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Abstract
Despite the overall success of single-cell transcrip-
tomics, variations in the number of cells captured
from biological replicates in different regions of
the embedding space of cells limit the interpreta-
tion of downstream computational analyses. Here
we introduce a coreset selection based purifica-
tion method to alleviate potential replicate spe-
cific biases within single-cell datasets. We first
identify regions of the embedding space of cells
that are not biased towards single biological repli-
cates, and then extract a representative cell subset
(coreset) covering them. We demonstrate that
the extracted coresets provide a solid ground for
downstream analyses. Specifically, we show that
differential gene expression signatures based on
purified datasets are robust against replicate spe-
cific biases across 24 different cell-type specific
single-cell datasets. Furthermore, we highlight
that purification can enhance supervised learning
from single-cell transcriptomics data. Our results
indicate substantial improvement in predictive per-
formance (up to 0.16 gain in AUC) when testing
logistic regression models on 8 cell type specific
datasets across two independent cohorts.

1. Introduction
Single-cell transcriptomics is currently the best high-
throughput tool to profile the state of individual cells (Svens-
son et al., 2018; Aldridge & Teichmann, 2020). Downstream
analyses of single-cell data mainly rely on the the gene-cell
count matrices that provide a summary of the experiment
(Luecken & Theis, 2019). However, the number of cells
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captured per different biological replicates (e.g., mice), cell
types (e.g., T cells), or conditions (e.g., control-disease
groups) can greatly vary within these, introducing repli-
cate specific biases (Squair et al., 2021) in the embedding
space of cells, the single-cell landscape, as illustrated in
Fig. 1. This imbalanced nature of the data, which is of-
ten combined with relatively low replicate numbers, makes
conducting downstream analyses, such as differential gene
expression (DGE), or predictive modeling difficult and un-
reliable (Lähnemann et al., 2020). DGE, one if not the
most significant downstream task of single-cell data science
is often contaminated by false discoveries due to replicate
specific transcriptomic signatures (Squair et al., 2021). Ad-
ditionally, the imbalanced representation of replicates across
the single-cell landscape prevents the general application of
predictive machine learning (ML) methods on single-cell
datasets. However, the broad usage of supervised learning
on massive single-cell datasets could have a tremendous im-
pact on several predictive applications, e.g. tasks associating
transcriptomics data with patient sample attributes (Phong-
preecha et al., 2020).
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Figure 1. Single-cell landscape constructed from the gene-cell
count matrix of an experiment with multiple biological replicates
and two conditions. Replicate specific clusters and differences be-
tween the number of cells captured per replicates can contaminate
downstream analyses.

The recently proposed batch correction and data integra-
tion (Korsunsky et al., 2019; Hie et al., 2019; Stuart et al.,
2019) methods show promising results to confront technical
biases within single-cell datasets. However, these cannot
correct for the variability in the number of cells across the
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single-cell landscape and most batch correction methods
alter the original gene expression values. Another popular
approach to correct for imbalances in the number of cells per
replicate is downsampling, when an equal number of cells
are sampled randomly across each replicate. Although this is
a cell level approach, noise introduced by random sampling
limits its applicability, and it may also miss DGE signals that
are associated with meaningful cell subpopulations within
the data. The ‘pseudo-bulk’ method (Squair et al., 2021)
intends to prevent false discoveries with differential gene
expression by summing single-cell profiles within cell popu-
lations. The pseudo-bulk approach has been recently shown
to outperform established single-cell DGE methods (Squair
et al., 2021). On the other hand, the construction of pseudo-
bulk samples essentially masks and hence cancels cellular
level information, dramatically shrinks sample sizes and
prevent the discovery of any potentially relevant cellular
subpopulations.

In our work, we intend to overcome the noted pitfalls of
single-cell data analysis with a new computational approach.
We suggest purifying the data by selecting a “representa-
tive” subset (coreset) of cells from areas of the single-cell
landscape where multiple replicates are represented. Many
natural notions of representativeness satisfy submodularity,
an intuitive diminishing returns property: selecting new data
points help less if similar data points have already been se-
lected. Such problems can often be reduced to maximizing
a submodular set function. Submodular maximization has
recently achieved great success in various machine learn-
ing and data mining applications, including exemplar-based
clustering, document and corpus summarization, recom-
mender systems, etc. (El-Arini & Guestrin, 2011; Dasgupta
et al., 2013; Mirzasoleiman et al., 2013).

