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Abstract
Training machine learning models on massive
datasets incurs substantial computational costs.
To alleviate such costs, there has been a sustained
effort to develop data-efficient training methods
that can carefully select subsets of the training
examples that generalize on par with the full train-
ing data. However, existing methods are limited
in providing theoretical guarantees for the qual-
ity of the models trained on the extracted subsets,
and may perform poorly in practice. We propose
ADACORE, a method that leverages the geome-
try of the data to extract subsets of the training
examples for efficient machine learning. The key
idea behind our method is to dynamically approx-
imate the curvature of the loss function via an
exponentially-averaged estimate of the Hessian to
select weighted subsets (coresets) that provide a
close approximation of the full gradient precon-
ditioned with the Hessian. We prove rigorous
guarantees for the convergence of various first
and second-order methods applied to the subsets
chosen by ADACORE. Our extensive experiments
show that ADACORE extracts coresets with higher
quality compared to baselines and speeds up train-
ing of convex and non-convex machine learning
models, such as logistic regression and neural net-
works, by over 2.9x over the full data and 4.5x
over random subsets1.

1. Introduction
Large datasets have been crucial for the success of modern
machine learning models. Learning from massive datasets,
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however, incurs substantial computational costs and be-
comes very challenging (Asi & Duchi, 2019; Strubell et al.,
2019; Schwartz et al., 2019). Crucially, not all data points
are equally important for learning (Birodkar et al., 2019;
Katharopoulos & Fleuret, 2018; Toneva et al., 2018). While
several examples can be excluded from training without
harming the accuracy of the final model (Birodkar et al.,
2019; Toneva et al., 2018), other points need to be trained on
many times to be learned (Birodkar et al., 2019). To improve
scalability of machine learning, it is essential to theoretically
understand and quantify the value of different data points on
training and optimization. This allows identifying examples
that contribute the most to learning and safely excluding
those that are redundant or non-informative.

To find essential data points, recent empirical studies used
heuristics such as the fully trained or a smaller proxy
model’s uncertainty (entropy of predicted class probabil-
ities) (Coleman et al., 2020), or forgetting events (Toneva
et al., 2018) to identify examples that frequently transition
from being classified correctly to incorrectly. Others employ
either the gradient norm (Alain et al., 2015; Katharopoulos
& Fleuret, 2018) or the loss (Loshchilov & Hutter, 2015;
Schaul et al., 2015) to sample important points that reduce
variance of stochastic optimization methods. Such methods,
however, do not provide any theoretical guarantee for the
quality of the trained model on the extracted examples.

Quantifying the importance of different data points with-
out training a model to convergence is very challenging.
First, the value of each example cannot be measured with-
out updating the model parameters and measuring the loss
or accuracy. Second, as the effect of different data points
changes throughout training, their value cannot be precisely
measured before training converges. Third, to eliminate
redundancies, one needs to look at the importance of indi-
vidual data points as well as the higher-order interactions
between data points. Finally, one needs to provide theoreti-
cal guarantees for the performance and convergence of the
model trained on the extracted data points.

Here, we focus on finding data points that contribute the
most to learning and automatically excluding redundancies
while training a model. A practical and effective approach
is to carefully select a small subset of training examples
that closely approximate the full gradient, i.e., the sum of
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the gradients over all the training data points. This idea
has been recently employed to find a subset of data points
that guarantee convergence of first-order methods to near-
optimal solution for training convex models (Mirzasoleiman
et al., 2020). However, modern machine learning models
are high dimensional and non-convex in nature. In such
scenarios, subsets selected based on gradient information
only capture gradient along the sharp dimensions, and lack
diversity within groups of examples with similar training
dynamics. Hence, they representative large groups of exam-
ples with a few data points with substantial weights. This
introduces a large error in the gradient estimation and result
in first-order coresets to perform poorly.

We propose ADAptive second-order COREsets (ADACORE)
that incorporates the geometry of the data to iteratively se-
lect weighted subsets (coresets) of training examples that
captures the gradient of the loss preconditioned with the Hes-
sian, by maximizing a submodular function. Such subsets
capture the curvature of the loss landscape along different
dimensions, and provide convergence guarantees for first
and second-order methods. As a naive use of Hessian at
every iteration is prohibitively expensive for overparame-
terized models, ADACORE relies on Hessian-free methods
to extract coresets that capture the full gradient precondi-
tioned by the Hessian diagonal. Furthermore, ADACORE
exponentially averages first and second-order information in
order to smooth the noise in the local gradient and curvature
information.

We first provide a theoretical analysis of our method and
prove its convergence for convex and non-convex functions.
For a β-smooth and α-strongly convex loss function and a
subset S selected by ADACORE that estimates the full pre-
conditioned gradient by an error of at most ϵ, we prove that
Newton’s method and AdaHessian applied to S with con-
stant stepsize η = α/β converges to a βϵ/α neighborhood
of the optimal solution, in exponential rate. For non-convex
overparameterized functions such as deep networks, we
prove that for a β-smooth and µ-PL∗ loss function satisfy-
ing ∥∇L(w)∥2/2 ≥ µL(w), (stochastic) gradient descent
applied to subsets found by ADACORE has similar training
dynamics to that of training on full data, and converges at
a exponential rate. In both cases, ADACORE leads to a
speedup by training on smaller subsets.

Next, we empirically study the examples selected by ADA-
CORE during training. We show that as training continues,
ADACORE selects more uncertain or forgettable samples.
Hence, ADACORE effectively determines the value of every
learning example, i.e., when and how many times a sample
needs to be trained on, and automatically excludes redundant
and non-informative instances. Importantly, incorporating
curvature in selecting coresets allows ADACORE to quantify
the value of training examples more accurately, and find

fewer but more diverse samples than existing methods.

We demonstrate the effectiveness of various first and second-
order methods, namely SGD with momentum, Newton’s
method and AdaHessian, applied to ADACORE for train-
ing models with a convex loss function (logistic regres-
sion) as well as models with a non-convex loss functions,
namely ResNet-20, ResNet-18, and ResNet-50, on MNIST,
CIFAR10, (Imbalanced) CIFAR100, and BDD100k (Deng,
2012; Krizhevsky et al., 2009; Yu et al., 2020). Our experi-
ments show that ADACORE can effectively extract crucial
samples for machine learning, resulting in higher accuracy
while achieving over 2.9x speedup over the full data and
4.5x over random subsets, for training models with convex
and non-convex loss functions.

2. Related Work
Data-efficient methods have recently gained a lot of interest.
However, existing methods often require training the origi-
nal (Birodkar et al., 2019; Ghorbani & Zou, 2019; Toneva
et al., 2018) or a proxy model (Coleman et al., 2020) to
convergence, and use features or predictions of the trained
model to find subsets of examples that contribute the most
to learning. While these results empirically confirm the
existence of notable semantic redundancies in large datasets
(Birodkar et al., 2019), such methods cannot identify the
crucial subsets before fully training the original or the proxy
model on the entire dataset. Most importantly, such methods
do not provide any theoretical guarantees for the model’s
performance trained on the extracted subsets.

There have been recent efforts to take advantage of the dif-
ference in importance among various samples to reduce the
variance and improve the convergence rate of stochastic
optimization methods. Those that are applicable to overpa-
rameterized models employ either the gradient norm (Alain
et al., 2015; Katharopoulos & Fleuret, 2018) or the loss
(Loshchilov & Hutter, 2015; Schaul et al., 2015) to compute
each sample’s importance. However, these methods do not
provide rigorous convergence guarantees and cannot pro-
vide a notable speedup. A recent study proposed a method,
CRAIG, to find subsets of samples that closely approximate
the full gradient, i.e., sum of the gradients over all the train-
ing samples (Mirzasoleiman et al., 2020). CRAIG finds the
subsets by maximizing a submodular function, and provides
convergence guarantees to a neighborhood of the optimal so-
lution for strongly-convex models. GRADMATCH (Killam-
setty et al., 2021) proposes a variation to address the same
objective using orthogonal matching pursuit (OMP) (Kil-
lamsetty et al., 2021), and GLISTER Killamsetty et al. (2020)
aims at finding subsets that closely approximate the gradient
of a held-out validation set. However, GLISTER requires
a validation set, and GRADMATCH uses OMP which may
return subsets as little as 0.1% of the intended size. Such
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subsets are then augmented with random samples. In con-
trast, our method successfully finds subsets of higher quality
by preconditioning the gradient by the Hessian information.

3. Background and Problem Setting
Training machine learning models often reduces to mini-
mizing an empirical risk function. Given a not-necessarily
convex loss L, one aims to find model parameter vector w∗
in the parameter space W that minimizes the loss L over
the training data:

w∗ ∈ argminw∈WL(w), (1)

L(w) :=
∑
i∈V

li(w), li(w) = l(f(xi, w), yi).

Here, V = {1, . . . , n} is an index set of the training data,
w ∈ Rd is the parameters of the model f being trained, and
li is the loss function associated with training example i ∈ V
with feature vector xi ∈ Rd and label yi. We denote the gra-
dient of the loss w.r.t. model parameters by g = ∇L(w) =
1

|V |
∑

i∈V
∂li
∂w , and the corresponding second derivative (i.e.,

Hessian) by H = ∇2L(w) = 1
|V |

∑
i∈V

∂2li
∂wj∂wk

.

