionResNet-v2 architecture is in-
tricate, there is no straightforward way to vary its width, and
demands reducing density. Other details are in Appendix C.

Reducing Density Improves Generalization. Fig 10 shows
that when the label noise is small (e.g., 0% on MNIST, 20%
on CIFAR-10), test loss improves as density increases. In
contrast, when the label noise is sufficiently large (e.g., 40%
on CIFAR-10, 50% on MNIST, 30%/70% on Red Stanford
Car), lowest test loss is achieved at an intermediate density.

Reducing Density has an Effect Beyond ℓ2 Regulariza-
tion for NNs. Thm 3.2 shows that reducing density is equiv-
alent to increasing the ℓ2 regularization by the inverse factor
for random feature ridge regression. However, Fig 11d (test
accuracy is in Appendix D.3) shows that reducing density
of neural networks has an effect beyond ℓ2 regularization.
Although both loss curves exhibit a U shape, bottom of the
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Figure 12: Test loss (solid) and accuracy (dashed) of models
trained with ELR and DivideMix on CIFAR-10/100. Comparing
(a) with Fig 9, we see that ELR even exacerbates the final ascent.

U shape for density is lower than that of varying ℓ2 regu-
larization. In other words, adjusting density can achieve a
lower loss than adjusting ℓ2 regularization.



4.4 ADVANTAGE OF WIDER BUT SPARSER
MODELS

Fig 11c shows an increasing trend in variance towards the
top-right corner. Fig 11a and 11b show that models with low
loss (darkest blue) are distributed along the diagonal and
the lowest loss (annotated in red) is achieved with models
with very small density. This confirms our theoretical results
in Section 3.2 that models of optimal width under smaller
density exhibit better generalization, highlighting the advan-
tage of employing wider yet sparser models to address label
noise. Test accuracy and bias are shown in Appendix D.3.

4.5 FINAL ASCENT IN NEURAL NETWORKS:
ROBUST ALGORITHMS

We study the effect of robust algorithms, which are typically
employed in the presence of label noise. We consider two
SOTA algorithms, ELR [Liu et al., 2020] and DivideMix [Li
et al., 2020] on CIFAR-10/100 (details in Appendix C.4). In-
terestingly, we see that the final ascent can still be observed
(Fig 12 and 29), and in some cases is even exacerbated. For
example, without ELR, the final ascent is not observed on
CIFAR-10 under 60% symmetric noise with 1/5 of the data
(Fig 9). In contrast, when ELR is applied, the final ascent
occurs under only 40% symmetric noise on the full data. Ad-
ditional experiments are in Appendix D.4. The final ascent
regarding model density is also observed in Fig 30 to 32.

Connection to ℓ2 Regularization. The presence of the final
ascent under robust algorithms aligns with our theoretical
and empirical findings that stronger ℓ2 regularization
exacerbates this phenomenon. As robust algorithms act as a
form of stronger regularization compared to ℓ2, it is logical
that they amplify the final ascent rather than mitigating it.

Other Robust Algorithms against Noisy Labels. In gen-
eral, all robust methods can be thought of as a form of
implicit regularization at a very high level, since they share
the common intuition of preventing the model from fitting
certain data too closely. For example, [Zhang and Sabuncu,
2018, Jiang et al., 2018, Xia et al., 2019, Mirzasoleiman
et al., 2020] either explicitly or implicitly put more weight
on clean data, making the model fit the noisy data less.
Therefore, we believe the same conclusions would likely
apply to these other methods as well.

Another robust algorithm, particularly related to density, is
[Xia et al., 2020], which divides the model weights into two
sets, updating one while shrinking the other. The division is
dynamically adjusted during training to combat label noise.
This implies that learning fewer weights can benefit robust-
ness. Our findings make an even stronger statement: robust-
ness can be enhanced by simply removing some weights
randomly from the very beginning of training, provided the
weight removal ratio is appropriate. The implication of our

research is that naively dropping weights is a baseline worth
considering in this context. Additionally, we provide theo-
retical groundwork for understanding the effects of methods
similar to [Xia et al., 2020], showing that much of the bene-
fit can be viewed as simply reducing the hypothesis space.
From the bias-variance perspective, reducing density can
lead to a smaller noise-dependent variance.

