
NeSSA: Near-Storage Data Selection for Accelerated
Machine Learning Training

Neha Prakriya, Yu Yang, Baharan Mirzasoleiman, Cho-Jui Hsieh, Jason Cong

University of California, Los Angeles

nehaprakriya, yuyang, baharan, chohsieh, cong@cs.ucla.edu

Abstract

Large-scale machine learning (ML) models rely on extremely

large datasets to learn their exponentially growing number

of parameters. While these models achieve unprecedented

success, the increase in training time and hardware resources

required is unsustainable. Further, we find that as dataset

sizes increase, data movement becomes a significant com-

ponent of overall training time. We propose NeSSA, a novel

SmartSSD+GPU training architecture to intelligently select

important subsets of large datasets near-storage, such that

training on the subset mimics training on the full dataset

with a very small loss in accuracy. To the best of our knowl-

edge, this is the first work to propose such a near-storage

data selection model for efficient ML training. We have evalu-

ated our method for the CIFAR-10, SVHN, CINIC-10, CIFAR-

100, TinyImageNet, and ImageNet-100 datasets. We also test

across ResNet-20, ResNet-18, and ResNet-50 models.

CCS Concepts

•Computingmethodologies→Neural networks; •Hard-

ware→ Emerging architectures.

Keywords

SmartSSD, Computational Storage, Near-Storage Training,

Large-Scale ML, Efficient ML Training

ACM Reference Format:

Neha Prakriya, Yu Yang, Baharan Mirzasoleiman, Cho-Jui Hsieh,

Jason Cong, University of California, Los Angeles, nehaprakriya,

yuyang, baharan, chohsieh, cong@cs.ucla.edu. 2023. NeSSA: Near-

Storage Data Selection for Accelerated Machine Learning Training.

In 15th ACM Workshop on Hot Topics in Storage and File Systems

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

HotStorage ’23, July 9, 2023, Boston, MA, USA
© 2023 Association for Computing Machinery.

ACM ISBN 979-8-4007-0224-2/23/07. . . $15.00

https://doi.org/10.1145/3599691.3603404

(HotStorage ’23), July 9, 2023, Boston, MA, USA. ACM, New York,

NY, USA, 8 pages. https://doi.org/10.1145/3599691.3603404

1 Introduction

Deep neural networks (DNNs) have achieved significant suc-

cess in vision tasks over the last decade. This success is

largely driven by vast improvements in GPU computational

power, and the ever-increasing number of model parame-

ters. Such over-parameterized models rely on the availability

of enormous annotated datasets to achieve high accuracies

[1, 2]. However, this poses a scalability challenge. In Figure

1, we demonstrate the exponential rise in training time per

epoch for state-of-the-art image classification models devel-

oped in the last decade and trained over the ImageNet-1k

dataset [3]. This increased training time also has a direct

impact on the training costs. A study by OpenAI in 2018

showed that the training costs in terms of petaflops-s/day is

doubling every 3.4 months [4]. Significantly reducing these

training costs while still ensuring high accuracy is one of

the grand challenges in ML [5].

Figure 1: Training time required per epoch for different

image classification models using an NVIDIA A100

GPU.

There are two main bottlenecks in training DNNs on large

datasets. First is the number of gradient computations re-

quired, which drastically increases as the dataset size in-

creases. Second is the data movement and I/O cost incurred

https://doi.org/10.1145/3599691.3603404
https://doi.org/10.1145/3599691.3603404

HotStorage ’23, July 9, 2023, Boston, MA, USA N. Prakriya et al.

when training on large datasets. NeSSA addresses both these

challenges using hardware-software co-optimization. For the

first bottleneck, it is important to note that each training

example has a different utility in aiding model convergence.

Therefore, we can afford training only on the most impor-

tant data examples without compromising significantly on

the final model accuracy. Training on this selected subset

reduces the total number of gradient computations required

for convergence. For example, selecting a subset of size 𝑆

out of a dataset of size 𝑉 , reduces the number of gradient

computations by |𝑉 |/|𝑆 |. Prior work on subset selection [6–

21] has shown promising results in trimming down vision

datasets on the CPU to 50-60% of their original size, with

an accuracy loss of 5-10%. However, these selection algo-

rithms suffer both from poor accuracy and high selection

time, negating any speed-up benefits obtained by filtering

the dataset.We discuss details of suchwork in Section 2.1 and

NeSSA’s optimizations to improve accuracy and selection

time in Section 3. In order to gain any significant speed-up,

the chosen selection model should be efficient. We profile the

percentage of time spent on data movement to train on the

MNIST (0.5KB/image), CIFAR-10 (3KB/image), CIFAR-100

(3KB/image), and ImageNet-100 (130KB/image) datasets in

Figure 2 using an NVIDIA V100 GPU. As the dataset size

increases (50K to 130K images), the time spent on data move-

ment increases from 5.4% to 40.4% of the overall training

time. Traditional data selection methods cannot address this

overhead as they require loading the data from the disk to the

CPU before computing selections. Prior work like [22, 23]

