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ABSTRACT

Dynamic evolving networks capture temporal relations in domains
such as social networks, communication networks, and financial
transaction networks. In such networks, temporal motifs, which
are repeated sequences of time-stamped edges/transactions, offer
valuable information about the networks’ evolution and function.
However, calculating temporal motif frequencies is computation-
ally expensive as it requires: First, identifying all instances of the
static motifs in the static graph induced by the temporal graph.
And second, counting the number of subsequences of temporal
edges that correspond to a temporal motif and occur within a time
window. Since the number of temporal motifs changes over time,
finding interesting temporal patterns involves iterative application
of the above process over many consecutive time windows. This
makes it impractical to scale to large real temporal networks. Here,
we develop a fast and accurate model-based method for counting
motifs in temporal networks. We first develop the Temporal Activity

State Block Model (TASBM), to model temporal motifs in temporal
graphs. Then we derive closed-form analytical expressions that
allow us to quickly calculate expected motif frequencies and their
variances in a given temporal network. Finally, we develop an effi-
cient model fitting method, so that for a given network, we quickly
fit the TASMB model and compute motif frequencies. We apply
our approach to two real-world networks: a network of financial
transactions and an email network. Experiments show that our
TASMB framework (1) accurately counts temporal motifs in tem-
poral networks; (2) easily scales to networks with tens of millions
of edges/transactions; (3) is about 50x faster than explicit motif
counting methods on networks of about 5 million temporal edges,
a factor which increases with network size.
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• Mathematics of computing → Probability and statistics;
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1 INTRODUCTION

Networks are ubiquitous models for real world systems, with ap-
plications ranging from social interactions to protein relationships
[15]. Many such systems are not static, but the edges are active
only at certain points in time.

The networks in which temporal edges appear and disappear
over time are called time-varying or temporal networks. Examples
of temporal networks include communication and transaction net-
works where each link is relatively short or instantaneous, such as
phone calls or financial exchanges.

Time dependent and temporal properties can be analyzed on
time-varying networks. Extracting recurring and persistent pat-
terns of interaction in temporal networks is of particular interest, as
it provides higher order information about the network transforma-
tion and functionality [3]. For example, an abundance of triangles
in financial transaction networks is associated with anomalies and
is identified as the signature of financial crisis [19].

Repeated patterns of interconnections between nodes occur-
ring at a significantly higher frequency than those in randomized
networks are called motifs [14]. Formally, a temporal motif is a
subgraph and an ordering on the temporal occurrences of its edges.
δ -instances of a temporal motif are instances in which all the tempo-
ral edges appear according to the ordering specified by the temporal
motif within a time window of length δ [12, 16]. Figure 1 illustrates
a small temporal network with δ -instances of a temporal motifM .

Despite the importance of temporal motifs, calculating motif fre-
quencies is computationally expensive and does not scale to large
real temporal networks. The reason is that it requires the following
two steps. First, identifying all instances of the static motifs in the
static graph induced by the temporal graph. Second, counting the
number of subsequences of temporal edges that correspond to a
temporal motif and occur within a time window of specific length.
Both these steps are computationally non-trivial and hard to imple-
ment. In addition, as the number of temporal motifs changes over
time, finding interesting temporal patterns involves iterative appli-
cation of the above process over many consecutive time windows.
This makes it impractical to scale to large real temporal networks.

Here we develop a fast and accurate model-based method for
counting temporal motifs in temporal networks. The heart of our
approach is that we develop a network model, which is fast to fit to
the data and allows us to obtain motif counts in constant time. In
particular, we first develop theTemporal Activity State Block Model
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Figure 1: (a) A temporal networkwith edges appearing over a

day, (b) amotifM with a temporal window of 12 hours, (c) ex-

amples ofM in the network, and d) triangles in the network

which are not δ-instances of M , either due to edge order or

time between first and last edge.

(TASBM). We then provide an efficient model parameter fitting
technique that scales linearly with the number of temporal edges in
the graph. And last, we develop a constant time analytical method
for computing expected motif frequencies and their variances in
the TASBM model.