First order gradient methods are popular for solving Problem
(1). They start from an initial point w0 and at every iteration
t, step in the negative direction of the gradient gt multiplied
by learning rate ηt. The most popular first-order method
is Stochastic Gradient Descent (SGD) (Robbins & Monro,
1951):

wt+1 = wt − ηtvt, vt = gt, (2)

SGD is often used with momentum, i.e., vt =
βvt−1 + (1− β)gt where β ∈ [0, 1], accelerating it in
dimensions whose gradients point in the same directions
and dampening oscillations in dimensions whose gradients
change directions (Qian, 1999). For larger datasets,
mini-batched SGD is used, where vt =

1
m

∑m
j=1 li(j)t

(wt),
where m is the size of the mini-batch of datapoints
whose indices {i(1)t , . . . , i

(m)
t } are uniformly drawn with

replacement from V , at each iteration t.

Second-order gradient methods rely on the geometry of the
problem to automatically rotate and scale the gradient vec-
tors, using the curvature of the loss landscape. In doing so,
second-order methods can choose a better descent direction
and automatically adjust the learning rate for each param-
eter. Hence, second-order methods have superior conver-
gence properties compared to first-order methods. Newton’s
method (Bertsekas, 1982) is a classical second order method
that preconditions the gradient vector with inverse of the
local Hessian at every iteration, H−1

t :

wt+1 = wt − ηtH
−1
t gt. (3)

As inverting the Hessian matrix requires quadratic mem-
ory and cubic computational complexity, several methods
approximate Hessian information to significantly reduce
time and memory complexity (Nocedal, 1980; Schaul et al.,
2013; Martens & Grosse, 2015; Xu et al., 2020). In particu-
lar, AdaHessian (Yao et al., 2020) directly approximates the
diagonal of the Hessian and relies on exponential moving
averaging and block diagonal averaging to smooth out and
reduce the variation of the Hessian diagonal.

4. ADACORE: Adaptive Second order Coresets
The key idea behind our proposed method is to leverage
the geometry of the data, precisely the curvature of the loss
landscape, to select subsets of the training examples that
enable fast convergence. Here, we first discuss why core-
sets that only capture the full gradient perform poorly in
various scenarios. Then, we show how to incorporate curva-
ture information in subset selection for training convex and
non-convex models with provable convergence guarantees—
ameliorating problems of first-order coresets.

4.1. When First-order Coresets Fail

First-order coreset methods iteratively select weighted sub-
sets of training data that closely approximate the full gradi-
ent at particular values of wt, e.g. beginning of every epoch
(Killamsetty et al., 2021; 2020; Mirzasoleiman et al., 2020):

S∗
t = argmin

S⊆V,γt,j≥0 ∀j
|S| s.t. ∥gt −

∑
j∈S

γt,jgt,j∥ ≤ ϵ, (4)

where gt,j and γt,j > 0 are the gradient and the weight
of element j in the coreset S. Such subsets often perform
poorly for high-dimensional and non-convex functions, due
to the following reasons: (1) the scale of gradient g ∈
Rd is often different along different dimensions. Hence,
the selected subsets estimate the full gradient closely only
along dimensions with a larger gradient scale. This can
introduce a significant error in the optimization trajectory
for both convex and non-convex loss functions; (2) the loss
functions associated with different data points li may have
similar gradients but very different curvature properties at
a particular wt. Thus, for a small δ > 0, the gradients
∇li(wt + δ) at wt + δ may be totally different than the
gradients∇li(wt) at wt. Consequently, subsets that capture
the gradient well at at a particular point during training
may not provide a close approximation of the full gradient
after a few gradient updates, e.g., mini-batches. This often
results in inferior performance, particularly when selecting
larger subsets for non-convex loss functions; (3) subsets
that only capture the gradient, select one representative
example with a large weight from data points with similar
gradients at wt. Such subsets lack diversity and cannot
distinguish different subgroups of the data. Importantly, the
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large weights introduce a substantial error in estimating the
full gradient and result in a poor performance, as we show
in Fig. 7 in the Appendix.

4.2. Adaptive Second-order Coresets

To address the above issues, our main idea is to select sub-
sets of training examples that capture the full gradient pre-
conditioned with the curvature of the loss landscape. In
doing so, we normalize the gradient by multiplying it by the
Hessian inverse, H−1g, before selecting the subsets. This
allows selecting subsets that (1) can capture the full gradient
in all dimensions equally well; (2) contain a more diverse
set of data points with similar gradients, but different curva-
ture properties; and (3) allow adaptive first and second-order
methods trained on the coresets to obtain similar training
dynamics to that of training on the full data.

Formally, our goal in ADACORE is to adaptively find the
smallest subset S ⊆ V and corresponding per-element
weights γj > 0 that approximates the full gradient pre-
conditioned with the Hessian matrix, with an error of at
most ϵ > 0 at every iteration t, I.e.,:

S∗
t = argmin

S⊆V,γt,j≥0 ∀j
|S|, s.t. (5)

∥H−1
t gt −

∑
j∈S

γt,jH
−1
t,j gt,j∥ ≤ ϵ,

where H−1
t gt and

∑
j∈S γt,jH

−1
t,j gt,j are preconditioned

gradients of the full data and the subset S.

4.3. Scaling up to Over-parameterized Models

Directly solving the optimization problem (5) requires ex-
plicit calculation and storage of the Hessian matrix and its
inverse. This is infeasible for large models such as neu-
ral networks. In the following, we first address the issue
of calculating the inverse Hessian at every iteration. Then,
we discuss how to efficiently find a near-optimal subset to
estimates the full preconditioned gradient by solving Eq. (5).

Approximating the Gradients For neural networks,
derivative of the loss L w.r.t. the input to the last layer
(Katharopoulos & Fleuret, 2018; Mirzasoleiman et al., 2020)
or the penultimate layer (Killamsetty et al., 2021) can cap-
ture the variation of gradient norm well. We extend these
results (Appendix B.2) to show that the normed difference
preconditioned gradient difference between data points can
be approximately efficiently bound by:

∥H−1
i gi −H−1

j gj∥ ≤ (6)

c1∥Σ′
L(z

(L)
i )(H−1

i gi)
(L) − Σ′

L(z
(L)
j )(H−1

j gj)
(L)∥+ c2,

where Σ′
L(z

(L)
i )(H−1

i gi)(L) is gradient preconditioned by
the inverse of the Hessian of the loss w.r.t. the input to the

last layer for data point i, and c1, c2 are constants. Since the
upper bound depends on the weight parameters, we need to
update our subset S using ADACORE during the training.

Calculating the last layer gradient often requires only a for-
ward pass, which is as expensive as calculating the loss, and
does not require any extra storage. For example, having
a softmax as the last layer, the gradients of the loss w.r.t.
the ith input to the softmax is pi − yi, where pi is the ith

output the softmax and y is the one-hot encoded label with
the same dimensionality as the number of classes. Using
this low-dimensional approximation ĝi for the gradient gi
we can efficiently calculate the preconditioned gradient for
every data point. For non-convex functions, the local gra-
dient information can be very noisy. To smooth out the
local gradient information and get a better approximation of
the global gradient, we apply exponential moving average
with a parameter 0 < β1 to the low-dimensional gradient
approximations:

gt =
(1− β1)

∑t
i=1 β

t−i
2 ĝi

1− βt
2

. (7)

Approximating the Hessian Preconditioner Since it is
infeasible to calculate, store, and invert the full Hessian
matrix every iteration, we use an inexact Newton method,
where an approximate Hessian operator is used instead of
the full Hessian. To efficiently calculate the Hessian di-
agonal, we first use the Hessian-Free method (Yao et al.,
2018) to compute the multiplication between Hessian Ht

and a random vector z with Rademacher distribution. To
do so, we backpropagate on the low-dimensional gradient
estimates multiplied by z to get Htz = ∂ĝT

t z/∂wt. Now,
we can use the Hutchinson’s method of obtains a stochastic
estimate of the diagonal of the Hessian matrix as follows:

diag(Ht) = E[z ⊙ (Htz)], (8)

without having to form the Hessian matrix explicitly (Bekas
et al., 2007). The diagonal approximation has the same
convergence rate as using Hessian for strongly convex, and
strictly smooth functions (Proof in Appendix A.1). Nev-
ertheless, our method can be applied to general machine
learning problems, such as deep networks and regularized
classical methods (e.g., SVM, LASSO), which are strongly-
convex. To smooth out the noisy local curvature and get
a better approximation of the global Hessian information,
we apply an exponential moving average with parameter
0 < β2 < 1 to the Hessian diagonal estimate in Eq. (8):

Ht =

√
(1− β2)

∑t
i=1 β

t−i
2 diag(Hi)diag(Hi)

1− βt
2

. (9)

Using exponentially averaged gradient and Hessian approxi-
mations in Eq. (7), and (9), the preconditioned gradients in
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Eq. (5) can be approximated as follows:

S∗
t = argmin

S⊆V,γt,j≥0 ∀j
|S|, s.t. (10)

∥H−1
t gt −

∑
j∈S

γt,jH
−1
t,j gt,j∥ ≤ ϵ.

Next, we discuss how to efficiently find near-optimal
weighted subsets that closely approximate the full precondi-
tioned gradient by solving Eq. (5).