attempt to mitigate this high I/O cost through intelligent

caching, but these works still suffer from high data move-

ments between the storage device and the cache. In recent

years, there has been a resurgence in academic and industry

research on near-storage acceleration [24–34]. Near-storage

acceleration proposes to place computation "near data", and

has emerged as a promising solution to reducing the over-

all data movement in the system. To address the second

training bottleneck, we propose using near-storage accel-

eration with the recently released Samsung SmartSSD [35]

for data ranking and selection operations. This ensures that

data selection is carried out efficiently in the FPGA-based

compute units near SSDs, so that only a small fraction of

data is transmitted to GPUs for training. NeSSA achieves a

critical trade-off between limited system resources and high

accuracy. We achieve a large reduction in data movement

(3.47x) and increase in training speed (5.37x), with a small

accuracy degradation of approx. 1-2%. NeSSA outperforms

prior work on subset selection, and is the closest to a model

trained on all the data (Section 4.2).

We propose a storage-assisted SmartSSD+GPU system for

efficient training of large-scale ML models. Our key contri-

butions are:

Figure 2: Time distribution of training.

(1) Lighweight FPGA-based near-storage subset selection

accelerator on the SmartSSD to achieve an average of

3.47x reduction in data movement costs and end-to-

end average training speed-up of 5.37x.

(2) Quantize the selection model for high selection speed.

(3) Improve the quality of subsets selected based on the

model’s feedback to ensure that we only train on the

most important data samples.

(4) Dynamically reduce the subset size based on loss re-

duction rate during the training process to ensure that

we train on the least required data samples.

2 Background

2.1 Subset Selection

Given a training dataset 𝐷 = {(𝑥𝑖 , 𝑦𝑖)}𝑁𝑖=1 of 𝑁 data-label

pairs indexed by 𝑉 = {1, · · · , 𝑁 }, the goal of training is

to learn the set of optimal parameters 𝜃 of a model Ψ(·;𝜃)
which minimize a loss function denoted by L(·; ·). We can

formulate the training process as follows:

𝜃 ∗ = argmin
𝜃

1

𝑁

𝑁∑︁
𝑖=1

L(Ψ(𝑥𝑖 ;𝜃), 𝑦𝑖). (1)

The goal of subset selection is to find a subset 𝑆 ⊆ 𝑉

that gives a similar gradient to the entire training set 𝑉

during training, but is much smaller in size. Let L𝑖 (𝜃) =

L(Ψ(𝑥𝑖 ;𝜃), 𝑦𝑖) be the loss associated with example 𝑖 ∈ 𝑉 .

We can formulate the problem as follows:

𝑆 = argmin
𝑆⊆𝑉

|𝑆 |, s.t. (2)

max
𝜃 ∈Θ

| |
∑︁
𝑖∈𝑉

∇L𝑖 (𝜃) −
∑︁
𝑗∈𝑆

∇L 𝑗 (𝜃) | | ≤ 𝜖,

where 𝜖 ≥ 0.

NeSSA: Near-Storage Data Selection for Accelerated Machine Learning Training HotStorage ’23, July 9, 2023, Boston, MA, USA

There are two main categories of work in subset selection.

The first category uses trained models to infer sample im-

portance [6–16]. That is, a sample’s utility in improving a

model’s convergence is computed using Eq. 2 after the train-

ing process. These selection models are expensive to use as

they require a full round of training (with gradient computa-

tions), negating the speed-up benefits. The second category

of work uses training dynamics like loss values, gradients,

and model predictions from previous epochs to infer sample

importance for future epochs [17–20]. While this category is

cheaper to implement than the first, choosing subsets based

on limited information results in large accuracy degradation.

NeSSA uses the subset selection formulation in [20] as the

core component and adapts it to the SmartSSD (described in

Section 3.1) to reduce data movement, selection overheads,

and adds several optimizations (described in Section 3.2) to

achieve high accuracy.

2.2 Near-Storage Acceleration

In the big data era, data analytics is a major workload in

warehouse-scale computers with data movement occupying

an average of 80% of total time [36]. Storage read/write band-

widths have improved to 3 GBps, while commercially avail-

able Ethernet can provide about 12.5 GBps. Usually 32 drives

are plugged into this network, reducing the achievable data

transfer throughput. This difference is further exacerbated

in case of PCIe, driving the need of near-storage acceleration.

Near-storage acceleration also provides the additional bene-

fit of freeing up system resources for other tasks. [37] shows

that using data-centric computing for query processing frees

up 70% of CPU cycles and reduces DRAM utilization by 60%.

Samsung’s SmartSSD device is the first computational stor-

age device fabricated in the U.2 format [38]. It has a Xilinx

(AMD) Kintex KU15P FPGA with 4GB DRAM connected to

a 3.84TB NAND flash over a PCIe-based peer-to-peer con-

nection. There have been several efforts using the SmartSSD

for applications like query processing [24, 25], large-scale

data sorting [26–28], and near-storage ML inference [29, 30].

In this paper, we advocate for the use of SmartSSD for data

filtering and selection tasks for efficient ML training.