We conduct experiments on both synthetic and real-world tem-
poral networks. Results on synthetic networks demonstrate that
our approach can accurately calculate the frequencies of temporal
motifs over time. At the same time, our method is about 50x faster
than explicit motif counting methods [16] on networks of about 5
million temporal edges. In our real-world experiments, we apply
our analytical model to a subset of a financial transaction network
with 118.7 thousand nodes and 2.9 million temporal edges. In addi-
tion, we apply our framework to a subset of an email network with
997 nodes and 307,869 edges, and in the extended version of the
paper we apply our framework to a phone call network with 1.2
million nodes and 21.9 million temporal edges. We show that we
can identify interesting temporal patterns based on the expected
motif counts calculated by our analytical framework.

2 RELATEDWORK

In this section, we briefly summarize the related work to dynamic
network models, counting temporal motifs, and estimating their
expected frequencies in temporal networks.

There is a body of work on modeling dynamic networks, mostly
by extending a static model to the dynamic setting [1, 4, 8, 20–22].
Among the existing methods, temporal extensions of stochastic
block models (SBMs) are the most relevant to our work.

Our work here differs in that we propose a simple model for
temporal motifs that allows for linear time fitting, and hence can
be maintained online.

Paranjape et. al. [16] proposed a framework for efficiently enu-
merating and counting the exact number of relatively small tem-
poral motifs which we use as a baseline in our experiments. Other
related methods include [5, 7, 12, 18] and those surveyed by [13].

This line of work aims to accurately count or approximate the ac-
tual numbers of motif instances in a graph. However, counting
temporal motifs is expensive and does not scale to large real tem-
poral networks. In contrast, our work provides an efficient way
to analytically compute the expected motif frequencies and their
variance in constant time, which leads to significant speedups.

Currently no analytical model of motifs in temporal graphs exists.
However, there have been several heuristic/empirical techniques
proposed, based on generating a large ensemble of randomized
temporal networks [2, 6, 9, 11]. Such approaches are extremely
computationally expensive because they requires generating and
materializing new networks and then performing motif counting
on each of them. In contrast, we develop the first analytical frame-
work for temporal motifs, which does not require expensive shuf-
fling/simulation of network ensembles, and scales well to large
temporal networks.

3 NETWORK ACTIVITY MODEL

In this section we describe our Temporal Activity State Block Model
(TASBM). Our goal is to construct a model that captures different
activity levels of groups of nodes in a temporal network and can be
updated efficiently and thus maintained online. As a result, it can
be used to describe the network before the full edge set is known.
We note that TASBM only aims to capture activity levels of nodes
in a temporal network and not the underlying network structure.
Hence, it can be applied to various types of networks, including
random, power-law, scale-free, and other network models.

We first provide formal definitions of temporal graphs and tem-
poral edges. Formally, a temporal graphG = (V ,E) can be viewed as
a sequence of static directed graphs over the same (static) set V of
n = |V | nodes and the set E ofm = |E | temporal edges. Each temporal

edge is a timestamped ordered pair of nodes (ei = (u,v), ti ), i ∈ [m],
where u,v ∈ V and ti ∈ R is the timestamp at which the edge
arrives. For example, in a phone call network, each temporal edge
includes the caller, u, the receiver, v , and the time, ti , at which the
call was placed. Multiple temporal edges between the same pair
of nodes u and v with different timestamps can exist. We assume
that the timestamps ti are unique so that the temporal edges may
be strictly ordered. However, our methods do not rely on this as-
sumption and can easily be adapted to the case where timestamps
are not unique, e.g. by considering each possible ordering of edges
with a shared timestamp or selecting an order at random.