5 CONCLUSION AND DISCUSSION

We present the final ascent, an intriguing phenomenon, w.r.t.
both model width and density. Our comprehensive theo-
retical and empirical investigations yield crucial insights,
including the transition in variance shape, the interplay be-
tween width and density, and the roles of sample size, regu-
larization, and robust methods. Our results highlight (1) the
need for caution when using large models, (2) lower density
combined with wider models improves generalization even
under noise, and (3) the amplified significance of these con-
siderations in scenarios with limited data, or under strong
regularization/robust methods.
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A THEORETICAL RESULTS

Notations: We use bold-faced letter for matrix and vectors. The training dataset is denoted by (X,y) where X =
[x1,x2, . . . ,xn] and y = [y1, y2, . . . , yn]

⊤. Each input vector xi ∈ Rd is independently drawn from a Gaussian distribution
N (0, Id/d). Each label yi ∈ R is generated by yi = x⊤

i θ + ϵi. We assume θ ∈ Rd has its entries independently drawn
from N(0, 1). ϵi ∈ R is the label noise drawn from N(0, σ2) for each xi. We assume each test example (x, y) is clean, i.e.,
y = x⊤θ.

A.1 BIAS-VARIANCE DECOMPOSITION OF THE MSE LOSS IN SECTION 3.1

Here we show the derivation of Equation 1.

Bias2 =EθEx(EX,W ,ϵf(x)− y)2

=EθEx(EX,W ,ϵ((Wx)⊤β̂)− y)2

=EθEx[x
⊤(EX,W ,ϵ(Bθ +Aϵ)− θ)]2

=EθEx Tr[(EX,W ,ϵ(Bθ)− θ)⊤xx⊤(EX,W ,ϵ(Bθ)− θ)]

=Eθ Tr[(EX,W ,ϵ(Bθ)− θ)⊤Ex(xx
⊤)(EX,W ,ϵ(Bθ)− θ)]

=
1

d
Eθ∥EX,W ,ϵ(Bθ)− θ∥2F

=
1

d
Eθ Tr[(EX,WB − I)θθ⊤(EX,WB − I)]

=
1

d
Tr[(EX,WB − I)Eθ(θθ

⊤)(EX,WB − I)]

=
1

d
∥EX,WB − I∥2F

Variance =EθExVX,W ,ϵf(x)

=EθExEX,W ,ϵ[x
⊤(Bθ +Aϵ)− EX,W ,ϵx

⊤(Bθ +Aϵ)]2

=
1

d
EθEX,W ,ϵ∥(Bθ +Aϵ)− EX,WBθ∥2F

=
1

d
EθEX,W ,ϵ∥(B − EX,WB)θ +Aϵ∥2F

=
1

d
EθEX,W ∥(B − EX,WB)θ∥2F +

1

d
EX,W ,ϵ∥Aϵ∥2F

=
1

d
EX,W ∥B − EX,WB∥2F︸ ︷︷ ︸

Varianceclean

+
σ2

d
EX,W ∥A∥2F︸ ︷︷ ︸
Variancenoise

A.2 EXPRESSIONS OF BIAS AND Varianceclean

Yang et al. [2020] analyzed the bias-variance decomposition without considering label noise. Hence the variance in their
analysis corresponds to Varianceclean in ours. We show their expressions of Bias2 and Varianceclean below, based on which
we plot the dashed gray line in Figure 1 and the solid gray line in Figure 2.