Compared with CPU-based selection models used in prior

work (Section 2.1), SmartSSD-based acceleration provides

customization, fast selection, and low data movement. We

discuss the speed-up obtained in Section 4.3. Compared with

ASIC-based data filtering, NeSSA provides a low-cost solu-

tion which can be reconfigured to target multiple ML models

and datasets. NeSSA uses the low-power FPGA on-board

the SmartSSD (approx. 7.5W) for data filtering. Such energy

efficiency cannot be achieved through GPU-based accelera-

tion (Eg. Nvidia K1200 GPU: 45W, Nvidia A100 GPU: 250W).

Given that we select a subset of size 𝑆 from a dataset of size𝑉 ,

Figure 3: System setup

NeSSA reduces the data movement in the system by a factor

of |𝑉 |/|𝑆 | compared with an FPGA without on-board SSD.

Findings by prior work also support our idea to use SmartSSD

for data filtering. [33] identifies two characteristics which

make a workload suitable for FPGA-based near-storage ac-

celeration. First, the workload should display a high relative

data ratio. That is, more data should be read/written to/from

the storage than over the drive-host interconnect. If a subset

of size 𝑆 is selected from a dataset of size 𝑉 where 𝑉 >> 𝑆 ,

then the data ratio of |𝑉 |/|𝑆 | is high. Second, the workload
should display low operational intensity. Here, operational

intensity is the number of cycles spent on processing one in-

put. If the operational intensity is high, then the accelerator

will not saturate the available high drive bandwidth. Using

a selection model based on training dynamics allows us to

satisfy this condition.

3 System Design and Optimizations

We describe our system setup in Figure 3. The steps involved

in our proposed training paradigm are as follows:

(1) Read the training data from the SSD to the FPGA on-

board the SmartSSD using the peer-to-peer transfer

feature.

(2) Run the selection model described in Section 3.1 and

transfer the selected subset to the target model on the

GPU.

(3) Train the target model on the subset.

(4) Use the quantized weights and the target model’s loss

as feedback to improve the selection model on the

FPGA, and decide the number of samples to include in

future subsets (discussed in Section 3.2). This feedback

loop ensures that we maintain a high accuracy and

train on the least required samples.

(5) Repeat for all epochs.

HotStorage ’23, July 9, 2023, Boston, MA, USA N. Prakriya et al.

3.1 Selection Model to Reduce Training Costs

As directly solving (2) is NP-hard, [20] finds an upper-bound

for the gradient estimation error as follows:

min
𝑆⊆𝑉

∥
∑︁
𝑖∈𝑉

∇L𝑖 (𝜃) −
∑︁
𝑗∈𝑆

∇L 𝑗 (𝜃)∥

≤
∑︁
𝑖∈𝑉

min
𝑗∈𝑆

∥∇L𝑖 (𝜃) − ∇L 𝑗 (𝜃)∥. (3)

The RHS of Eq. 3 is the 𝑘-medoid problem as formulated

by [39] and the set 𝑆 which minimizes the estimation error

is given by the set of medoids. Intuitively, these medoids

minimize the maximum pairwise distances between data

points and themselves, making them the most representative

data samples. For a specific value of 𝑘 , the set of 𝑘-medoids

𝑆∗𝑡 at iteration 𝑡 can be found as:

𝑆∗𝑡 ∈argmin 𝑆⊆𝑉
|𝑆 | ≤𝑘

∑︁
𝑖∈𝑉

min
𝑗∈𝑆

∥∇L𝑖 (𝜃𝑡) − ∇L 𝑗 (𝜃𝑡)∥2. (4)

The minimization problem (4) can be turned into maximizing

a submodular facility location objective as described in [20]

and is the subset selection model we use:

𝑆∗𝑡 ∈ argmin𝑆⊆𝑉 |𝑆 |, 𝑠 .𝑡 . (5)

𝐹 (𝑆) =
∑︁
𝑖∈𝑉

max
𝑗∈𝑆

(𝑐0 − ∥∇L𝑖 (𝜃𝑡) − ∇L 𝑗 (𝜃𝑡)∥2),

where 𝑐0 is a constant satisfying 𝑐0 ≥ ∥∇L𝑖 (𝜃𝑡)−∇L 𝑗 (𝜃𝑡)∥2,
for all 𝑖, 𝑗 ∈ 𝑉 . The computational complexity of running

this selection model is O(𝑁) using stochastic methods [40],

and can be further improved using lazy evaluation [41] and

distributed implementations [42].

3.2 Optimizations to Ensure High Accuracy

As discussed in Section 2, selection methods depending only

on training dynamics suffer from poor accuracy and in-

creased data movement. While adapting the data selection

to the SmartSSD reduces data movement, we propose the

following optimizations to improve the understanding of the

dataset and accuracy:

3.2.1 Feedback of Quantized Weights : The selection

model on the FPGA requires predictions (forward pass) be-

fore computing the set of medoids (Section 3.1) for which we

use a quantized version of the target model. After training

the target model on the subset, we quantize its weights and

transfer back to the FPGA forming a feedback loop. This

ensures that the selection model is continuously updated to

best infer the relative importance of training examples over

time, and only select the most informative samples. This

optimization allows us to achieve higher accuracy than prior

work which do not use such a feedback loop (Section 4.2).