3.1 Temporal Activity State Block Model

We now propose our Temporal Activity State BlockModel (TASBM),
which is a temporal variant of the stochastic block model. The
stochastic block model (SBM) [4] on static networks is defined as
dividing the nodes into communities, or blocks, such that a higher
proportion of the possible edges within a block occur, compared to
those between blocks. TASBM partitions the nodes of the network
based on their activity levels, which we define as the rates at which
in- and out- edges arrive to nodes. This means that a particular
activity state consists of a set of vertices with similar temporal

activity, meaning nodes within each activity state all have similar
rates of out- and in- edge arrivals.
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Specifically, TASBM considers partitioning the nodes into: (1)
R = {1, · · · ,Cin }, a partitioning of nodes based on their activity
level for receiving in-links; and (2) S = {1, · · · ,Cout }, a partitioning
of nodes based on their activity level for sending out-links. Within
the ith time interval of length T , i.e., for all t ∈ [iT , (i + 1)T ), every
node u in the network belongs to (1) a partition ru (t) ∈ R based
on its activity level for receiving in-links in the ith time interval;
and (2) a partition su (t) ∈ S based on its activity level for sending
out-links in the ith time interval. Nodes in the same partition have
similar rate of sending or receiving temporal edges.

For every t ∈ [iT , (i + 1)T ), we model partition assignments
ru (t) ∈ R, and su (t) ∈ S for node u ∈ V as independent draws
from Multinomial distributions parameterized by πR (t) ∈ RC

in

and πS (t) ∈ RC
out

.
In addition, we consider a matrixθθθ (t) ∈ RC

out×C in
such that θsr

denotes the rate of temporal edges from nodes in partition s ∈ S to
the nodes in partition r ∈ R for all t ∈ [iT , (i + 1)T ). We model the
temporal edges between every pair (u,v) of nodes as independent
Poisson draws from Poisson(θsu rv (t)), where θsu rv (t) = su (t)·rv (t).
The choice of Poission process enable TASBM to model the arrival
of temporal edges with various rates in different time intervals.
Formally, every temporal edge (ei = (u,v), ti ) from the node u in
out-link partition su (t) to the node v in in-link partition rv (t) is
an independent Poisson draw. I.e., ei = (u,v) ∼ Poisson(θsu rv (t)).
Each activity state in TASBM consists of nodes that are in the same
out-link and in-link partitions. This results in C = Cout × Cin

activity states.
As nodes change their activity level over time, we assign individ-

ual nodes to different activity states. Similarly, we model arrivals
of temporal edges between each pair of nodes as a Poisson process
with a constant parameter on every time interval of length T . Note
that the rates of the Poisson processes can vary for each time win-
dow, and hence TASBM is able to robustly and efficiently model the
bursty arrival of temporal edges that is observed in real temporal
networks [10].

3.2 Parameter Inference in TASBM

For all pairs of vertices (u,v), the Poisson process modeling tem-
poral edges between u and v will be parameterized by a constant
θsu rv (t) for all t ∈ [iT , (i+1)T ). For every time interval, we calculate
the posterior model parameters πr (t),πs (t) and θ (t) as:

πR (t) =
nR (t)

n
, πS (t) =

nS (t)

n
, θsr (t) =

msr (t)

ns (t) · nr (t)
,

where nR (t) ∈ RC
in

is the number of nodes in different partitions
of R, nS (t) ∈ RC

out
is the number of nodes in different partitions

of S , and msr (t) is the number of temporal edges from nodes in
partition s ∈ S to nodes in partition r ∈ R, for t ∈ [iT , (i + 1)T ).
Intuitively, the probability of a node belonging to a partition is
equal to the fraction of nodes in that partition for t ∈ [iT , (i + 1)T ).
Furthermore, the probability of an edge occurring between nodes
in partition s ∈ S and partition r ∈ R at t ∈ [iT , (i + 1)T ) is equal to
the number of temporal edges between nodes in s and r , over the
number of all possible edges between nodes in s and r , within the
same interval. Model inference can be done in at most two passes
over the edges and in practice, can be well-approximated in one

pass. Thus, this method is extremely scalable and runs in time linear
in the number of temporal edges in the graph.

4 ANALYTICAL MODEL FOR TEMPORAL

MOTIFS

Having defined the model, our next task is to “count” the expected
number of temporal motifs. In fact, we do not want to count them as
counting would mean materializing/sampling many networks from
the model and then running expensive motif counting algorithms.
Rather, we will analytically derive closed-form expressions that
allow us to quickly calculate the expected values and variance of
the motif counts.