4.4. Extracting Second-order Coresets

The subset selection problem (5) is NP-hard (Natarajan,
1995). However, it can be considered as a special case of the
sparse vector approximation problem that has been studied
in the literature, including convex optimization formula-
tions—e.g. basis pursuit (Chen et al., 2001), sparse projec-
tions (Pilanci et al., 2012; Kyrillidis et al., 2013), LASSO
(Tibshirani, 1996), and compressed sensing (Donoho, 2006).
These methods, however, are expensive to solve and often
require tuning regularization coefficients and thresholding
to ensure cardinality constraints. More recently, the con-
nection between sparse modeling and submodular2 opti-
mization have been demonstrated (Elenberg et al., 2018;
Mirzasoleiman et al., 2020). The advantage of submodu-
lar optimization is that a fast and simple greedy algorithm
often provides a near-optimal solution. Next, we briefly dis-
cuss how submodularity can be used to find a near-optimal
solution for Eq. (5). We build on the recent result of (Mirza-
soleiman et al., 2020) that showed that the error of estimat-
ing an expectation by a weighted sum of a subset of elements
is upper-bounded by a submodular facility location function.
In particular, via the above result, we get:

min
S⊆V
∥H−1

t gt −
∑
j∈S

γt,jH
−1
t,j.gt,j ∥ (11)

≤
∑
i∈V

min
j∈S
∥H−1

t,i.gt,i −H−1
t,j.gt,j∥.

Setting the upper bound in the right-hand side of Eq. (11)
to be less than ϵ results in the smallest weighted subset S∗

that approximates full preconditioned gradient by an error
of at most ϵ, at iteration t. Formally, we wish to solve the
following optimization problem:

S∗ ∈argminS⊆V |S|, s.t. (12)

L(S) =
∑
i∈V

min
j∈S
∥H−1

t,i.gt,i −H−1
t,j.gt,j∥ ≤ ϵ,

By introducing a phantom example e, we can turn the mini-
mization problem (12) into the following submodular cover

2A set function F : 2V → R+ is submodular if F (S ∪{e})−
F (S) ≥ F (T ∪{e})−F (T ), for any S ⊆ T ⊆ V and e ∈ V \T .

problem, with a facility location objective F (S):

S∗ ∈ argmin
S⊆V

|S|, s.t. (13)

F (S) = C1 − L(S ∪ {e}) ≥ C1 − ϵ,

where C1 = L({e}) is a constant upper-bounding the
value of L(S). The subset S∗ obtained by solving the
maximization problem (13) is the medoid of the precon-
ditioned gradients, and the weights γj are the number
of elements that are closest to the medoid j ∈ S∗, i.e.
γj =

∑
i∈V I[j = mins∈S ∥H−1

t,i gt,i−H−1
t,sgt,s∥]. For the

above submodular cover problem, the classical greedy al-
gorithm provides a logarithmic approximation guarantee
|S| ≤

(
1 + ln(maxe F (e|∅))

)
|S∗| (Wolsey, 1982). The

greedy algorithm starts with the empty set S0 = ∅, and at
each iteration t, it chooses an element e ∈ V that maximizes
the marginal utility F (e|St) = F (St ∪ {e})− F (St). For-
mally, St = St−1 ∪ {argmaxe∈V F (e|St−1)}. The com-
putational complexity of the greedy algorithm is O(nk).
However, its complexity can be reduced to O(|V |) using
stochastic methods (Mirzasoleiman et al., 2015), and can be
further improved using lazy evaluation (Minoux, 1978) and
distributed implementations (Mirzasoleiman et al., 2013).
The pseudocode can be found in Alg. 1 in Appendix A.3.

One coreset for convex functions For convex functions,
normed gradient differences between data points can be ef-
ficiently upper-bounded by the normed difference between
feature vectors (Allen-Zhu et al., 2016; Hofmann et al.,
2015; Mirzasoleiman et al., 2020). We apply a similar idea
to upper-bound the normed difference between precondi-
tioned gradients. This allows us to find one subset before
the training. See proof in Appendix B.1.

4.5. Convergence Analysis

Here, we analyze the convergence rate of first and sec-
ond order methods applied to the weighted subsets S
found by ADACORE. By minimizing Eq. (13) at ev-
ery iteration t, ADACORE finds subsets that approximate
full preconditioned gradient by an error of at most ϵ, i.e.
∥H−1

t gt −
∑

j∈S γt,jH
−1
t,j gt,j∥ ≤ ϵ. This allows us to

effectively analyze the reduction in the value of the loss
function L at every iteration t. Below, we discuss the con-
vergence of a first and second-order gradient methodapplied
to subsets extracted by ADACORE.

Convergence for Newton’s Methods and AdaHessian We
first provide the convergence analysis for the case where
the function L in Problem (1) is strongly convex, i.e. there
exist a constant α > 0 such that ∀w,w′ ∈ Rd we have
L(w) ≥ L(w′)+⟨∇L(w′), w−w′⟩+α

2 ∥w
′−w∥2, and each

component function has a Lipschitz gradient, i.e. ∀w ∈ W
we have ∥∇L(w) − ∇L(w′)∥ ≤ β∥w − w′∥. We get the
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following results by applying Newton’s method and Ada-
Hessian to the weighted subsets S extracted by ADACORE.

Theorem 4.1. Assume that L is α-strongly convex and β-
smooth. Let S be a weighted subset obtained by ADA-
CORE that estimate the preconditioned gradient by an
error of at most ϵ at every iteration t, i.e., ∥H−1

t gt −∑
j∈S γt,jH

−1
t,j gt,j∥ ≤ ϵ. Then with learning rate α/β,

Newton’s method with update rule of Eq. (3) applied to the
subsets has the following convergence behavior:

L(wt+1)− L(wt) ≤ −
α3

2β4
(∥gt∥ − βϵ)2. (14)

In particular, the algorithm converges to a βϵ/α-
neighborhood of the optimal solution w∗.

Corollary 4.2. For an α-strongly convex and β-smooth loss
L, AdaHessian with Hessian power k, applied to subsets
found by ADACORE converges to a βϵ/α-neighborhood of
the optimal solution w∗, and satisfies:

L(wt+1)− L(wt) ≤ −
αk+2

2βk+3
(∥gt∥ − βϵ)2. (15)

The proofs can be found in Appendix A.1.

Convergence for (S)GD in Over-parameterized Case
Next, we discuss the convergence behavior of gradient de-
scent applied to the subsets found by ADACORE. In partic-
ular, we build upon the recent results of (Liu et al., 2020)
that guarantees convergence for first-order methods on a
broad class of general over-parameterized non-linear sys-
tems, including neural networks for which the tangent ker-
nel, defined as JTJ are not close to constant, but satisfy the
Polyak-Lojasiewicz (PL) condition. Where J = ∂f/∂w
is the Jacobian of the function f with respect to the pa-
rameters w. A loss function L is µ-PL∗ on a set W , if
1
2∥∇L(w)∥

2 ≥ µL(w),∀w ∈ W .

Theorem 4.3. Assume that the loss function L(w) is β-
smooth, and µ-PL∗ on a setW , and S is a weighted sub-
set obtained by ADACORE that estimates the precondi-
tioned gradient by an error of at most ϵ, i.e., ∥H−1

t gt −∑
j∈S γt,jH

−1
t,j gt,j∥ ≤ ϵ. Then with learning rate η, gradi-

ent descent with update rule of Eq. (2) applied to the subsets
have the following convergence behavior at iteration t:

L(wt) ≤ (1− ηµα2

β2
)tL(w0)−

ηα2

2β2
(β2ϵ2 − 2βϵ∇max),

(16)

where α is the minimum eigenvalue of all Hessian matrices
during training, and∇max is an upper bound on the norm
of the gradients.

Theorem 4.4. Under the same assumptions as in Theorem
4.3, for mini-batch SGD with mini-batch size m ∈ N, the

mini-batch SGD with update rule Eq. (2), with learning
rate η = m

β(m−1) , applied to the subsets have the following
convergence behavior:

E[L(wt)] ≤ (1− ηµα2

2β
)tE[L(w0)]−

α2η

2β
(βϵ2 − 2ϵ∇max)

(17)

where α is the minimum eigenvalue of all Hessian matrices
during training, and∇max is an upper bound on the norm
of the gradients, and the expectation is taken w.r.t. the
randomness in the choice of mini-batch.

The proofs can be found in Appendix A.2.

We show an exponential convergence for GD (Theorem 4.3)
and SGD (Theorem 4.4) under the µ-PL∗ condition, as well
as for second order methods (Theorems 4.1, 4.2), under
α-strongly convex and β-smooth assumptions on the loss.

5. Experiments
In this section, we evaluate the effectiveness of ADACORE,
by answering the following questions: (1) how does the per-
formance of various first and second-order methods compare
when applied to subsets found by ADACORE vs. the full
data and baselines; (2) how effective is ADACORE for ex-
tracting crucial subsets for training convex and non-convex
over-parameterized models with different optimizers; and
(3) how does ADACORE perform in eliminating redundan-
cies and enhancing diversity of the selected elements.

Baselines In the convex setting, we compare the perfor-
mance of ADACORE with CRAIG (Mirzasoleiman et al.,
2020) that extracts subsets that approximate the full gradient,
as well as Random subsets. For non-convex experiments,
we additionally compare ADACORE with GRADMATCH
and GLISTER (Killamsetty et al., 2021; 2020). For ADA-
CORE and CRAIG, we use the gradient w.r.t the input to
the last layer, and for GLISTER and GRADMATCH we use
the gradient w.r.t the penultimate layer, as specified by the
methods. In all cases, we select subsets separately from
each class proportional to the class sizes, and train on the
union of the subsets. We report average test accuracy across
3 trials in all experiments.