Bias2 =
1

4
Φ3(λ0, γ)

2

Varianceclean =

{
Φ1(λ0,γ)
2Φ2(λ0,γ)

− (1−γ)(1−2γ)
2γ − 1

4Φ3(λ0, γ)
2, γ ≤ 1,

Φ1(λ0,1/γ)
2Φ2(λ0,1/γ)

− γ−1
2 − 1

4Φ3(λ0, γ)
2, γ > 1,

where

Φ1(λ0, γ) =λ0(γ + 1) + (γ − 1)2,

Φ2(λ0, γ) =
√

(λ0 + 1)2 + 2(λ0 − 1)γ + γ2,

Φ3(λ0, γ) =Φ2(λ0, γ)− λ0 − γ + 1.



A.3 PROOF OF THEOREM 3.1

Lemma A.1. Define B̃ = W⊤(WW⊤+λ0III)
−1W . ∥B̃B̃⊤− n

dAA⊤∥2 = 0 almost surely, i.e., P(∥B̃B̃⊤− n
dAA⊤∥2 ≤

ϵ) ≥ 1− δ where ϵ and δ both tend to 0 under the asymptotics n→ ∞, d→ ∞ and n/d→ ∞.

Proof. Define

∆ :=
d

n
XX⊤ − I,

Ψ :=(WW⊤ + λ0I)
−1

Γ :=(
d

n
WXX⊤W⊤ + λ0I)

−1

Ω :=Γ−Ψ.

Then we have

B̃B̃⊤ − n

d
AA⊤ = ΩW∆W⊤Ω+ΨW∆W⊤Ψ+ΩW∆W⊤Ψ+ΨW∆W⊤Ω

+ ΩWW⊤Ω+ΩWW⊤Ψ+ΨWW⊤Ω.

By triangle inequality and the sub-multiplicative property of spectral norm we have

∥B̃B̃⊤ − n

d
AA⊤∥2 ≤ ∥W ∥22∥Ω∥22∥∆∥2 + ∥W ∥22∥Ψ∥22∥∆∥2 + 2∥W ∥22∥Ψ∥2∥Ω∥2∥∆∥2

+ ∥W ∥22∥Ω∥22 + 2∥W ∥22∥Ψ∥2∥Ω∥2

It remains to show that with the asymptotic assumption n/d→ ∞, ∥Ω∥2 = 0 and ∥∆∥2 = 0 almost surely, and ∥W ∥2 and
∥Ψ∥ can be bounded from above Yang et al. [2020]:

P(∥∆∥2 ≤ 4

√
d

n
+ 4

d

n
) ≥ 1− e−d/2

∥Ω∥2 ≤ ∥Ψ∥22∥W ∥22∥∆∥2 +O(∥∆∥2)

∥W ∥2
a.s.
= 1 +

√
η <∞

∥Ψ∥2 ≤ 1

λ0
<∞.

Therefore we have ∥B̃B̃⊤ − n
dAA⊤∥2 = 0 almost surely.

Corollary A.2. σ2

d ∥A∥2F = κ
d∥B̃∥2F almost surely.

Proof. By lemma A.1 we have

|Tr( 1
n
B̃B̃⊤ − 1

d
AA⊤)| = 1

n
Tr(B̃B̃⊤ − n

d
AA⊤)

≤ d

n
∥B̃B̃⊤ − n

d
AA⊤∥2

= 0,

which yields 1
d∥A∥2F = 1

n∥B̃∥2F and thus σ2

d ∥A∥2F = κ
d∥B̃∥2F .

Now it only remains to compute 1
d∥B̃∥2F . By Sherman–Morrison formula,

B̃ = I − (I +
α

η
Q)−1,



where α = λ−1
0 , Q = (d/p)W⊤W and η = d/p = 1/γ. Let FQ be the empirical spectral distribution of Q, i.e.,

FQ(x) =
1

d
#{j ≤ d : λj ≤ x},

where #S denotes the cardinality of the set S and λj denotes the j-th eigenvalue of Q. Then

∥B̃∥2

d
=

∫
R+

(αη x)
2

(1 + α
η x)

2
dFQ(x).