We first provide formal definitions of temporal motifs and δ -
instances of temporal motifs. We then summarize our closed-form
solutions to calculate the expectation and variance of the number of
motif instances. Finally, we provide the computational complexity
of our method and show that it can easily scale to large real-world
temporal networks with millions of temporal edges.

4.1 Temporal Network Motifs

Formally, a temporal motifM defines a particular sequence of in-
teractions between a set of nodes over time.

Definition 1 (temporal motif). A k-node z-edge temporal

motifM = (GM ,≺M ) consists of a graph GM = (VM ,EM ), such that

|VM | =k and |EM | = z, and a strict total ordering ≺M on the edges

EM . We index EM = {e ′1,· · ·, e
′
z }, such that e ′1 ≺M e ′2 ≺M · · · ≺M e ′z .

Note that multiple interactions between the same pair of nodes
may occur in the sequence defined byM , but each edge is indexed
and ordered uniquely. In a dynamic network, any subgraph of a
temporal graph is a δ -instance of a temporal motif M if 1) it is
isomorphic toGM , 2) the set of its temporal edges follows the same
ordering imposed byM , and 3) it occurs within a time window of
δ .

Definition 2 (δ -Instance of a temporal motif). A tem-

poral subgraph Gs = (Vs ,Es ), with a set of temporal edges Es =
{(e1, t1), · · · , (ez , tz )} is a δ -instance of a temporal motifM if 1) iso-

morphism: there exist an edge-preserving bijection f : Vs → VM
between nodes of the subgraph and nodes of the motif such that

∀e=(u,v)∈Es (f (u), f (v)) ∈ EM ; 2) temporal ordering: the edges of

the temporal motif occur according to the ordering ≺M , i.e., for the

ordered sequence f (eh ) ≺M f (ei ) ≺M · · · ≺M f (ej ) we get a set of
strictly increasing timestamps th < ti < · · · < tj ; and 3) temporal

window: all the edges in Es occur within δ time, i.e. tj − th ≤ δ .

Here, our goal is to derive the expected number (and the variance)
of δ -instances of a given temporal motif in a time-varying network.

4.2 Expected Motif Frequencies

Next we provide a closed form solution for the expected δ -instances
of temporal motifs in TASBM networks. Derivation details can be
found in the full version of the paper [17]. To calculate the expected
number of δ -instances of a temporal motif over a time window of
length T , we need to calculate the expected number of subgraphs
Gs = (Vs ,Es ) satisfying the conditions specified in Definition 2.
The following Theorem summarizes our main theoretical results.
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Theorem 1. The expected number of δ -instances of a k-node z-
edge temporal motifM in a network with a setV of nodes modeled by

a TASBM withC states during a time interval [t0, t0 +T ) forT ≤ δ is

E[NM |T ≤ δ ] = E[NSk,zV ,C
] · Pr (t0 ≤ t1 < t2 < ... < tz < t0 +T ),

where the first term is the expected number of k-node z-edge isomor-

phic subgraphs to the motif graph GM in a temporal network with V
nodes modeled by a TASBM with C states; and the second term is the

probability that timestamps of the edges in each isomorphic subgraph

occur in the order ≺M specified by the motif in a time window of

length δ .

We next summarize how the two terms can be computed. Let
AC,k denote the set of activity state assignments for a set of k
nodes in TASBM, so |AC,k | ≤ Ck . Let nc be the number of node in
activity state c ∈ [C]. For some activity state assignmentA ∈ AC,k ,
let ncA be the number of nodes in A assigned to activity state c .

Let P(nc ,ncA) be the number ofncA-permutations ofnc , so P(nc,ncA)=(nc
ncA

)
ncA!. Note that

∏
c ∈[C] P(n

c ,ncA) is constant for every activity
state assignment A ∈ AC,k .