5.1. Convex Experiments

In our convex experiments, we apply ADA-
CORE to select a coreset to classify the Ijcnn1
dataset using L2-regularized logistic regression:
fi(x) = ln(1 − exp(−wTxyyi)) + 0.5µwTw. Ijcnn1
includes 49,990 training and 91,701 test data points of 22
dimensions, from 2 classes with 9-to-1 class imbalance ratio.
In the convex setting, we only need to calculate the curvature
once to find one ADACORE subset for the entire training.
Hence, we utilize the complete Hessian information,
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(a) Ijcnn1 SGD (b) Ijcnn1 Newton

Figure 1: Loss residual of SGD and Newton’s method for
training Logistic Regression on Ijcnn1. Comparing ADA-
CORE (blue), CRAIG (orange) and random subsets (green)
of size 10% vs. entire data (red dot). ADACORE achieves
2.5x speedup for training with SGD and Newton’s method.
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Figure 2: Normalized gradient difference between subsets
of various sizes found by ADACORE (blue), ADACORE (or-
ange), Random (green) vs full data, when training Logistic
Regression with SGD and Newton on Ijcnn1. ADACORE
has a smaller gradient error at the end of training.

computed analytically, as discussed in Appendix B.3. We
apply an exponential decay learning schedule αk = α0b

k

with learning rate parameters α0 and b. For each model
and method (including the random baseline) we tuned the
parameters via a search and reported the best results.

ADACORE achieves smaller loss residual with a speedup
Figure 1 compares the loss residual for SGD and Newton’s
method applied to coresets of size 10% extracted by ADA-
CORE (blue), CRAIG (orange), and random (green) with
that of full dataset (red). We see that ADACORE effectively
minimizes the training loss, achieving a better loss residual
than CRAIG and random sampling. In particular, ADACORE
matches the loss achieved on the full dataset with more than
a 2.5x speedup for SGD and Newton’s methods. We note
that training on random 10% subsets of the data cannot ef-
fectively minimize the training loss. We show the superior
performance of training with SGD on subsets of size 10% to
90% found with ADACORE vs CRAIG in Appendix Fig. 6.

ADACORE better estimates the full gradient Fig. 2 shows
the normalized gradient difference between gradient of the
full data vs. weighted gradient of subsets of different sizes
obtained by ADACORE vs CRAIG and Random, at the end
of training by each method. We see that by considering
curvature information, ADACORE obtains a better gradient
estimate than CRAIG and Random subsets.

Table 1: Training ResNet20 using AdaHessian and
SGD+momentum on coresets of size 1% selected by differ-
ent methods from CIFAR10. Percent of full data selected
during entire training is shown (in parentheses). Using
bH=64, ADACORE achieves up to 16.8% higher accuracy,
while selecting a smaller fraction of data points. Exponential
averaging of gradient and Hessian,and a smaller bH helps.

AdaHessian SGD+Momentum
Random 59.1%±2.8(87%) 45.9%±2.5(87%)
CRAIG 59.5%±2.8(74%) 43.6%±1.6(75%)
GRADMATCH 57.5%±1.3(74%) 49.4%±1.6(74%)
GLISTER 37.5%±1.3(74%) 38.6% ±1.6(74%)
ADACORE (no avg) 58.4%±0.2(73%) 51.5%±1.1(74%)
ADACORE (avg g) 59.8%±0.5(73%) 53.2% ±1.1(74%)
ADACORE (avg H) 60.2%±0.5(73%) 54.4%±1.1(74%)
ADACORE 60.2%±0.5(73%) 55.4%±1.1(74%)
ADACORE bh=512 57.2% ±0.5(73%) 52.4% ±1.1(74%)

5.2. Non-Convex Experiments

Datasets We use CIFAR10 (60k points from 10 classes) ,
class imbalanced version of CIFAR10 (32.5k points from
10 classes) and CIFAR100 (32.5k points from 100 classes)
(Krizhevsky et al., 2009), BDD100k (100k points from 7
classes) (Yu et al., 2020). The results on MNIST (70k points
from 10 classes) (Deng, 2012) can be found in Appendix
C.6. Images are normalized to [0,1] by division with 255.

Models and Optimizers We train ResNet-20 and ResNet-
18 (He et al., 2016), with convolution, average pooling and
dense layers with softmax outputs and weight decay of 10−4.
We use a batch size of 256 in all experiments (except Table
3, Fig. 4a), and train using SGD with momentum of 0.9
(default), or AdaHessian. For training, we use standard
learning rate scheduler for ResNet starting with 0.1 and
exponentially decaying by factor 0.1 at epochs 100 and
150. We used linear learning rate warm-up for the first 20
epochs to prevent weights from diverging when training
with subsets. All experiments were ran on a 2.4GHz CPU
and RTX 2080 Ti GPU.

Calculating the Curvature To calculate the Hessian diago-
nal using Eq. (8), we use a batch size of bH =64 to calculate
the expected Hessian diagonal over the training data. We
observed that a smaller batch size provides a higher quality
Hessian compared to larger batch sizes,as shown in Table 1.

Baseline Comparison and Ablation Study Table 1 shows
the accuracy of training ResNet-20, using SGD with mo-
mentum of 0.9 and AdaHessian, for 200 epochs on S=1%
subsets of CIFAR-10 chosen every R=1 epoch by different
methods. For SGD+momentum, ADACORE outperforms
CRAIG by 12%, Random by 10%, GRADMATCH by 6%,
and GLISTER by 16.8%. Note that in total, ADACORE se-
lects 74% of the dataset during the entire training process,
whereas Random visits 87%. Thus, ADACORE effectively
selects subsets contributing the most to generalization. We
see that the accuracy gap between the baselines and ADA-
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(a) Test Accuracy (b) Distribution of selected points (c) Forgetting vs class ranking

Figure 3: Training ResNet-18 on subsets of size S=1% selected every R=1 epoch, with ADACORE, CRAIG, GLISTER,
GRADMATCH and Random for 200 epochs vs. full for 15 epochs. (a) ADACORE outperforms baselines by providing 2x
speedup over full, and more than 4.5x speedup over Random. (b) Histograms of the number of times a point is selected
by ADACORE, CRAIG and GRADMATCH. ADACORE selects a more diverse set of examples compare to CRAIG, and
GRADMATCH augments several randomly selected examples. (c) Forgetting scores for examples of a class sorted by
ADACORE at the end of training. ADACORE priorities less forgettable examples compared to CRAIG.

CORE shrinks when applying more powerful optimizers
such as AdaHessian. Table 1 also shows the effect of ex-
ponential averaging of gradients and Hessian diagonal, and
larger batch sizes for calculating the Hessian diagonal bH .
We see that exponential averaging help ADACORE achieving
better performance, and smaller bH provides better results.

Fig. 3a compares the performance of ResNet-18 on 1%
subsets selected from CIFAR-10 with different methods.
We compare the performance of training on ADACORE,
CRAIG, GRADMATCH, GLISTER, and Random subsets
for 200 epochs, with training on full data for 15 epochs.
This is the number of iterations required for training on
the full data to achieve a comparable performance to that
of ADACORE subsets. We see that training on ADACORE
coresets achieves a better accuracy 2.5x faster than training
on the full dataset, and more than 4.5x faster than the next
best subset selection algorithm for this setting (c.f. Fig. 8b
in Appendix for complete results).

Frequency and size of subsets selection Table 2, 4 shows
the performance of different methods for selecting subsets
of size S% of the data every R epochs, from CIFAR-10 and
imbalanced CIFAR-10. Table 2 shows that selecting subsets
of size 1% every R = 5, 10, 20 epochs with ADACORE
achieves a superior performance compared to the baselines.
Table 4 shows that ADACORE can successfully select larger
subsets of size S = 10%, 30% and outperform CRAIG (Std
is reported in Appendix, Table 5).

ADACORE speeds up training Fig 8 compares the speedup

Table 2: Test accuracy and percent of full data selected
(in parentheses), when selecting S=1% coresets every R
epochs from Imbalanced CIFAR-10 to train ResNet18.

S=1%, R=20 S=1%, R=10 S=1%, R=5
AdaCore 57.3% (5%) 57.12 (9.5%) 60.2% (14.5%)
CRAIG 48.6% (8%) 55 (16%) 53.05% (27.5%)
Random 54.7% (8%) 54.6 (18%) 54.6% (33.2%)
GRADM 29.9% (8.2%) 29.1% (14.7%) 32.75% (23.2%)
GLISTER 21.1% (8.6%) 17.2% (16%) 14.4% (22.2%)

of various methods during training ResNet18 on 10% sub-
sets selected every R = 20 epochs from BDD 100k and
CIFAR-100. All the methods are trained to achieve a test
accuracy between 72% and 74% on BDD 100k, and be-
tween 57% and 50% on CIFAR-100. On BDD 100k, ADA-
CORE achieves 74% accuracy in 100 epochs and training
on full data achieves a similar performance in 45 epochs.
For CIFAR-100, ADACORE achieves 59% accuracy in 200
epochs and training on full data achieves a similar perfor-
mance in 40 epochs. Complete results on speedup and test
accuracy of each method can be found in Appendix C.3, C.4.
We see that ADACORE achieves 2.5x speedup over training
on full data and 1.7x over that of training on random sub-
sets on BDD 100k. For CIFAR-100, ADACORE achieves
4.2x speedup over training on random subsets and 2.9x over
training on full data. Compared to the baselines, ADACORE
can achieve achieve the desired accuracy much faster.

Effect of batch size Table 3 compares the performance
of training with different batch sizes on subsets found by
various methods. We see that training with larger batch size
on subsets selected by ADACORE can achieve a superior
accuracy. As ADACORE selects more diverse subsets with
smaller weights, one can train with larger mini-batches on
the subsets without increasing the gradient estimate error. In
contrast, CRAIG subsets have elements with larger weights
and hence training with fewer larger mini-batches has larger

Table 3: Training ResNet18 with S=1% subsets every R=1
epoch from CIFAR10 using batch size b= 512, 256, 128.
ADACORE can leverage larger mini-bath size and obtain a
larger accuracy gap to CRAIG and Random. For b=512, we
have1mini-batch (GD). Std is reported in Appendix Table9.