By Marchenko-Pastur Law Bai and Silverstein [2010],

∥B̃∥2

d
=

1

2π

∫ η+

η−

√
(η+ − x)(x− η−)(

α
η x)

2

ηx(1 + α
η x)

2
dx

=
1

2α

(
−α2/η2 − (3α− 2α2)/η − α2 − 3α− 2√
α2/η2 + (2α− 2α2)/η + α2 + 2α+ 1

+ α/η + α+ 2

)
. (3)

Combining equation 3 and corollary A.2 and substituting α = λ−1
0 , η = γ−1 into the result completes the proof.

A.4 PROOF OF THEOREM 3.2

Define the following shorthand

F :=WX

Di :=diag(Mi,1,Mi,2, . . . ,Mi,p)

µi :=i-th entry of µ

V ⊤
i :=i-th row of V

Σ :=

q∑
i=1

µ2
iDi

H :=y⊤F⊤ΣF (F⊤ΣF + λI)−1

The parameter of the second layer is given by ridge regression:

V̂ =argmin
V ∈Rq×p

∥ ((V ⊙M)WX)
⊤
µ− y∥2F + λ∥V ∥2F

=argmin
V ∈Rq×p

∥
q∑

i=1

µiV
⊤
i DiF − y⊤∥2F + λ∥V ∥2F .

Solving the above yields

V̂i
⊤
=

1

λ
(y⊤ −H)F⊤(µiDi).

Given a clean test example (x, y), the expression of the risk is

Risk =E∥
q∑

i=1

µiV̂
⊤
i Wx− θ⊤x∥2F

=E∥ 1
λ
(y⊤ −H)F⊤ΣWx− θ⊤x∥2F

=E∥ 1
λ
(y⊤ − y⊤F⊤ΣF (F⊤ΣF + λI)−1)F⊤ΣWx− θ⊤x∥2F

Observe that the diagonal matrix Σ, whose diagonal entries
∑q

i=1 µ
2
iMi,j =

1
q

∑q
i=1(

√
qµi)

2Mi,j converge in probability
to α as q → ∞, captures all the effects of µ and M on the risk. Thus we can replace Σ with αIp

Risk =E∥α
λ
y⊤FWx− α2

λ2
y⊤F⊤F (

α

λ
F⊤F + I)−1F⊤Wx− θ⊤x∥2F . (4)
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Figure 13: Expressions of Bias2, Varianceclean and Variancenoise/κ in Theorem 3.2
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Figure 14: Expressions of the risk and variance under different noise levels with τ = γ. We let λ0 = 0.05.

It remains to show that the expression of the risk is exactly the same as the risk in the setting of Section 3.1 with λ replaced
by λ/α. The risk in Section 3.1 (for convenience denote it by Risk0) can be written as:

Risk0 =E∥y⊤F⊤(FF⊤ + λI)−1Wx− θ⊤x∥2F

=E∥ 1
λ
y⊤FWx− 1

λ2
y⊤F⊤F (

1

λ
F⊤F + I)−1F⊤Wx− θ⊤x∥2F . (5)

Equation 5 is obtained by applying Woodbury matrix identity to (FF⊤ + λI)−1. It is easy to check that replacing λ in
RHS of equation 5 with λ/α yields the same as RHS of equation 4.

A.5 Bias2 AND Variancenoise/κ IN SECTION 3.2

In Figure 13 we plot the expressions of Bias2 and Variancenoise/κ against both width and density based on Theorem 3.2.
Bias2 monotonically decreases along both axes and Variancenoise/κ monotonically increases along both axes. Varianceclean
variance is unimodal along y-axis (width), manifests more complicated behavior along x-axis (density), and decreases along
both axes once width is sufficiently large. It is clear that such behavior differs from that in classical bias-variance tradeoff.