3.2.2 Selecting from Samples That are Not Learned

- Subset Biasing : As more data samples are learned, an

efficient selection model should focus more on the harder

examples that are difficult for the target model to learn and

produce large gradients. Samples producing small gradients

are already learned and can be ignored. We record losses

of the current training examples from the most recent five

epochs, mark the samples with small values, and drop the

marked samples from the training set every twenty epochs.

We found that dropping samples every twenty epochs was

a conservative trade-off between training on the smallest

subset, and ensuring that we still give the model sufficient

time to learn all the data points. Then, we select subsets based

on Eq. 5 only from the remaining elements. This ensures that

we train on the least required training examples. We discuss

the impact of this optimization in Section 4.2.

3.2.3 Selecting Subsets from Smaller Data Partitions -

Dataset Partitioning : The subset selection algorithm dis-

cussed in Section 3.1 computes pairwise similarities between

all examples from the same class label at the beginning of

each epoch. When the training set becomes larger, the cost of

computing these pairwise similarities scales up quadratically.

To efficiently select the subset on an FPGA with limited on-

chip memory (4.32MB), we randomly partition the training

set into several chunks, and select a smaller subset from each

chunk. This way, we do not need to fit the gradients from an

entire class onto the on-chip memory, but only the gradients

from a single chunk. For example, for a mini-batch size of

𝑚 and subset size 𝑘 to be selected from 𝑁 data points, we

partition the dataset into 𝑘/𝑚 random chunks and select𝑚

examples from each chunk to get a total 𝑘 number of exam-

ples in the subset. We discuss the impact of this optimization

in Section 4.2.

4 Evaluation

In this Section, we first describe our experimental setup and

then the performance results obtained. We evaluate NeSSA

to address three main topics: (1) Accuracy comparison with

models trained on the full dataset and prior work on sub-

set selection (Section 4.2), (2) End-to-end training speed-up

(Section 4.3), (3) Quantitative benefits of using our storage-

assisted SmartSSD+GPU training setup (Section 4.4).

4.1 Experimental Setup

The datasets and models used in our experiments are listed

in Table 1. We train the models for 200 epochs with batch

size of 128, initial learning rate of 0.1 divided by 5 at the

60th, 120th, and 160th epochs, weight decay of 5𝑒 − 4, and
Nesterov momentum of 0.9.

NeSSA: Near-Storage Data Selection for Accelerated Machine Learning Training HotStorage ’23, July 9, 2023, Boston, MA, USA

Table 1: Dataset overview

Dataset Classes Train Network

CIFAR-10 [43] 10 50k ResNet-20

SVHN [44] 10 73k ResNet-18

CINIC-10 [45] 10 90k ResNet-18

CIFAR-100 [43] 100 50k ResNet-18

TinyImageNet [46] 200 100k ResNet-18

ImageNet-100 [3] 100 130k ResNet-50

Table 2: Accuracy and data ratio trained by NeSSA com-

pared with the same model trained on the full dataset.

Dataset All Data (%) NeSSA (%) Subset (%)

CIFAR-10 92.02 90.17 28

SVHN 95.81 95.18 15

CINIC-10 81.49 80.26 30

CIFAR-100 70.98 69.23 38

TinyImageNet 63.40 63.66 34

ImageNet-100 84.60 83.76 28

4.2 Performance Evaluation

We compare the performance of NeSSA for all tested datasets

with a model trained on the full dataset in Table 2. NeSSA

achieves comparable accuracy by training on just 15-38% of

the dataset. The rest of the dataset is automatically pruned

away during training by our optimizations described in Sec-

tion 3.2. To quantify the improvement in accuracy obtained

using each of these optimizations, we analyze the perfor-

mance for the CIFAR-10 dataset in Table 3. Here, "Vanilla"

refers to NeSSA without subset biasing (Section 3.2.2) and

dataset partitioning (Section 3.2.3). "SB" and "PA" refer to

the implementations with subset biasing and partitioning

respectively. "Goal" refers to a model trained with the full

dataset. We also compare the accuracy obtained on differ-

ent subset sizes by NeSSA and prior CPU-based state-of-

the-art subset selection work [20][17] in Table 3. Overall,

NeSSA outperforms prior work and is the closest to the goal

accuracy. Compared with [17], NeSSA uses a submodular-

optimization based selection methods which attempts to min-

imize the total dissimilarity between data points instead of

the total squared error. Compared with [20], NeSSA includes

several optimizations as described in Section 3.2 which sig-

nificantly improve the quality of the selected subsets. Specif-

ically, adding feedback between the target model and the

selection model allows the selection of only the most impor-

tant training examples. We also achieve higher performance

with the same subset size due to the subset biasing and par-

titioning optimizations.

Figure 4: Training time averaged across epochs for

NeSSA, prior work, and a model trained on the full

dataset.

Figure 5: Accuracy of NeSSA and a model trained on

the full dataset over the training process.