ADAC. CRAIG Rand Gap/
CRAIG

Gap/
Rand

GD b=512 58.32% 56.32% 49.14% 1.69% 8.91%
SGD b=256 68.23% 58.3% 60.7% 9.93% 8.16%
SGD b=128 66.89% 58.17% 65.46% 8.81% 1.52%



Second-order Coresets for Training Machine Learning Models

Table 4: Test accuracy and percent of full data selected (in parentheses), when selecting S% coresets every R epochs from
CIFAR-10 and Imbalanced CIFAR-10 to train ResNet18.

ResNet20, CIFAR10
S = 30%, R = 20

ResNet20, CIFAR10
S = 10%, R = 20

ResNet18, CIFAR10-IMB
S = 30%, R = 20

ResNet18, CIFAR10-IMB
S = 10%, R = 20

ADACORE 80.57% ±0.11 (74.6%) 70.6% ±0.33 (44.8%) 85.7% ±0.1 (74%) 76% ±0.3 (43.8%)
CRAIG 65.8% ±0.41 (90.9%) 58.5% ±1.27 (60.75%) 79.3% ±1.6 (84.5%) 71.6% ±0.15 (56.4%)

(a) BDD100k, ResNet50 (b) CIFAR100, ResNet18

Figure 4: Speedup of various methods over training on
random subsets and full data, for training ResNet18 on CI-
FAR100 and ResNet50 on BDD100k with batch size=128.

gradient error and does not improve the performance.

In summary, see that ADACORE consistently outperforms
the baselines over various architectures, optimizers, subset
sizes, selection frequency, and batch sizes.

ADACORE selects more diverse subsets Fig. 3b shows
the number of times different methods selected a particular
elements during the entire training. We see that ADACORE
successfully selects a more diverse set of examples
compared to CRAIG. We note that GRADMATCH may not
be able to select subsets with the desired size, and instead
augments the selected subset with randomly selected
examples. Hence, it has a normal-shaped distribution. Fig.
3c shows mean forgetting score for all examples within
a class ranked by ADACORE at the end of training, over
sliding window of size 100. We see that ADACORE prior-
itizes selecting less forgettable examples. This shows that
indeed ADACORE is able to distinguish different groups of
easier examples better, and hence can prevent catastrophic
forgetting by including their representatives in the coresets.

ADACORE vs Forgettability and Uncertainty Fig. 5a,
5b show mean forgettability and uncertainty in sliding win-
dows of size 100, 200 over examples sorted by ADACORE
at the end of training. We see that ADACORE heavily biases
its selections towards forgettable and uncertain points, as
training proceeds. Interestingly, 5a reveals that ADACORE
avoids the most forgettable samples in favor of slightly more
memorable ones, suggesting that ADACORE can better dis-
tinguish easier groups of examples. Figure 5b shows similar
bias towards uncertain samples. Fig. 5c, 5d show the most
and least selected images by ADACORE, respectively. We
see the redundancies in the never selected images, whereas
images frequented by ADACORE are quite diverse in color,
angles, occluded subjects, and airplane models. This con-
firms the effectiveness of ADACORE in extracting the most
crucial subsets for learning and eliminating redundancies.
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Figure 5: Training ResNet20 on S=1% subsets of CIFAR-
10 selected by ADACORE. (a) Forgetting scores, and (b)
uncertainty of examples in a class sorted by ADACORE at
the end of training. ADACORE prioritize selecting more
forgettable and uncertain examples. (c) Six images selected
by ADACORE most frequently (25 times) from the airplane
class. (d) Subset of images never selected by ADACORE.

6. Conclusion
We proposed ADACORE, a method that leverages the topol-
ogy of the dataset to extract salient subsets of large datasets
for efficient machine learning. The key idea behind ADA-
CORE is to dynamically incorporate the curvature and gra-
dient of the loss function via an adaptive estimate of the
Hessian to select weighted subsets (coresets) which closely
approximate the preconditioned gradient of the full dataset.
We proved exponential convergence rate for first and second-
order optimization methods applied to ADACORE coresets,
under certain assumptions. Our extensive experiments, us-
ing various optimizers e.g., SGD, AdaHessian, and New-
ton’s method, show that ADACORE can extract higher qual-
ity coresets compared to baselines, rejecting potentially
redundant data points. This speeds up the training of var-
ious machine learning models, such as logistic regression
and neural networks, by over 4.5x while selecting fewer but
more diverse data points for training.
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A. Proofs of Theorems
A.1. Proof of Theorem 4.1

Theorem 4.1. Assume that L is α-strongly convex and β-smooth. Let S be a weighted subset obtained by ADACORE that
estimate the preconditioned gradient by an error of at most ϵ at every iteration t, i.e., ∥H−1

t gt −
∑

j∈S γt,jH
−1
t,j gt,j∥ ≤ ϵ.

Then with learning rate α/β, Newton’s method with update rule of Eq. (3) applied to the subsets has the following
convergence behavior:

L(wt+1)− L(wt) ≤ −
α3

2β4
(∥gt∥ − βϵ)2. (14)

In particular, the algorithm converges to a βϵ/α-neighborhood of the optimal solution w∗.

Proof. We prove Theorem 4.1 (similarly to the proof of Newton’s method in (Boyd & Vandenberghe, 2004)) for the
following general update rule for 0 ≤ k ≤ 1:

∆wt = H−k
t gt (18)

wt+1 = wt − η∆wt (19)

For k = 1, this corresponds to the update rule of the Newton’s method. Define λ(wt) = (gT
t H

−k
t gt)

1/2. Since L(w) is
β-smooth, we have

L(wt+1) ≤ L(wt)− ηgT
t ∆wt +

η2β∥∆wt∥2

2
(20)

≤ L(wt)− ηλ(wt)
2 +

β

2αk
η2λ(wt)

2, (21)

where in the last equality, we used

λ(wt) = ∆wtH
k
t∆wT

t . (22)

Therefore, using step size η̂ = αk

β we have wt+1 = wt − η̂∆wt

L(wt+1) ≤ L(wt)−
1

2
η̂λ(wt)

2 (23)

Since αI ⪯ Ht ⪯ βI, we have

λ(wt)
2 = gT

t H
−k
t gt ≥

1

βk
∥gt∥2, (24)

and therefore L decreases as follows,

L(wt+1)− L(wt) ≤ −
1

2βk
η̂∥gt∥2 = − αk

2βk+1
∥gt∥2. (25)

Now for the subset, from Eq. (5) we have that ∥H−1
t gt −

∑
j∈S γt,jH

−1
t,j gt,j∥ ≤ ϵ. Hence, via reverse triangle inequality

∥H−1
t gt∥ ≤ ∥

∑
j∈S γt,jH

−1
t,j gt,j∥+ ϵ, and we get

∥gt∥
β
≤ ∥(Ht)

−1gt∥ ≤ ∥(HS
t )

−1gS
t γγγ∥+ ϵ ≤ ∥g

S
t ∥
α

+ ϵ, (26)

where gS
t =

∑
j∈S gt,j and HS

t =
∑

j∈S Ht,j. are the gradient and Hessian of the subset respectively. In Eq. (26) the
RHS follows from operator norms and the LHS follows from the following lower bound on the norm of the product of two
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matrices:

∥AB∥ = max
∥x∥=1

∥xTAB∥

= max
∥x∥=1

∥xTA∥
∥∥∥∥ xTA

∥xTA∥
B

∥∥∥∥
≥ max

∥x∥=1
σ
min(A)

∥∥∥ xT A

∥xT A∥
B
∥∥∥

= max
∥y∥=1

σmin(A)∥yTB∥

= σmin(A)∥B∥,

(27)

Hence,

∥gS
t ∥ ≥

α

β
(∥gt∥ − βϵ) (28)

Therefore, on the subset we have

L(wt+1)− L(wt) ≤ −
αk

2βk+1
∥gS

t ∥2 (29)

≤ − αk

2βk+1
(
α

β
)2(∥gt∥ − βϵ)2 (30)

= − αk+2

2βk+3
(∥gt∥ − βϵ)2. (31)

The algorithm stops descending when ∥gt∥ = βϵ. From strong convexity we know that

∥gt∥ = βϵ ≥ α∥w − w∗∥ (32)

Hence, we get

∥w − w∗∥ ≤ βϵ/α. (33)

As such we have Corollary 4.2. and when we set k = 1 we have proof of Theorem 4.1.

Descent property for Equation 5 For a strongly convex function, L, we have that the diagonal elements of the Hessian are
positive (Yao et al., 2020). This allows the diagonal to approximate the full Hessian which has good convergence properties.

Given a function L(w) which is strongly convex and strictly smooth, we have that ∇2L(w) is upper and lower bounded by
two constants β and α, so that αI ≤ ∇2L(w) ≤ βI , for all w. For a strongly convex function the diagonal elements in
diag(Ht) are all positive, and we have:

α ≤ eTi Htei = eTi diag(Ht)ei = diag(Ht)i,j ≤ β (34)

where ej represents the natural basis vectors. Therefore, the diagonal entries of diag(Ht) are in the range [α, β]. Therefore,
the average of a subset of the numbers are still in the range [α, β]. As such, we can prove that Eq. (10) has the same
convergence rate as its full matrix counterpart, by following the same proof as Theorem 4.1.