A.6 VARIANTS OF THEOREM 3.2

In Theorem 3.2 we let µ’s entries be drawn from N (0, 1/q) so that q does not appear in the expression of the risk.
Alternatively we can let µ’s entries be drawn from N (0, 1/d) and assume q/d = τ . Then the risk and its decomposition
are dependent on γ, τ, α. Similar to the proof in A.4, we can show that in this case we only have to replace λ0 in the
setting of Theorem 3.1 with λ0/(τα) to get the expressions of risk. We further let τ = γ and plot the risk, Variance, Bias2,
Varianceclean (i.e., Variance with κ = 0), Variancenoise in Figures 14 and 15.

A.7 CONNECTION TO THE OBSERVATION MADE BY Golubeva et al. [2020]

Our Theorem 3.2 supports the empirical observation in Golubeva et al. [2020] that increasing width while fixing the number
of parameters (by reducing density) improves generalization. This distinguishes the impact of width from the effect of
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Figure 15: Expressions of Bias2 and Variancenoise/κ with τ = γ.
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Figure 16: Risk curve with fixed γα. Top: κ = 0, the test loss decreases with width. Bottom: κ = 0.64, the test is either
U-shaped or increasing.
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Figure 17: We plot the total variance in random feature ridge regression while fixing d = 100 and λ = 0.2, and varying σ2.
Legends show the values of σ2, and titles show the values of n/d.

increasing model capacity. In our experiments, we fix γα and plot the risk curve with varying γ (subject to α ≤ 1) in Figure
16. For κ = 0, the test loss decreases with width. However, in the presence of large noise, the curve’s shape can be altered.
For κ = 0.64, the test loss exhibits either a U-shaped curve or an increasing trend.

B ADDITIONAL RESULTS FOR RANDOM FEATURE RIDGE REGRESSION WITH
DIFFERENT n/d RATIOS

Figure 17 shows the shape of total variance when λ = 0.2. Figures 18 and 19 show the shape of 1
σ2 Variancenoise with

λ = 0.2 and 0.01, respectively.
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Figure 18: 1
σ2 Variancenoise under different values of n/d with λ = 0.2.
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Figure 19: 1
σ2 Variancenoise under different values of n/d with λ = 0.01.

C EXPERIMENTAL SETTING DETAILS FOR NEURAL NETWORKS

All experiments are implemented using PyTorch. We use eight Nvidia A40 to run the experiments.

C.1 NOISE TYPES

Symmetric noise Symmetric noise is generated by randomly shuffling the labels of certain fraction of examples.

Asymmetric noise Asymmetric noise is class-dependent. We follow the scheme proposed in Patrini et al. [2017] which is
also widely used in robust method papers (e.g., ELR Liu et al. [2020] and DivideMix Li et al. [2020]). For CIFAR-10, labels
are randomly flipped according to the following map: TRUCK→AUTOMOBILE, BIRD→AIRPLANE, DEER→HORSE,
CAT→DOG, DOG→CAT. For CIFAR-100, since the 100 classes are grouped into 20 superclasses, e.g. AQUATIC
MAMMALS contains BEAVER, DOLPHIN, OTTER, SEAL and WHALE, we flip labels of each class into the next one
circularly within super-classes. For both datasets, the fraction of mislabeled examples in the training set is the noise level.

Web Noise Red Stanford Car Jiang et al. [2020] contains images crawled from web, with label noise introduced through
text-to-image and image-to-image search. There are 10 different noise levels {0%, 5% 10%, 15%, 20%, 30%, 40%, 60%,
80%} for this dataset and we choose 40% and 80%. For each noise level, the mislabeled web images can only be downloaded
from the provided URLs. The training splits and labels are in provided files 1. The original dataset size is 8144. For 80%
noise, there are 6469 web images. However, 590 of the URL links are not functional and among the downloaded JPG files
1871 are corrupted/unopenable, hence we end up with 1675 clean examples and 4008 noisy examples, i.e., the actual noise
level is 70.53%. For 40% noise, there are 3241 web images with 313 non-downloadable and 963 not unopenable. Therefore
the actual noise level is 29.03%.