4.3 End-to-End Training Speed-Up

In Figure 4, we compare the average time taken to train one

epoch for the CIFAR-10 dataset with the ResNet-20 model

using NeSSA, prior CPU-based subset selection techniques

like [17, 20], and a model trained on the full dataset. Overall

across datasets, NeSSA gains an end-to-end training speed-

up of 5.37x compared with training on the full dataset, 4.3x

compared with [20], and 8.1x compared with [17]. We also

find that NeSSA converges close to the optimal solution faster

than a model trained on the entire dataset. This is because

NeSSA ensures that the model constantly trains on examples

which will accelerate it’s convergence the most, rather than

selecting random batches of data. We demonstrate the faster

convergence on all datasets in Table 1 in Figure 5. NeSSA

reaches closer to convergence within the first 30 epochs of

training for all datasets compared with a model trained on

the full dataset (solid series is higher than dotted series of

the same color).

HotStorage ’23, July 9, 2023, Boston, MA, USA N. Prakriya et al.

Table 3: Accuracy comparison of NeSSA with different optimizations and prior work. The column names marked

in bold is NeSSA and the values marked in bold is the setting with best performance (closest to "Goal").

Subset (%) Vanilla (%) SB (%) PA (%) SB+PA (%) CRAIG[20] K-Centers [17] Goal (%)

10 82.76 87.61 83.56 87.75 87.07 65.72 92.44

30 89.51 90.42 90.68 90.49 89.12 88.49 92.44

50 90.59 91.89 91.81 91.92 90.32 90.14 92.44

Table 4: Resource utilization

Resource Available Util (%)

LUT 432k 67.53

FF 919k 23.14

BRAM 738 50.30

DSP 1962 42.67

Figure 6: Data transfer throughput between FGPA and

on-board SSD (average of read/writes)

4.4 Benefits of using Storage-Assisted Training

SSD to FPGA transfers on-board the SmartSSD can theo-

retically achieve up to 3GBps data transfer rates. In a con-

ventional setting where FPGA does not have direct access

to the on-board SSD and uses CPU memory as temporary

storage, the effective bandwidth is reduced to 1.4 GBps.

Therefore, data transfer rates are on average 2.14x faster

using the SmartSSD. Along with this speed-up, reducing the

dataset size by selecting subsets also reduces the volume of

data transferred over the interconnect. Overall, our method

achieves an average data movement reduction of 3.47x across

datasets. We profile the effective data transfer rates between

the FPGA and on-board SSD (average of reading and writing

from/to on-board SSD) in Figure 6. For the CIFAR-10 dataset

where each image size is 0.003MB, using a batch size of 128

images, data transfer rates achieved are 1.46 GBps. As the

dataset and image sizes increase, the available bandwidth is

better saturated. In case of the ImageNet-100 dataset where

each image is 0.126 MB, using a batch size of 128 images

achieves a data transfer throughput of 2.28 GBps. There-

fore, as the dataset size increases, using storage-assisted ML

training becomes more effective and necessary. Particularly

using FPGA-based storage-assisted training provides a low-

cost solution (Table 4) which allows low selection and data

transfer time (Figure 4) compared with CPU-based selection

algorithms and training on the full dataset.

5 Conclusion

We present a SmartSSD+GPU training setup to intelligently

select subsets of large datasets near-storage and train only

on the selected data while maintaining high accuracy. NeSSA

achieves 3.47x reduction in data movement and end-to-end

training speed-up average of 5.37x with a negligible loss in

accuracy compared with a model trained on the full dataset.

We are currently working on extending this work for larger

datasets and models scaling over multiple SmartSSDs and

GPUs.

Acknowledgments

This research was supported by PRISM Award CC OTH

00541340 2022 TR and CRISP Award GI18518.156870. We

would like to thank Samsung Electronics Co. for providing

access to the SmartSSD devices. This work was supported in

part by the Semiconductor Research Corporation (SRC) and

DARPA. BM was supported by the National Science Foun-

dation CAREER Award 2146492. CJH was supported by the

National Science Foundation Award IIS-2008173, IIS-2048280

and Sony Research Award.

References

[1] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta.

Revisiting Unreasonable Effectiveness of Data in Deep Learning Era.

CoRR, abs/1707.02968, 2017. URL http://arxiv.org/abs/1707.02968.

[2] Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and

Ari S.Morcos. BeyondNeural Scaling Laws: Beating Power Law Scaling

Via Data Pruning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,

and Kyunghyun Cho, editors, Advances in Neural Information Process-
ing Systems, 2022. URL https://openreview.net/forum?id=UmvSlP-PyV.

http://arxiv.org/abs/1707.02968
https://openreview.net/forum?id=UmvSlP-PyV

NeSSA: Near-Storage Data Selection for Accelerated Machine Learning Training HotStorage ’23, July 9, 2023, Boston, MA, USA

[3] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.

ImageNet: A Large-Scale Hierarchical Image Database. In 2009 IEEE
Conference on Computer Vision and Pattern Recognition, pages 248–255,
2009. doi: 10.1109/CVPR.2009.5206848.

[4] Dario Amodei, Danny Hernandez, Girish Sastry, Jack Clark, Greg

Brockman, and Ilya Sutskever. AI and Compute. 2018.