We perform purification in two steps. First we extract cells
from areas where multiple replicates are present and then we
select a representative coreset of these filtered cells. Specifi-
cally, we use the well-known exemplar clustering submod-
ular function that selects the set of most centrally located
elements in the data. The selected coreset hence (1) protects
downstream results from biases originating from replicate
specific areas since these are foremost excluded, (2) rep-
resents all remaining regions of the single-cell landscape,
including any interesting subpopulations, and simultane-
ously (3) ensures that regions are not overrepresented (4)
selects centrally located cells and avoids potential outliers.

2. Method
First we perform standard prepossessing steps (e.g., qual-
ity control) of single-cell data analysis (Luecken & Theis,
2019) and then we use the log-CPM normalized raw gene-
cell count matrix as the input for purification. We calculate
the first M principal components (PCs) and use these to

embed the cells to a lower dimensional space (“single-cell
landscape”). Alternatively, one may perform additional pre-
processing steps, e.g., it is possible to input batch corrected
data for coreset based purification, or use cell embeddings
that are different from the PCs.

Discarding replicate specific areas We identify for each
cell c the k-nearest neighbors of the cell (nc) in the PC space
based on Euclidean distance. We calculate the number of
those that belong to the same replicate as c: mc := |{lc =
ld, d ∈ nc}| where lc is the replicate of cell c and ld is the
replicate of cell d. Cells with 0 < mc < k are included for
coreset selection.

Coreset selection We intend to select a set of cells, that
best represent the cells we included. One approach for
finding such cells is solving the exemplar clustering prob-
lem (Kaufman & Rousseeuw, 2009; Mirzasoleiman et al.,
2016), that aims to minimize the sum of pairwise dissimilar-
ities between the selected cells and the rest of the elements
of the original dataset. Based on the PCs, we use Gaussian
kernel to define the similarity of cells c and d as

scd = e−
|pc−pd|2

2σ2

where p is the embedding vector of a cell based on the PCs,
and σ is the standard deviation of the PC matrix.

The set of r|V | exemplar cells from the groundset V can be
found as

S∗ ∈argmax S⊆V
|S|≤r|V |

∑
c∈V

max
d∈S

scd. (1)

The maximization problem (1) is NP-hard. However, the
above objective function is monotone and submodular, and
hence a near optimal solution can be found efficiently. A
set function F : 2V → R+ is submodular if F (e|S) =
F (S ∪ {e})− F (S) ≥ F (T ∪ {e})− F (T ), for any S ⊆
T ⊆ V and e ∈ V \ T . F is monotone if F (e|S) ≥ 0 for
any e ∈ V \S and S ⊆ V . For maximizing a monotone
submodular function, the greedy algorithm provides a (1−
1/e) approximation guarantee (Wolsey, 1982). The greedy
algorithm starts with the empty set S0 = ∅, and at each
iteration t, it chooses an element e ∈ V that maximizes the
marginal utility F (e|St) = F (St∪{e})−F (St). Formally,
St = St−1∪{argmaxe∈V F (e|St−1)}. The computational
complexity of the greedy algorithm is O(|V |2 ·r). However,
its complexity can be reduced to O(|V |) using stochastic
methods (Mirzasoleiman et al., 2015), and can be further
improved e.g., using lazy evaluation (Minoux, 1978) and
distributed implementations (Mirzasoleiman et al., 2013).

We identify exemplars for each condition C (e.g., control
and treatment) separately in order to ensure that represen-
tative cells are extracted from all conditions. We construct
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groundsets one-by-one for each condition C from the cells
that belong to C and apply the greedy implementation based
exemplar clustering to select rC fraction of those cells.