C.2 EMPIRICALLY MEASURING BIAS AND VARIANCE

To empirically examine the transition in variance shape as suggested by Theorem 3.1, we adopt the unbiased estimator
proposed in Yang et al. [2020]. Specifically, we randomly divide the training set for each model into N subsets (with
N = 20 for MNIST and N = 5 for CIFAR-10). For each subset, we train a separate model and compute the variance of
the network output across these subsets. We use the mean squared error (MSE) loss on both datasets, as the bias-variance
decomposition is only well-defined for MSE (refer to Eq. 1). While Yang et al. [2020] also proposed an estimator for
cross-entropy loss, it is biased and may introduce skewed results.

1See their webpage for details https://google.github.io/controlled-noisy-web-labels/download.html

https://google.github.io/controlled-noisy-web-labels/download.html


C.3 TRAINING DETAILS FOR SECTIONS 4.2 AND 4.3

We see weight decay and ℓ2 regularization as equivalent terms. Thus, when we specify λ = 0.001, it indicates that we
employ a weight decay value of 0.001. The width of a two-layer network is controlled by the number of hidden neurons.
The width of a ResNet is controlled by the number of convolutional layer filters: for width w, there are w, 2w, 4w, 8w filters
in each layer of the four Residual Blocks, respectively. When reducing the density of a model, we randomly select a certain
fraction of its weights and then keep them zero throughout the training.

MNIST and CIFAR-10 with MSE loss and Symmetric noise. We train two-layer ReLU networks on MNIST and ResNet34
on CIFAR-10. On MNIST, we train each model for 200 epochs using SGD with batch size 64, momentum 0.9, initial
learning rate 0.1, learning rate decay of 0.1 every 50 epochs. On CIFAR-10 we train each model for 1000 epochs using SGD
with batch size 128, momentum 0.9, initial learning rate 0.1, learning rate decay of 0.1 every 400 epochs.

CIFAR-10/100 with CE loss and Asymmetric/Symmetric noise On both datasets, we train ResNet34 for 500 epochs using
SGD with batch size 128, momentum 0.9, initial learning rate 0.1, learning rate decay of 0.1 every 100 epochs. We train ViT
for 200 epochs using Adam with batch size 512, weight decay 0.001, and learning rate 0.0001.

InceptionResNet-v2 on Red Stanford Car We train each model for 160 epochs with an initial learning rate of 0.1, and
a weight decay of 1 × 10−5 using SGD and momentum of 0.9 with a batch size of 32. We anneal the learning rate by a
factor of 10 at epochs 80 and 120, respectively. We use Cross Entropy loss.

C.4 TRAINING DETAILS FOR SECTION 4.5

ELR leverages the early learning phenomenon where the network fits clean examples first and then mislabeled examples.
It hinders learning wrong labels by regularizing the loss with a term that encourages the alignment between the model’s
prediction and the running average of the predictions in previous rounds. DivideMix dynamically discards labels that are
highly likely to be noisy and trains the model in a semi-supervised manner. For both ELR and DivideMix we use the same
setup as in the original papers Liu et al. [2020], Li et al. [2020].

ELR We train ResNet-34 using SGD with momentum 0.9, a weight decay of 0.001, and a batch size of 128. The network is
trained for 120 epochs on CIFAR-10 and 150 epochs on CIFAR-100. The learning rate is 0.02 at initialization, and decayed
by a factor of 100 at epochs 40 and 80 for CIFAR-10 and at epochs 80 and 120 for CIFAR-100. We use 0.7 for the temporal
ensembling parameter, and 3 for the ELR regularization coefficient.

DivideMix We train ResNet-34 for 200 epochs using SGD with batch size 64, momentum 0.9, initial learning rate 0.02, a
weight decay of 5× 10−4, and a learning rate decay of 0.1 at epoch 150. We use 150 for the unsupervised loss weight.