Lemma 1. The expected number of k-node subgraphs isomorphic

to the motif subgraph GM (with edges EM ) in a Temporal Activity

State Block Model (TASBM) during a time interval [t0, t0 + T ) for
T ≤ δ is

E[NSk,zV ,C
|t ∈ [t0, t0 + δ )] =∑
A∈AC,k

∏
c ∈[C]

P(nc ,ncs )
∏

u,v ∈Vs |R(Vs )=A,
(f (u),f (v))∈EM

∫ t0+T

t0
θsu rv (t)dt ,

where R(Vs ) = A is the set of all k-node subgraphs consistent with
activity state assignment A.

Next, we consider how to compute the second term in theo-
rem 1. For ease of notation, we subsequently assume that for each
subgraph GS and corresponding bijection f : Vs → VM , we have
f (e1) ≺M f (e2) ≺M · · · ≺M f (ez ). Therefore, we need to calculate
the probability that t0 ≤ t1 < t2 < · · · < tz < t0 + δ .

The marginal probability for a temporal edge e = (u,v) from
activity state su to activity state rv to occur at time t in the time
window [t0, t0 +T ) is

Θ
[t0,t0+T )
e=(u,v) (t) =

θsu rv (t)∫ t0+T
t0

θsu rv (t
′)dt ′

.

Lemma 2. The probability that temporal edges of a subgraph

G(Vs ,Es ) occur in the order ≺M specified by motif M in an inter-

val [t0, t0 +T ) is

Pr (t0 ≤ t1 < t2 < ... < tz < t0 +T ) =∫ t0+T

t0
Θ
[t0,t0+T )
e1 (t1)

∫ t0+T

t1
Θ
[t0,t0+T )
e2 (t2) · · ·∫ t0+T

tz−1
Θ
[t0,t0+T )
ez (tz )dtzdtz−1dtz−2...dt1.

We next extend our result to the scenario where T > δ . Here,
the δ -instances of a temporal motif may have at least one edge
occurring in [t0, t0+T − δ ) or they may have all edges occurring

in [t0+T −δ , t0+T ). Hence, to calculate the expected number of
instances in T , we take the sum over these cases:

Theorem 2. The expected number of δ -instances of a temporal

motifM in a Temporal Activity State Block Model (TASBM) during a

time interval [t0, t0 +T ) for T > δ is

E[NM |T > δ ] = E[NM |T = δ ] + E[NM |T >δ , t1< t0 +T −δ ],

where t0 and t1 are the timestamps of the first and second edges of

the motif instance.

4.3 Variance of Motif Counts

We next discuss how we can use our framework for deriving the
variance of the number of motif instances V[NM ]. I.e., V[NM ] =

E[N 2
M ] − E[NM ]2. While we can simply calculate E[NM ]2 using

Theorems 1 and 2, computing E[N 2
M ] involves calculating the ex-

pected number of pairs of δ -instances of motifM . A pair of instances
can overlap in up to k vertices and up to z temporal edges.

Let S1, S2 be a pair of of δ -instances of M . The time interval
that the edges ES1 ∪ ES2 of both instances may occur is within an
interval [t0+δ , t0+2δ ), depending on which temporal edges, if any,
are shared. We denote by Eδ and Eδ ′ expected δ - and δ ′-instances
of motifM , respectively. Then by linearity of expectation, we get

E[N 2
M ] =

∑
(S1,S2):

ES1∩ES2=∅

Eδ [NS1 |t ∈ [t0, t0 +T ])Eδ [NS2 |t ∈ [t0, t0+T )]+

∑
(S1,S2):

ES1∩ES2,∅

∑
δ ′∈[t0+δ,t0+2δ )

Eδ ′[NS1∪S2 |t ∈ [t0, t0+T )].

4.4 Computational Complexity

The computational complexity of our method to compute the ex-
pected number of δ -instances of a k-node z-edge temporal motif
in a TASBM with C activity states is O(Ck ) where C is the number
of blocks (usually < 10) and k is motif size (usually < 10), and
assuming the cost of computing each integral is O(1). Notice the
motif size k is constant relative to the size of the network and in
most cases the number of blocks C can be as well, so we get a com-
putational complexity of motif counting to be O(1). Due to its low
computational complexity, our analytical method can easily scale
to large real-world temporal networks with millions of temporal
edges.