A.2. Proof of Theorem 4.3 and 4.4

A loss function L(w) is considered µ -PL on a set S, if the following holds:

1

2
∥g∥2 ≥ µ (L(w)− L (w∗)) ,∀w ∈ S (35)

where w∗ is a global minimizer. When additionally L (w∗) = 0, the µ-PL condition is equivalent to the µ-PL∗ condition

1

2
∥g∥2 ≥ µL(w),∀w ∈ S. (36)
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Theorem 4.3. Assume that the loss function L(w) is β-smooth, and µ-PL∗ on a setW , and S is a weighted subset obtained
by ADACORE that estimates the preconditioned gradient by an error of at most ϵ, i.e., ∥H−1

t gt −
∑

j∈S γt,jH
−1
t,j gt,j∥ ≤ ϵ.

Then with learning rate η, gradient descent with update rule of Eq. (2) applied to the subsets have the following convergence
behavior at iteration t:

L(wt) ≤ (1− ηµα2

β2
)tL(w0)−

ηα2

2β2
(β2ϵ2 − 2βϵ∇max), (16)

where α is the minimum eigenvalue of all Hessian matrices during training, and∇max is an upper bound on the norm of the
gradients.

For Lipschitz continuous g and µ-PL condition, gradient descent on the entire dataset yields

L(wt+1)− L(wt) ≤ −
η

2
∥gt∥2 ≤ −ηµL(wt), (37)

and,

L(wt) ≤ (1− ηµ)tL(w0), (38)

which was shown in (Liu et al., 2020). We build upon this result to an ADACORE subset.

Proof. From Eq. (26) we have that

∥gt∥
β
≤ ∥(Ht)

−1gt∥ ≤ ∥(HS
t )

−1gS
t γγγ∥+ ϵ ≤ ∥g

S
t ∥
α

+ ϵ (39)

Hence solving for ∥gS
t ∥ we have,

∥gS
t ∥ ≥

α

β
(∥gt∥ − βϵ). (40)

For the subset we have

L(wt+1)− L(wt) ≤ −
η

2
∥gS

t ∥2 (41)

By substituting Eq. (51) we have.

≤ −ηα2

2β2
(∥gt∥ − βϵ)2 (42)

= −ηα2

2β2
(∥gt∥2 + β2ϵ2 − 2βϵ∥gt∥) (43)

≤ −ηα2

2β2
(∥gt∥2 + β2ϵ2 − 2βϵ∇max) (44)

≤ −ηα2

2β2
(2µL(wt) + β2ϵ2 − 2βϵ∇max) (45)

Where we can upper bound the norm of gt in Eq. (43) by a constant∇max. And Eq. (55) follows from the µ-PL condition
from Eq. (35).

Hence,

L(wt+1) ≤ (1− ηµα2

β2
)L(wt)−

ηα2

2β2
(β2ϵ2 − 2βϵ∇max) (46)

Since,
∑k

j=0(1−
ηµα2

β2 )j ≤ β2

ηµα2 , for a constant learning rate η we get

L(wt+1) ≤ (1− ηµα2

β2
)t+1L(w0)−

ηα2

2β2
(β2ϵ2 − 2βϵ∇max) (47)
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Theorem 4.4. Under the same assumptions as in Theorem 4.3, for mini-batch SGD with mini-batch size m ∈ N, the
mini-batch SGD with update rule Eq. (2), with learning rate η = m

β(m−1) , applied to the subsets have the following
convergence behavior:

E[L(wt)] ≤ (1− ηµα2

2β
)tE[L(w0)]−

α2η

2β
(βϵ2 − 2ϵ∇max) (17)

where α is the minimum eigenvalue of all Hessian matrices during training, and∇max is an upper bound on the norm of the
gradients, and the expectation is taken w.r.t. the randomness in the choice of mini-batch.

For Lipschitz continuous g and µ-PL condition, gradient descent on the entire dataset yields

L(wt+1)− L(wt) ≤ −
η

2
∥gt∥2 ≤ −ηµL(wt), (48)

and,

L(wt) ≤ (1− ηµ)tL(w0), (49)

which was shown in (Liu et al., 2020). We build upon this result to an ADACORE subset.

Proof. From Eq. (26) we have that

∥gt∥
β
≤ ∥(Ht)

−1gt∥ ≤ ∥(HS
t )

−1gS
t γγγ∥+ ϵ ≤ ∥g

S
t ∥
α

+ ϵ (50)

Hence solving for ∥gS
t ∥ we have,

∥gS
t ∥ ≥

α

β
(∥gt∥ − βϵ). (51)

For the subset we have

L(wt+1)− L(wt) ≤ −
η

2
∥gS

t ∥2 (52)

Fixing wt and taking expectation with respect to the randomness in the choice of the batch i
(1)
t . . . i

(m)
t (noting that those

indices are i.i.d.), we have

E
i
(1)
t ...i

(m)
t

[L(wt+1)− L(wt)] ≤ −η(α− η
β

m
(α

m− 1

2
+ β)L(wt) (53)

≤ − η(1− ηβ(m− 1)

2m
)︸ ︷︷ ︸

c1

∥gt∥2 +
η2βλ

m︸ ︷︷ ︸
c2

L(wt) (54)

≤ −c1
α2

β2
∥gt + βϵ∥)2 + c2L(wt) (55)

We can upper bound the norm of gt in Eq. (55) by a constant∇max. And Eq. (55) follows from the µ-PL condition from
Eq. (35) and assuming η ≤ 2

β .

≤ −c1
α2

β2
(µL(wt)− 2∇maxβϵ+ β2ϵ2) + c2L(wt) (56)

≤ −η(1− ηβ(m− 1)

2m
)
α2

β2
(µL(wt)− 2∇maxβϵ+ β2ϵ2) +

η2βλ

m
L(wt) (57)

= η(µ
α2

β2
− η

β

m
(µ

α2(m− 1)

β22
+ λ))L(wt) +

η2βλ

m
L(wt) + c1

α2

β2
(2∇maxβϵ− β2ϵ2) (58)

= ηµ
α2

β2
(1− ηβ

m− 1

2m
)E[L(wt)] + η

α2

β2
(1− ηβ

m− 1

2m
)(2∇maxβϵ− β2ϵ2) (59)
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By optimizing the quadratic term in the upper bound with respect to η we get η = m
β(m−1) .

E[L(wt+1)] ≤ (1− µα2m

2β2(m− 1)
)E[L(wt)] +

α2m

β2

2∇maxβϵ− β2ϵ2

2β(m− 1)
(60)

Hence,

E[L(wt+1)] ≤
(
1− η∗(m)µα2

2β

)
E[L(wt)] +

α2η∗(m)

β
(∇maxϵ− βϵ2/2) (61)

A.3. Discussion on Greedy to Extract Near-optimal Coresets

As discussed in Section 4.4, a greedy algorithm can be applied to find near-optimal coresets that estimate the general descent
direction with an error of at most ϵ by solving the submodular cover problem Eq. (13). For completeness, we include the
pseudocode of the greedy algorithm in Algorithm 1. The ADACORE algorithm is run per class.

Algorithm 1 ADACORE (Adaptive Coresets for Accelerating first and second order optimization methods)
Require: Set of component functions fi for i ∈ V = [n]}.
Ensure: Subset S ⊆ V with corresponding per-element stepsizes {γ}j∈S .

1: S0 ← ∅, s0 = 0, i = 0.
2: while F (S) < C1 − ϵ do
3: j ∈ argmaxe∈V \Si−1

F (e|Si−1)
4: Si = Si−1 ∪ {j}
5: i = i+ 1
6: end while
7: for j = 1 to |S| do
8: γj =

∑
i∈V I

[
j = argmins∈Smaxw∈W∥H−1

t gt −
∑

j∈S γt,jH
−1
t,j gt,j∥

]
9: end for

B. Bounding the Norm of Difference Between Preconditioned Gradients
B.1. Convex Loss Functions

We show the normed difference for ridge regression. Similar results can be deduced for other loss functions such as square
loss (Allen-Zhu et al., 2016), logistic loss, smoothed hinge losses, etc.

For ridge regression fi(w) =
1
2 (⟨xi, w⟩ − yi)

2 + λ
2 ∥w∥

2, we have ∇fi(w) = xi(⟨xi, w⟩ − yi) + λw. Furthermore for
invertable Hessian H, let H−1

i = A and H−1
j = B. Therefore,

∥A∇fi(w)−B∇fj(w)∥ = ∥A(xi⟨xi, w⟩ − xiyi + λw)−B(xj⟨xj , w⟩ − xjyj + λw)∥ (62)
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= ∥Axi⟨xi, w⟩ −Bxj⟨xj , w⟩+Bxjyj −Axiyi + λ(A−B)w∥ (63)
= ∥Axi⟨xi, w⟩+Bxj⟨xi, w⟩ −Bxj⟨xi, w⟩ −Bxj⟨xj , w⟩

+Bxjyj −Axiyi +Bxjyi −Bxjyi + λ(A+B)w∥ (64)
= ∥⟨xi, w⟩(Axi −Bxj) + ⟨xi − xj , w⟩Bxj + (yj − yi)Bxj + yi(Bxj −Axi) + λ(A−B)w∥ (65)
= ∥(⟨xi, w⟩ − yi)(Axi −Bxj) + (⟨xi − xj , w⟩+ yj − yi)Bxj + λ(A+B)w∥ (66)
≤ |⟨xi, w⟩ − yi|∥Axi −Bxj∥+ |⟨xi − xj , w⟩+ yj − yi|∥Bxj∥+ λ∥(A−B)w∥ (67)
≤ |⟨xi, w⟩ − yi|(∥A−B∥∥xi∥+ ∥B∥∥xi − xj∥) + |⟨xi − xj , w⟩+ yj − yi|∥Bxj∥