[5] Hilal Asi and John C. Duchi. The Importance of Better Models in Sto-

chastic Optimization. Proceedings of the National Academy of Sciences,
116(46):22924–22930, oct 2019. doi: 10.1073/pnas.1908018116. URL

https://doi.org/10.1073%2Fpnas.1908018116.

[6] Agata Lapedriza, Hamed Pirsiavash, Zoya Bylinskii, and Antonio Tor-

ralba. Are All Training Examples Equally Valuable? arXiv preprint
arXiv:1311.6510, 2013.

[7] Linnan Wang, Yi Yang, Renqiang Min, and Srimat Chakradhar. Accel-

erating Deep Neural Network Training with Inconsistent Stochastic

Gradient Descent. Neural Networks, 93:219–229, 2017.
[8] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros.

Dataset Distillation. arXiv preprint arXiv:1811.10959, 2018.
[9] Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam

Trischler, Yoshua Bengio, and Geoffrey J. Gordon. An Empirical Study

of Example Forgetting during Deep Neural Network Learning. In

International Conference on Learning Representations, 2019. URL https:

//openreview.net/forum?id=BJlxm30cKm.

[10] Cody Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirza-

soleiman, Peter Bailis, Percy Liang, Jure Leskovec, and Matei Zaharia.

Selection via Proxy: Efficient Data Selection for Deep Learning. arXiv
preprint arXiv:1906.11829, 2019.

[11] Jiong Zhang, Hsiang-Fu Yu, and Inderjit S Dhillon. AutoAssist: A

Framework to Accelerate Training of DeepNeural Networks. In H.Wal-

lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-

nett, editors, Advances in Neural Information Processing Systems, vol-
ume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.

cc/paper/2019/file/9bd5ee6fe55aaeb673025dbcb8f939c1-Paper.pdf.

[12] Jordan T. Ash, Chicheng Zhang, Akshay Krishnamurthy, John Lang-

ford, and Alekh Agarwal. Deep Batch Active Learning by Diverse,

Uncertain Gradient Lower Bounds. In International Conference on
Learning Representations, 2020. URL https://openreview.net/forum?

id=ryghZJBKPS.

[13] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset Con-

densation with Gradient Matching. In International Conference on
Learning Representations, 2021. URL https://openreview.net/forum?

id=mSAKhLYLSsl.

[14] Srikumar Ramalingam, Daniel Glasner, Kaushal Patel, Raviteja Vemu-

lapalli, Sadeep Jayasumana, and Sanjiv Kumar. Less is More: Selecting

Informative and Diverse Subsets With Balancing Constraints. arXiv
preprint arXiv:2104.12835, 2021.

[15] Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep

Learning on a Data Diet: Finding Important Examples Early in

Training. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang,

and J. Wortman Vaughan, editors, Advances in Neural Information
Processing Systems, volume 34, pages 20596–20607. Curran Asso-

ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/file/

ac56f8fe9eea3e4a365f29f0f1957c55-Paper.pdf.

[16] Prioritized Training on Points That Are Learnable, Worth Learning,

And Not Yet Learnt, author=Mindermann, Sören and Brauner, Jan M

and Razzak, Muhammed T and Sharma, Mrinank and Kirsch, An-

dreas and Xu, Winnie and Höltgen, Benedikt and Gomez, Aidan

N and Morisot, Adrien and Farquhar, Sebastian and others, book-

title=International Conference on Machine Learning, pages=15630–

15649, year=2022, organization=PMLR.

[17] Ozan Sener and Silvio Savarese. Active Learning for Convolu-

tional Neural Networks: A Core-Set Approach. arXiv preprint

arXiv:1708.00489, 2017.
[18] Angelos Katharopoulos and François Fleuret. Not All Samples Are Cre-

ated Equal: Deep LearningWith Importance Sampling. In International
conference on machine learning, pages 2525–2534. PMLR, 2018.

[19] Angela H Jiang, Daniel L-KWong, Giulio Zhou, David G Andersen, Jef-

frey Dean, Gregory R Ganger, Gauri Joshi, Michael Kaminksy, Michael

Kozuch, Zachary C Lipton, et al. Accelerating Deep Learning By

Focusing On The Biggest Losers. arXiv preprint arXiv:1910.00762, 2019.
[20] Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for

Data-Efficient Training of Machine Learning Models. In International
Conference on Machine Learning, pages 6950–6960. PMLR, 2020.

[21] Yu Yang, Hao Kang, and Baharan Mirzasoleiman. Towards sustainable

learning: Coresets for data-efficient deep learning, 2023.

[22] Redwan Ibne Seraj Khan, Ahmad Hossein Yazdani, Yuqi Fu, Arnab K.

Paul, Bo Ji, Xun Jian, Yue Cheng, and Ali R. Butt. SHADE: Enable

fundamental cacheability for distributed deep learning training. In 21st
USENIX Conference on File and Storage Technologies (FAST 23), pages
135–152, Santa Clara, CA, February 2023. USENIX Association. ISBN

978-1-939133-32-8. URL https://www.usenix.org/conference/fast23/

presentation/khan.