5 EXPERIMENTS

In this section, we present the results of applying our framework 1 to
calculate the expected motif frequencies in synthetic and real-world
temporal networks. We compare the expected number of motif
instances to the number of observed motif instances counted by
the method of [16], which is the most efficient method for counting
the exact number of (relatively small) temporal motifs. We focus on
expected counts for motifs with 2 or 3 nodes and 3 edges (Figure 2),
and note that our analytical framework scales well to calculate the
expected frequencies for larger motifs.

1Our C++ implementation of the model can be found at:
https://github.com/aporter468/motifsanalyticalmodel
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Figure 2: All 2- and 3- node motifs with 3 edges, shaded by

main structural feature: triangles (A1-4, B1-4; grey), Two-

Node (A5,6 B5,6; green), Reciprocated edge (C1-6,D1-6; red),

and Double edge (E1-6,F1-6; blue).

Table 1: MSRE for varying number of groups C used by

TASBM using T =10K , δ =5K . The values are calculated over

30 networks generated with 300 nodes and Cout =Cin =
√
C.

C Triangles Two Vertex Reciprocated Double Edge

1 0.229 0.381 0.147 0.381
4 1.99e-05 4.35e-05 2.84e-05 1.69e-05
9 1.89e-05 4.26e-05 2.78e-05 1.60e-05
16 1.04e-05 3.59e-05 2.25e-05 7.90e-06
25 1.04e-05 3.59e-05 2.25e-05 7.91e-06

5.1 Accuracy on Synthetic Networks

Our synthetic networks are generated according to the TASBMwith
C=Cout×Cin activity states, for varying number of out-edge rates,
Cout , and in-edge rates, Cin . Each node is assigned to one of the C
activity states chosen uniformly at random. We consider a different
rate of edge arrivals between any pair of activity states. For each
pair of nodes (u,v), temporal edges are then sampled according to
a Poisson process with the rate θsu rv .

Accuracy of Model Inference. We first show that we can accu-
rately infer the TASBM parameters used to generate the synthetic
network and thus accurately use our analytical approach to de-
termine expected number of motifs. We measure accuracy of our
model over a set of r synthetic networks, using Mean Squared Rel-

ative Error: MSRE = 1
r
∑r
i=1

(
N i
M−NM

N i
M

)2
where N i

M is the actual

number of motif instances counted using the method of [16] in the
i-th generated network, and NM is the expected motif frequency
calculated by our framework.

Table 1 shows MSRE for 30 networks with 300 nodes generated
using TASBM withCout =Cin . For generating out-edges, we divide
the nodes to partitions of size |S | =10, 30, 60, 80, and 120, with out-
rates of 1e-7, 1e-6, 1e-5, 1e-4, and 1e-3. For generating in-edges, we

have all the nodes in one partition, i.e. |R | = 1, hence having in-rate
of 11111e-3. Generated networks have an average of 384,580 edges.
To infer the parameters, we vary the number of activity states in
our framework for calculating the expected motif frequencies from
Cout =Cin =1 to Cout =Cin =5 and used T =10K and δ =5K time
units. The error quickly vanishes when the model is allowed to
use a higher number of activity states, but the improvements from
increasing the number of activity states quickly diminish. Using
onlyCout =Cin =2 partitions to calculate the expected frequencies,
we get almost the same accuracy as using Cout =Cin =5 partitions.
This indicates that while real data is likely to have a large variety
of node activity levels, a relatively small value of C can be used to
calculate accurate expected motif counts.

Robustness of Model to Hyper-Parameter Choices. Next we
investigate robustness of ourmethod to choices of hyper-parameters.
Figure 3 compares MSRE for 30 networks with 100 nodes generated
using TASBM with Cout =Cin =3. Here, for generating out-links
we divide the nodes into partitions of sizes 10, 30, and 60 and use
the initial out-rates of 5e-6, 1e-4, and 1e-3, respectively. The rates
were chosen to be sufficiently distinct and to generate sufficiently
large edge volumes without motif counts exceeding the maximum
capacity of the motif counter from [16]. Figure 3 shows the accuracy
of our model as average degree, motif window δ , and time window
T are varied. In all cases, MSRE converges to zero as the varied
parameter is increased.