D ADDITIONAL EXPERIMENTAL RESULTS FOR SECTION 4

D.1 RESULTS FOR VIT

Figure 20 showcases the results of training ViT on CIFAR-10 across varying sample sizes. It is observed that ViT exhibits
final ascent and the phenomenon is mitigated by increasing the sample size. These findings are consistent with observations
in other scenarios discussed in Section 4.2.

D.2 EFFECT OF WIDTH

Additional results for Figures 6 and 7. Test accuracy, Bias2 and Variance are shown in Figures 21 to 24.

Effect of Sample Size. We use MSE loss on MNIST and CE loss on CIFAR-10. We consider λ = 0.001 and 60% noise
for both datasets. Plots of test accuracy are shown in Figure 25.

D.3 EFFECT OF DENSITY

Joint effect of width and density When studying the joint effect of width and density, we utilize MSE loss to measure bias
and variance. We set λ = 0 for MNIST and λ = 0.0005 for CIFAR-10. The results are presented in Figures 11, 26, and 27.
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Section 4.2.
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Figure 21: CIFAR-10, MSE loss, λ = 0.0005
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Figure 22: CIFAR-10, MSE loss, λ = 0.001

In both settings, models with the smallest density achieve the highest accuracy, and models with very small density achieve
the optimal loss.

Smaller density vs. stronger l2 regularization We train ResNet34 with a width of 16 on CIFAR-10, using 50% symmetric
noise. We compare the results obtained by varying λ (weight decay) and by varying the model density. Figure 11d shows the
test loss and 28 shows the test accuracy.
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Figure 23: MNIST, MSE loss, λ = 0
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Figure 24: MNIST, MSE loss, λ = 0.001
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Figure 25: We plot test accuracy against width while varying sample size. We use MSE loss with λ = 0.001 on MNIST and
CE loss with λ = 0.001 on CIFAR-10.
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D.4 WHEN ROBUST METHODS ARE APPLIED

In addition to the experiments presented in the main paper, we provide results for the following experiments conducted
on CIFAR-10/100: width experiments with ELR under 80% noise (Figure 29), density experiments with ELR (Figure 30),
density experiments with DivideMix under 60% noise (Figure 31). Furthermore, we show the results of density experiments
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Figure 27: Test accuracy and bias under varied width and density. Red numbers show the highest accuracy.
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Figure 28: Test accuracy obtained by varying λ (weight decay) or by varying model density.
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Figure 29: Additional results for the effect of width when ELR is used. The top row displays the results on CIFAR-10, and
the bottom row displays the results on CIFAR-100.

on Red Stanford Car with 70% noise, where InceptionResNet-v2 is trained using ELR in Figure 32. In the plots, the purple
solid line represents test loss and the blue dashed line represents test accuracy.
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Figure 30: Effect of density when ELR is used.
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Figure 31: Effect of density when DivideMix is used. We train the model on CIFAR-100 and set width to 64.
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Figure 32: Effect of density when we train an InceptionResNetV2 on Red Stanford Cars using ELR.

E INVESTIGATING THE COMPLEXITY OF LEARNED FUNCTIONS

A hypothesis proposed by Belkin et al. [2019] for double descent suggests that the learning algorithm possesses the right
inductive bias towards "low complexity" functions that generalize well while fitting the training set. It posits that larger
model sizes, which correspond to richer function classes, provide the algorithm with more choices to discover functions with
lower complexity. Given our finding that large noise alters the correlation between model size and generalization, a natural
question arises: "Does large noise also change the correlation between model size and the complexity of learned functions?"
In this section, we present empirical evidence suggesting the possibility of an affirmative answer. Recently, Kalimeris et al.
[2019] qualitatively measured the complexity of neural networks based on how much their predictions could be explained
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Figure 33: Trajectory length and variance of the first layer bias during each epoch. When varying the density we fix the
width to 128.
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Figure 34: When width or density increases, spectral norm decreases under 0% noise but increases under 40% noise.