[23] Weijian Chen, Shuibing He, Yaowen Xu, Xuechen Zhang, Siling Yang,

Shuang Hu, Xian-He Sun, and Gang Chen. icache: An importance-

sampling-informed cache for accelerating i/o-bound dnn model train-

ing. In 2023 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pages 220–232, 2023. doi: 10.1109/

HPCA56546.2023.10070964.

[24] Jaeyoung Do, Yang-Suk Kee, Jignesh M. Patel, Chanik Park,

Kwanghyun Park, and David J. DeWitt. Query Processing on Smart

SSDs: Opportunities and Challenges. In Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data, SIGMOD

’13, page 1221–1230, New York, NY, USA, 2013. Association for Com-

puting Machinery. ISBN 9781450320375. doi: 10.1145/2463676.2465295.

URL https://doi.org/10.1145/2463676.2465295.

[25] Mohammadreza Soltaniyeh, Veronica Lagrange Moutinho Dos Reis,

Matthew Bryson, Richard Martin, and Santosh Nagarakatte. Near-

Storage Acceleration of Database Query Processingwith SmartSSDs. In

2021 IEEE 29th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), pages 265–265, 2021. doi: 10.
1109/FCCM51124.2021.00052.

[26] Weikang Qiao, Jihun Oh, Licheng Guo, Mau-Chung Frank Chang,

and Jason Cong. FANS: FPGA-Accelerated Near-Storage Sorting. In

2021 IEEE 29th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), pages 106–114, 2021. doi: 10.
1109/FCCM51124.2021.00020.

[27] Sahand Salamat, Armin Haj Aboutalebi, Behnam Khaleghi, Joo Hwan

Lee, Yang Seok Ki, and Tajana Rosing. NASCENT: Near-Storage Ac-

celeration of Database Sort on SmartSSD. In The 2021 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, FPGA
’21, page 262–272, New York, NY, USA, 2021. Association for Comput-

ing Machinery. ISBN 9781450382182. doi: 10.1145/3431920.3439298.

URL https://doi.org/10.1145/3431920.3439298.

[28] Sahand Salamat, Hui Zhang, Yang Seok Ki, and Tajana Rosing.

NASCENT2: Generic Near-Storage Sort Accelerator for Data Ana-

lytics on SmartSSD. ACM Trans. Reconfigurable Technol. Syst., 15
(2), jan 2022. ISSN 1936-7406. doi: 10.1145/3472769. URL https:

//doi.org/10.1145/3472769.

[29] Mohammadreza Soltaniyeh, Veronica Lagrange Moutinho Dos Reis,

Matt Bryson, Xuebin Yao, Richard P. Martin, and Santosh Nagarakatte.

Near-Storage Processing for Solid State Drive Based Recommendation

Inference with SmartSSDs. In Proceedings of the 2022 ACM/SPEC on
International Conference on Performance Engineering, ICPE ’22, page

https://doi.org/10.1073%2Fpnas.1908018116
https://openreview.net/forum?id=BJlxm30cKm
https://openreview.net/forum?id=BJlxm30cKm
https://proceedings.neurips.cc/paper/2019/file/9bd5ee6fe55aaeb673025dbcb8f939c1-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/9bd5ee6fe55aaeb673025dbcb8f939c1-Paper.pdf
https://openreview.net/forum?id=ryghZJBKPS
https://openreview.net/forum?id=ryghZJBKPS
https://openreview.net/forum?id=mSAKhLYLSsl
https://openreview.net/forum?id=mSAKhLYLSsl
https://proceedings.neurips.cc/paper/2021/file/ac56f8fe9eea3e4a365f29f0f1957c55-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/ac56f8fe9eea3e4a365f29f0f1957c55-Paper.pdf
https://www.usenix.org/conference/fast23/presentation/khan
https://www.usenix.org/conference/fast23/presentation/khan
https://doi.org/10.1145/2463676.2465295
https://doi.org/10.1145/3431920.3439298
https://doi.org/10.1145/3472769
https://doi.org/10.1145/3472769

HotStorage ’23, July 9, 2023, Boston, MA, USA N. Prakriya et al.

177–186, New York, NY, USA, 2022. Association for Computing Ma-

chinery. ISBN 9781450391436. doi: 10.1145/3489525.3511672. URL

https://doi.org/10.1145/3489525.3511672.

[30] Erfan Bank Tavakoli, Amir Beygi, and Xuebin Yao. RPkNN: An

OpenCL-Based FPGA Implementation of the Dimensionality-Reduced

kNN Algorithm Using Random Projection. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 30(4):549–552, 2022. doi:
10.1109/TVLSI.2022.3147743.

[31] Zhenyuan Ruan, Tong He, and Jason Cong. INSIDER: Designing In-

Storage computing system for emerging High-Performance drive. In

2019 USENIX Annual Technical Conference (USENIX ATC 19), pages 379–
394, Renton, WA, July 2019. USENIX Association. ISBN 978-1-939133-

03-8. URL https://www.usenix.org/conference/atc19/presentation/

ruan.