5.2 Run Time Compared to Motif Counting

We next show how the run time of our analytical model compares
to the motif counting methods in [16] for all 2- and 3- node mo-
tifs with 3 edges. We measure the entire execution time of our
implementation, including inference of the TASBM parameters and
computation of the 36 expected motif frequencies. We compare
this to the execution time of motif counting as measured by the
implementation in [16]2. Run times were measured on synthetic
networks generated using C = 36 for values of T ranging from 50
thousand to 28 million, with corresponding edge counts ranging
from 9 thousand to 5 million. As shown in Figure 6, on smaller
graphs our analytical model takes slightly longer to execute com-
pared to motif counting. However, the run time of our model hardly
grows as networks increase in size, while the computational cost
of motif counting grows exponentially with the number of tempo-
ral edges. In particular, for larger network of 5 million temporal
edges, our method is about 50x faster than explicit motif counting
methods.

5.3 Accuracy on Real-World Networks

In our real-world experiments, we apply TASBM to a financial
transaction network and an email network (additional experiments
on a phone call network can be found in the full verison of the paper).
We show that our model matches the trends in motif counts in the
real data. Since we are interested in modeling temporal dynamics
of the networks, we preprocess the financial transaction and email
networks by removing low-degree (< 10% the largest degree) nodes
and focusing on the largest connected community.

2Code found here: http://snap.stanford.edu/temporal-motifs/code.html
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(a) (b) (c)

Figure 3: MSRE for the expected motif counts over 30 synthetic networks with 100 nodes for varying (a) average degree with

δ = 5K , T = 10K , (b) motif window δ , with T = 10K , and (c) time window T , with δ = 5K . See Figure 2 for motif names.

Figure 4: Financial transaction network, δ =T =90 days. Mo-

tifs F1 and A6. Notice themodel accurately calculate themo-

tif frequencies over time.

Financial Transaction Network. In our first real-world exper-
iment, we applied our framework to model the motif counts in a
small European country’s financial transaction network. The data
is collected from the entire country’s transaction log for all trans-
actions larger than 50K Euros over 10 years from 2008 to 2018, and
includes 118,739 nodes and 2,982,049 temporal edges. As edges do
not occur on weekends, we do not count them toward values of T
and δ or in computing edge rates. Figure 4 compares the ground-
truth motif counts and the values computed by our model with
δ = T = 90 weekdays for motifs F1 and A6. Notice that TASBM is
able to accurately calculate the motif counts over time. It is notable
that in September of 2011, when a financial crisis hits the country,
the number of modeled motifs dropped significantly. It can also be
observed that the network starts to recover around March 2017.

Email Network. Wenext applied ourmodel to a network of emails
exchanged within a European research institution. We use the set
of 307,869 temporal edges over 977 nodes, which appear in the
500 days beginning in October of 2003. We modeled and counted
frequencies of 2− and 3− node motifs with 3 edges at a time scale
of δ = T = 50 days with 10 intervals. As shown in Figure 5 our
model follows the trends in motif counts on the entire network.

6 DISCUSSION

We have developed a fast and accurate model-based method to
determine the expected number as well as the variance of motifs
in a temporal network. We developed an efficient parameter in-
ference technique as well as provided closed form solutions for
the expected motif frequencies in the general case where temporal
edges appear with distinct rates between different pairs of nodes
in various activity states, and the arrival rate of temporal edges

Figure 5: Email network, δ =T =50 days. Motifs F1 and A6.

Notice the model accurately tracks motif counts over time.

(a) (b)

Figure 6: Average run time of the TASBM model implemen-

tation and motif counting algorithm of [16] on synthetic

graphs of increasing size, shown on (a) linear and (b) loga-

rithmic scales. The steps in run time visible in (b) for the

TASBM implementation correspond to points at which the

value of C is increased.

between every pair of activity states may change over time. We
demonstrated the effectiveness of our Temporal Activity State Block
Model combined with our analytical model of temporal motifs for
computing expected motif frequencies in temporal networks.
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