by a smaller model. However, this approach assumes that "smaller models have lower complexity," which may not hold in
our case. Instead, we consider the following three measures:

• Trajectory length of the first layers bias.
∑

t∈T
∥b(t+1)

1 −bt
1∥2

αtϵf(t)
where T is a set of iteration indices, b(t)1 is the parameter

of the first layer bias at iteration t, and ϵf(t) is the gradient of the loss w.r.t. the network’s output at epoch t. Loukas
et al. [2021] shows that, under certain conditions, the above can be both upper and lower bounded in terms of the
Lipschitz constants of functions represented by the network at iterations in T (see their Theorem 1). This implies that
the first layer bias travels longer during training when it is fitting a more complex function.

• Variance of the first layer bias avgt∈T ∥b
(t)
1 − avgt∈T b

(t)
1 ∥22. Loukas et al. [2021] also provides a lower bound for the

above in terms of the Lipschitz constant and ϵf(t) (their Corollary 2). Thus a larger Lipschitz constant leads to a higher
lower bound, meaning that when fitting a lower complexity function, the network’s bias will update more frequently
during training.

• Product of spectral norms of the layer parameters. This is known as an upper bound for the network’s Lipschitz constant
Szegedy et al. [2013]. For convolutional layers, the spectral norm is computed using the FFT-based algorithm in Sedghi
et al. [2018].

Our experimental setup is the same as that of Loukas et al. [2021] (Task 2 in Section 6). We train CNNs on CIFAR-10 DOG
vs AIRPLANE. The CNN consists of one identity layer, two convolutional layers with a kernel size of 5, a fully connected
ReLU layer with a size of 384, and a linear layer. The width of the CNN is controlled by the number of convolutional
channels, with 16w channels in each convolutional layer for width w. We employ binary cross-entropy (BCE) loss and
train the models for 200 epochs using vanilla SGD with a batch size of 1. We apply exponential learning rate decay with a
factor of 10−50. The trajectory length and variance are computed at every epoch, reflecting the complexity of the CNN’s
represented function at each stage. The results are depicted in Figure 33, showing that noise can alter the relative complexity
of functions learned by models with increasing width or density. This trend is more pronounced in the case of width (Figures
33a and 33c), where both quantities decrease under 0% noise and increase under 40% noise as width increases. Figure 34
presents the product of layer-wise spectral norms of the neural network at the final epoch, showing a similar pattern. These
results suggests that label noise can invert the originally negative correlation between size and complexity/smoothness.



F POTENTIAL CONNECTION TO BENIGN/CATASTROPHIC OVERFITTING

The term ‘benign overfitting’ describes the phenomenon where models trained to overfit the training set still achieve
nearly optimal generalization performance Bartlett et al. [2020], Tsigler and Bartlett [2020], Chatterji et al. [2021], Cao
et al. [2022], Frei et al. [2022], Mallinar et al. [2022]. Recently, Cao et al. [2022] demonstrated that sufficiently large
models exhibit benign overfitting when the product of sample size and signal-to-noise ratio (SNR) is large, and catastrophic
overfitting occurs otherwise. Notably, this condition coincides with the condition in our theory (Section 3) where the final
ascent does not occur, since the SNR is represented as 1/σ2 in our setting. Consequently, our findings can be interpreted
in the context of benign/catastrophic overfitting: when the noise-to-sample-size ratio is large, a ‘sufficiently large’ model
overfits catastrophically, implying that increasing the model size towards a sufficient extent may worsen generalization.
Indeed, neural networks and various other real interpolating methods typically operate in the ‘tempered overfitting’ regime
Mallinar et al. [2022]. Our results suggest that the condition for benign overfitting identified in Cao et al. [2022] can
potentially be extended to assess the relative ‘benignity’ of tempered overfitting across different model sizes. The theoretical
establishment of this connection could be a valuable direction for future research.
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