[32] Ian F. Adams, Neha Agrawal, and Michael P. Mesnier. Enabling near-

data processing in distributed object storage systems. In Proceedings
of the 13th ACM Workshop on Hot Topics in Storage and File Systems,
HotStorage ’21, page 28–34, New York, NY, USA, 2021. Association for

Computing Machinery. ISBN 9781450385503. doi: 10.1145/3465332.

3470881. URL https://doi.org/10.1145/3465332.3470881.

[33] Zhenyuan Ruan, Tong He, and Jason Cong. Analyzing and Modeling

In-Storage Computing Workloads On EISC — An FPGA-Based System-

Level Emulation Platform. In 2019 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), pages 1–8, 2019. doi: 10.1109/

ICCAD45719.2019.8942135.

[34] Weikang Qiao, Jieqiong Du, Zhenman Fang, Michael Lo, Mau-

Chung Frank Chang, and Jason Cong. High-throughput lossless com-

pression on tightly coupled cpu-fpga platforms. In 2018 IEEE 26th
Annual International Symposium on Field-Programmable Custom Com-
puting Machines (FCCM), pages 37–44, 2018. doi: 10.1109/FCCM.2018.

00015.

[35] Joo Hwan Lee, Hui Zhang, Veronica Lagrange, Praveen Krishnamoor-

thy, Xiaodong Zhao, and Yang Seok Ki. SmartSSD: FPGA Accelerated

Near-Storage Data Analytics on SSD. IEEE Computer Architecture
Letters, 19(2):110–113, 2020. doi: 10.1109/LCA.2020.3009347.

[36] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ran-

ganathan, Tipp Moseley, Gu-Yeon Wei, and David Brooks. Profiling

a Warehouse-Scale Computer. In 2015 ACM/IEEE 42nd Annual Inter-
national Symposium on Computer Architecture (ISCA), pages 158–169,
2015. doi: 10.1145/2749469.2750392.

[37] Shuotao Xu, Thomas Bourgeat, Tianhao Huang, Hojun Kim, Sungjin

Lee, and Arvind Arvind. AQUOMAN: An Analytic-Query Offload-

ing Machine. In 2020 53rd Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO), pages 386–399, 2020. doi:

10.1109/MICRO50266.2020.00041.

[38] SmartSSD Computational Storage Drive: Installation and User

Guide. 2021. URL https://www.xilinx.com/content/dam/xilinx/

support/documents/boards_and_kits/accelerator-cards/1_3/ug1382-

smartssd-csd.pdf.

[39] Leonard Kaufman and Peter Rousseeuw. Clustering by Means of

Medoids. 1987.

[40] Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi,

Jan Vondrák, and Andreas Krause. Lazier Than Lazy Greedy. In

Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.
[41] Michel Minoux. Accelerated Greedy Algorithms for Maximizing Sub-

modular Set Functions. In Optimization techniques, pages 234–243.
Springer, 1978.

[42] Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas

Krause. Distributed Submodular Maximization: Identifying Repre-

sentative Elements in Massive Data. In Advances in Neural Information
Processing Systems, pages 2049–2057, 2013.

[43] A. Krizhevsky and G. Hinton. Learning Multiple Layers of Features

from Tiny Images. Master’s thesis, Department of Computer Science,
University of Toronto, 2009.

[44] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu,

and Andrew Y. Ng. Reading Digits in Natural Images with Unsu-

pervised Feature Learning. In NIPS Workshop on Deep Learning and
Unsupervised Feature Learning 2011, 2011. URL http://ufldl.stanford.

edu/housenumbers/nips2011_housenumbers.pdf.

[45] Luke N. Darlow, Elliot J. Crowley, Antreas Antoniou, and Amos J.

Storkey. CINIC-10 is not ImageNet or CIFAR-10, 2018. URL https:

//arxiv.org/abs/1810.03505.

[46] Ya Le and Xuan S. Yang. Tiny ImageNet Visual Recognition Challenge.

2015.

https://doi.org/10.1145/3489525.3511672
https://www.usenix.org/conference/atc19/presentation/ruan
https://www.usenix.org/conference/atc19/presentation/ruan
https://doi.org/10.1145/3465332.3470881
https://www.xilinx.com/content/dam/xilinx/support/documents/boards_and_kits/accelerator-cards/1_3/ug1382-smartssd-csd.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/boards_and_kits/accelerator-cards/1_3/ug1382-smartssd-csd.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/boards_and_kits/accelerator-cards/1_3/ug1382-smartssd-csd.pdf
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
https://arxiv.org/abs/1810.03505
https://arxiv.org/abs/1810.03505

	Abstract
	1 Introduction
	2 Background
	2.1 Subset Selection
	2.2 Near-Storage Acceleration

	3 System Design and Optimizations
	3.1 Selection Model to Reduce Training Costs
	3.2 Optimizations to Ensure High Accuracy

	4 Evaluation
	4.1 Experimental Setup
	4.2 Performance Evaluation
	4.3 End-to-End Training Speed-Up
	4.4 Benefits of using Storage-Assisted Training

	5 Conclusion
	References