+ λ∥(A+B)w∥ (68)
≤ O(∥w∥)(∥A−B∥+ ∥B∥∥xi − xj∥) +O(∥w∥)∥B∥∥xj∥∥xi − xj∥ (69)
≤ O(∥w∥)(∥A∥+ ∥B∥+ ∥B∥∥xi − xj∥) +O(∥w∥)∥B∥∥xj∥∥xi − xj∥ (70)

In Eq. (70) we have the norm of the inverse of the Hessian matrix. Since H is invertible we have miniσi > 0,

min
i

σi = inf
x ̸=0

∥Hx∥2
∥x∥2

⇐⇒ 1

mini σi
= sup

x ̸=0

∥x∥2
∥Hx∥2

(71)

1

mini σi
= sup

x ̸=0

∥x∥2
∥Hx∥2

= sup
H−1z ̸=0

∥∥H−1z
∥∥
2

∥z∥2
= sup

z ̸=0

∥∥H−1z
∥∥
2

∥z∥2
=

∥∥H−1
∥∥
2
, (72)

where the substitution Hx = z was made, and utilized that H−1z = 0⇐⇒ z = 0 since H is invertible. Hence,

≤ O(∥w∥)∥B∥∥xi − xj∥ (73)
≤ O(∥w∥)∥xi − xj∥ (74)

For ∥xi∥ ≤ 1, and |yi − yj | ≈ 0 .

Assuming that ∥w∥ is bounded for all w ∈ W , an upper bound on the euclidean distance between preconditioned gradients
can be precomputed.

B.2. Neural Networks

We closely follow proofs from (Katharopoulos & Fleuret, 2018) and (Mirzasoleiman et al., 2020) to show that we can
bound the difference between the Hessian inverse preconditioned gradients of an entire NN up to a constant of the dif-
ference between the Hessian inverse preconditioned gradients of the last layer of the NN, between arbitrary datapoints i and j.

Consider an L-layer perceptron, where w(l) ∈ RMlxMl−1 is the weight matrix for the lth layer with Ml hidden units.
Furthermore assume σ(l)(.) is a Lipschitz continuous activation function. Then we let,

x
(0)
i = xi, (75)

z
(l)
i = w(l)x

(l−1)
i , (76)

x
(l)
i = σ(l)

(
z
(l)
i

)
. (77)

With,

Σ′
l

(
z
(l)
i

)
= diag

(
σ′(l)

(
z
(l)
i,1

)
, · · ·σ′(l)

(
z
(l)
i,Ml

))
(78)

∆
(l)
i = Σ′

l

(
z
(l)
i

)
wT

l+1 · · ·Σ′
l

(
z
(L−1)
i

)
wT

L . (79)

We have,
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∥H−1
i gi−H−1

j gj∥ (80)

=
∥∥∥(∆(l)

i Σ′
L(z

(L)
i )(H−1

i )(L)g(L)
i

)
(x

(l−1)
i )T −

(
∆

(l)
j Σ′

L(z
(L)
j )(H−1

j )(L)g(L)
j

)
(x

(l−1)
j )T

∥∥∥ (81)

≤
∥∥∥∆(l)

i

∥∥∥ · ∥∥∥x(l−1)
i

∥∥∥ · ∥∥∥Σ′
L

(
z
(L)
i

)
(H−1

i )(L)g(L)
i − Σ′

L

(
z
(L)
j

)
(H−1

j )(L)g(L)
j

∥∥∥ (82)

+
∥∥∥Σ′

L

(
z
(L)
j

)
(H−1

i )(L)g(L)
i

∥∥∥ · ∥∥∥∥∆(l)
i

(
x
(l−1)
i

)T

−∆
(l)
j

(
x
(l−1)
j

)T
∥∥∥∥

≤
∥∥∥∆(l)

i

∥∥∥ · ∥∥∥x(l−1)
i

∥∥∥ · ∥∥∥Σ′
L

(
z
(L)
i

)
(H−1

i )(L)g(L)
i − Σ′

L

(
z
(L)
j

)
(H−1

j )(L)g(L)
j

∥∥∥ (83)

+
∥∥∥Σ′

L

(
z
(L)
j

)
(H−1

i )(L)g(L)
i

∥∥∥ · (∥∥∥∆(l)
i

∥∥∥ · ∥∥∥x(l−1)
i

∥∥∥+
∥∥∥∆(l)

j

∥∥∥ · ∥∥∥x(l−1)
j

∥∥∥)
≤max

l

(∥∥∥∆(l)
i

∥∥∥ · ∥∥∥x(l−1)
i

∥∥∥)︸ ︷︷ ︸
cl,i

·
∥∥∥Σ′

L

(
z
(L)
i

)
(H−1

i )(L)g(L)
i − Σ′

L

(
z
(L)
j

)
(H−1

j )(L)g(L)
j

∥∥∥ (84)

+
∥∥∥Σ′

L

(
z
(L)
i

)
(H−1

i )(L)g(L)
i

∥∥∥ ·max
l,i,j

(∥∥∥∆(l)
i

∥∥∥ · ∥∥∥x(l−1)
i

∥∥∥+
∥∥∥∆(l)

j

∥∥∥ · ∥∥∥x(l−1)
j

∥∥∥)︸ ︷︷ ︸
c2

From (Katharopoulos & Fleuret, 2018), (Mirzasoleiman et al., 2020), we have that the variation of the gradient norm is
mostly captured by the gradient of the loss function with respect to the pre-activation outputs of the last layer of our neural
network. Here we have a similar result, where, the variation of the gradient preconditioned on the inverse of the Hessian
norm is mostly captured by the gradient preconditioned on the inverse of the Hessian of the loss function with respect to the
pre-activation outputs of the last layer of our neural network. Assuming

∥∥∥Σ′
L

(
z
(L)
i

)
(H−1

i )(L)g(L)
i

∥∥∥ is bounded, we get

∥H−1
i gi−H−1

j gj∥ ≤ c1

∥∥∥Σ′
L

(
z
(L)
i

)
(H−1

i )(L)g(L)
i − Σ′

L

(
z
(L)
j

)
(H−1

j )(L)g(L)
j

∥∥∥+ c2 (85)

where c1, c2 are constants. The above holds for an affine operation followed by a slope-bounded non-linearity (|σ′(w)| ≤ K).

B.3. Analytic Hessian for Logistic Regression

Here we provide the analytical formulation of the Hessian of the binary cross entropy loss per data point n with respect to
weights w for Logistic Regression.

For Binary Logistic Regression we have a loss function L(w) defined as:

L(w) = −
N∑
i=1

li(w) = −
N∑
i=1

yiln(σ̂) + (1− yi)ln(1− σ̂), where σ̂i = σ(wTxi + b) (86)

and σ is the sigmoid function.

We form a Hessian matrix for each data point i based on loss function ℓi(w) as follows:

Hn =

(
∂

∂w2 li(w) ∂
∂w∂b li(w)

∂
∂b∂w li(w) ∂

∂b∂b li(w)

)
=

(
σ̂i(1− σ̂i)xix

T
i σ̂i(1− σ̂i)xi

[σ̂i(1− σ̂i)xi]
T σ̂i(1− σ̂i)

)
This allows us to analytically form the Hessian information per point which is needed to precompute a single coreset which
will be used throughout training of the convex regularized logistic regression problem.

C. Further Empirical Evidence
C.1. ADACORE estimates full gradient closely, reaching smaller loss

ADACORE obtains a better estimate of the preconditioned gradient by considering curvature and gradient information
compared to the state-of-the-art algorithm CRAIG and random subsets. This is quantified by calculating the difference
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between weighted gradients of coresets and the gradient of the complete dataset. Fig 6, shows the difference in loss reached
by ADACORE vs CRAIG over different subset sizes. This shows that corsets selected using ADACORE to classify the Ijcnn1
dataset using logistic regression can reach a lower loss over varying subset sizes than CRAIG.

Figure 6: Normalized loss for Logistic Regression over different subset sizes on Ijcnn1 dataset using SGD. ADACORE
corsets, considering curvature information, to classify Ijcnn1 dataset using logistic regression consistently reaches a lower
loss compared to CRAIG, which only considers the gradient information.

C.2. Class imbalance CIFAR-10

To provide further empirical evidence, we include results using a class-imbalanced version of the CIFAR-10 dataset for
ResNet18. We skewed the class distribution linearly, keeping 90% of class 9, 80% of class 8 . . .10% of class 1, and 0% of
class 0, and trained for 200 epochs. Selecting a coreset for every epoch can be computationally expensive; instead, one can
compute a coreset once every R epochs. Here we investigate ADACORE’s performance on various R values. As Table 5
shows, ADACORE can withstand class imbalance much better than CRAIG and randomly selected subsets. When R = 20,
ADACORE achieves 57.3% final test accuracy, +8.7% above CRAIG, +2.6% above Random, 27.4% above GRADMATCH
and 36.2% above GLISTER.

Table 5: CIFAR-10 Class Imbalance, ResNet18. Final test accuracy and percent of full data selected (in parentheses).
Trained with SGD + Momentum, selecting a coreset every R epochs that is S percent of the full dataset. Note ADACORE
has greater accuracy while seeing fewer data points.

Accuracy S = 1% R = 20 S = 1% R = 10 S = 1% R = 5
ADACORE 57.3% ±0.5 (5%) 57.12 ±0.96 (9.5%) 60.2% ±0.36 (14.5%)
CRAIG 48.6% ±0.8 (8%) 55 ±1 (16%) 53.05% ±0.24 (27.5%)
Random 54.7% ±0.3 (8%) 54.6 ±0.76 (18%) 54.6% ±0.74 (33.2%)
GRADMATCH 29.9% ±0.4 (8.2%) 29.1% ±0.8 (14.7%) 32.75% ±0.83 (23.2%)
GLISTER 21.1% ±0.42 (8.6%) 17.2% ±0.75 (16%) 14.4% ±0.83 (22.2%)

Not only is ADACORE able to outperform CRAIG, random, GRADMATCH, and GLISTER, but it can do so while selecting a
smaller fraction of the data points during training, as shown under all settings in Table 5.

C.3. Class imbalance BDD100k

Additionally, we compared ADACORE to CRAIG and random selection for the BDD100k dataset, which has seven inherently
imbalanced classes and 100k data points. We train ResNet50 with SGD + momentum for 100 epochs choosing subset size (s
= 10%) every (R = 20) epochs on the weather prediction task. We see that ADACORE can outperform CRAIG by 2% and
random by 8.8% seen in Table 6.

Additionally, Table 7 shows that ADACORE outperforms baseline methods on BDD100k providing 2.3x speedup vs. training
on the entire dataset and a 1.8x speedup vs. random. We see that CRAIG, GRADMATCH & GLISTER do not reach the
accuracy of ADACORE even given more time and epochs. The epoch value is seen in parenthesis by accuracy. These
experiments were run with SGD+momentum.
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Table 6: ADACORE outperforms other baseline subset selection algorithms as well as training on the full dataset, reaching a
better accuracy in less time. This provides up to a 2.3x speedup compared to to the state of the art.

SGD + Momentum Accuracy S = 10% R = 20
ADACORE 74.3%
CRAIG 72.3%
Random 65.5%

Table 7: ADACORE outperforms other baseline subset selection algorithms as well as training on the full dataset, reaching a
better accuracy in less time. This provides up to a 2.3x speedup compared to to the state of the art.

BDD100k Speedup over

S = 10%
R = 20

Accuracy
(epoch)

Time
(s) Rand Full

ADACORE 74.3%(100) 7331 1.8 2.3
CRAIG 73.1%(150) 10996 1.3 1.6
Random 73.3%(180) 13050 1 1.2
GRADMATCH 72%(200) 14040 .7 1.1
GLISTER 73%(200) 12665 1.03 1.2
Full Dataset 74.3% (45) 16093 0.8 1

C.4. CIFAR-100

Table 8 shows that ADACORE outperforms baseline methods on CIFAR100, providing 4x speedup vs. training on the entire
dataset and a 3.8x speedup vs. Random. We see that CRAIG, GRADMATCH and GLISTER do not reach the accuracy of
ADACORE even given more time and epochs. The epoch value is seen in parenthesis by accuracy. These experiments were
run with SGD+momentum.

Table 8: ADACORE outperforms other baseline subset selection algorithms as well as training on the full dataset, reaching a
better accuracy in less time. This provides up to a 4.3x speedup compared to to the state of the art.

CIFAR100 Speedup over

S = 10%
R = 20

Accuracy
(epoch)

Time
(s) Rand Full

ADACORE 58.8%(200) 341 4.3 2.8
CRAIG 57.3%(250) 426 3.5 2.2
Random 58.1%(864) 1470 1 0.65
GRADMATCH 57%(200) 980 1.5 0.97
GLISTER 56%(300) 1110 1.3 0.86
Full Dataset 59% (40) 960 1.5 1

C.5. When first order coresets fail, continued

By preconditioning with curvature information, ADACORE is able to magnify smaller gradient dimensions that would
otherwise be ignored during coreset selection. Moreover, it allows ADACORE to include points with similar gradients
but different curvature properties. Hence, ADACORE can select more diverse subsets compared to CRAIG as well as
GRADMATCH. This allows ADACORE to outperform first order coreset methods in many regimes, such as when subset size
is large (e.g. ≥10%) and for larger batch size (e.g. ≥ 128).

In addition to the results shown in Figure 3a, (reproduced here as Fig 8a) where R = 1, ADACORE outperforms CRAIG
as well as GRADMATCH when we increase the coreset selection period R. Fig 7 shows that for larger R, first-order
methods succumb to catastrophic forgetting each time a new subset is chosen, whereas ADACORE achieves a smooth rise in
classification accuracy. This increased stability between coresets is another benefit of ADACORE’s greater selection diversity.
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(a) ADACORE with gradient w.r.t the penultimate layer,
training with SGD + Momentum

Figure 7: Classification accuracy of ResNet20 across training on the CIFAR10 dataset, selecting coresets with ADACORE,
CRAIG and GRADMATCH. Here, all coreset selection methods used the gradients of the model’s last layer (dimension 64).
The algorithms were calculated every R = 20 epochs with coreset size S = 10%. Note that CRAIG and GRADMATCH are
vulnerable to catastrophic forgetting, but not ADACORE.

(a) Accuracy vs. Epoch (b) Accuracy vs. Time

Figure 8: (a) Test accuracy of ADACORE, CRAIG, Random, GradMatch and GLISTER with ResNet-18 selecting subsets
of size 1% each epoch, batch size 256. (b) Training ResNet-18 on subsets of size S=1% selected every R=1 epoch, with
ADACORE, CRAIG, GLISTER and GRADMATCH for 200 epochs vs. Random for 1000 epochs and full for 15 epochs.
ADACORE outperforms baselines by providing 2x speedup over full, and more than 4.5x speedup over Random.

Interestingly, ADACORE achieves higher final test accuracy while selecting a smaller fraction of data points to train on
during the training than CRAIG. Note that since ADACORE takes curvature into account while selecting the coresets, it can
successfully select data points with a similar gradient but different curvature properties and extract a more diverse set of data
points than CRAIG. However, as the coresets found by ADACORE provide a close estimation of the full preconditioned
gradients for several epochs during training, the number of distinct data points selected by ADACORE is smaller than CRAIG.

For completeness we provide Fig 8b, in which we allow training random subset selection 1000 epochs. We see that it
takes over 4.5x longer for Random to near the accuracy of ResNet18 trained with ADACORE and Full. We use the same
experimental setup as seen in Fig 8a.

C.6. MNIST

For our MNIST classifier, we use a fully-connected hidden layer of 100 nodes and ten softmax output nodes; sigmoid
activation and L2 regularization with µ = 10−4 and mini-batch size of 32 on the MNIST dataset of handwritten digits
containing 60,000 training and 10,000 test images all normalized to [0,1] by division with 255. We apply SGD with a
momentum of 0.9 to subsets of size 40% of the dataset chosen at the beginning of each epoch found by ADACORE, CRAIG,
and random. Fig 9 compares the training loss and test accuracy of the network trained on coresets chosen by ADACORE,
CRAIG, and random, with that of the entire dataset. We see that ADACORE can benefit from the second-order information
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and effectively finds subsets that achieve superior performance to that of baselines and the entire dataset. At the same time,
it achieves a 2.5x speedup over training on the entire dataset.
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Figure 9: Test accuracy and training loss of SGD with momentum applied to subsets found by ADACORE vs. CRAIG,
and random subsets on MNIST with a 2-layer neural network. ADACORE achieves 2.5x speedup and better test accuracy,
compared to training on full dataset.

C.7. How batch size affects coreset performance

We see in Table 9 that training with larger batch size on subsets selected by ADACORE can achieve a superior accuracy. We
reproduce Table 3 here with standard deviation values.

Table 9: Training ResNet18 with S=1% subsets every R=1 epoch from CIFAR10 using batch size b= 512, 256, 128.
ADACORE can leverage larger mini-bath size and obtain a larger accuracy gap to CRAIG and Random. For b=512, we have
1 mini-batch (GD).

ADACORE CRAIG Rand Gap/
CRAIG

Gap/
Rand

GD b=512 58.32% ±0.45 56.32% ±0.32 49.14% ±1.19 1.69% 8.91%
SGD b=256 68.23% ±0.2 58.3% ±1.38 60.7% ±1.04 9.93% 8.16%
SGD b=128 66.89% ±0.73 58.17% ±1.34 65.46% ±0.93 8.81% 1.52%

C.8. Potential Social Impacts

Regarding social impact, our coreset method can outperform other methods in accuracy while selecting fewer data points
over training and providing over 2.5x speedup. This will allow for a more efficient learning pipeline resulting in a lesser
environmental impact. Our method can significantly decrease the financial and environmental costs of learning from big
data. The financial costs are due to expensive computational resources, and environmental costs are due to the substantial
energy consumption and the produced carbon footprint.


	Introduction
	Related Work
	Background and Problem Setting
	AdaCore: Adaptive Second order Coresets
	When First-order Coresets Fail
	Adaptive Second-order Coresets
	Scaling up to Over-parameterized Models
	Extracting Second-order Coresets
	Convergence Analysis

	Experiments
	Convex Experiments
	Non-Convex Experiments

	Conclusion
	Proofs of Theorems
	Proof of Theorem 4.1
	Proof of Theorem 4.3 and 4.4
	Discussion on Greedy to Extract Near-optimal Coresets 

	Bounding the Norm of Difference Between Preconditioned Gradients
	Convex Loss Functions
	Neural Networks
	Analytic Hessian for Logistic Regression

	Further Empirical Evidence
	AdaCore estimates full gradient closely, reaching smaller loss
	Class imbalance CIFAR-10
	Class imbalance BDD100k
	CIFAR-100
	When first order coresets fail, continued
	MNIST
	How batch size affects coreset performance
	Potential Social Impacts