3. Experiments and results
We validate the proposed method in two experimental set-
tings. First, we investigate if purification protects down-
stream DGE results against replicate specific biases, by
performing a synthetic data augmentation based experiment.
Second, we examine if purification can improve supervised
learning and can result in more generalizable models. In
particular, we base our experiments on two independent
single-cell datasets on aging and investigate how purifica-
tion impacts the accuracy of single-cell age prediction.

3.1. Datasets

The datasets used throughout the experiments are ageing
focused single-cell atlases and include cells from young
and aged mice. We use the annotated, log-CPM normalized
count data from both experiments. Whenever PC calculation
is required, we select the first M := 20 number of PCs.

Tabula Muris Senis (TMS). We use the SmartSeq-2 based
data on male young (3-month-old) and aged (18/24-month-
old) mice of TMS (Consortium et al., 2020). The data
contains in total 52,553 cells across a large number of cell
types from 20 tissues. We select cell types that have at least
2 replicates with a minimum of 20 cells both in the control
(young) and treatment (aged) groups for the experiments of
Section 3.2. This selection criteria results in 24 cell types in
total (see Table 2 of the Appendix).

Murine aging cell atlas (Calico). The dataset of Kimmel
et al. (Kimmel et al., 2019) includes droplet based data in
total on 60,092 cells from 3 tissues (kidney, lung, spleen) of
young (7/8-months-old) and aged (22/23-months-old) mice.
We base our classification based validation in Section 3.3
on the 8 cell types that are present both in TMS and Calico.

3.2. Differential gene expression based evaluation

First we assess if the proposed method is protective against
replicate specific biases contaminating DGE results. In
order to ensure that the data we use is imbalanced and bi-
ased, we construct a synthetic, data augmentation based
analysis. We first identify a few replicate specific outlier
cells, and augment the data based on these. The overrep-
resented outliers introduce a controlled replicate specific
bias in the data. Next, we purify the augmented data and
perform DGE on the original data (D0), the augmented data
(Da), and the purified dataset (Dp) respectively. We expect
more similar results between Dp and D0 than between Da

and D0. For each cell type, we apply the following six
steps (see Fig. 4 of the Appendix): (1) First, we calculate

the (M := 20) PCs based on the log-CPM normalized ex-
pression profiles of the cells. (2) To identify a potential
outlier group within the dataset, we calculate the distance
of every cell from its closest neighbor belonging to a dif-
ferent replicate within the PCA space. (3) We select the
cell c with highest such distance as well as any neighbor-
ing cells d from the same replicate (lc = ld, c ∈ nc). (4)
Next, we use SMOTE (Chawla et al., 2002) to augment
the data based on the selected “outlier” cells and hence in-
troduce replicate specific bias in the data. (5) We conduct
Wilcoxon-Mann-Whitney based DGE on the original data
(D0), the augmented data (Da) and the purified data (Dp).
(6) Finally, we calculate Spearman correlation (S) based on
the −log10(p-values) obtained with DGE. We compute and
compare S(D0, Da) and (S(D0, Dp)).

In case of each cell type selected from TMS (Consortium
et al., 2020) data we increase the original dataset in size
(1.05X − 1.5X) and compare S(D0, Da) and S(D0, Dp).
We set the number of PCs to M := 20, the number of neigh-
bors to k := 10 across all cell types and select r = 0.9
fraction of the cells when performing coreset selection. Our
results are summarized in Figure 2 where each point rep-
resents a cell type and the diagonal line indicates equal
performance on the augmented and purified datasets. Our
results indicate that purification indeed leads to higher sim-
ilarities (each point is above the diagonal), even when the
least, 5% outliers are added to the original dataset. In con-
trast, DGE performed on the augmented dataset becomes
dissimilar to the DGE performed on the original data.

3.3. Classification based evaluation

Next we investigate if purification can enhance the gen-
eralizability of classification models. We use 8 cell-type
specific datasets on aging that can be found in two indepen-
dent cohorts (TMS and Calico). We train logistic regression
classifiers with L1 regularization (α : 0.02− 2) to estimate
for each cell the binary age label of its source organism
(young vs. aged). (1) We train our models on the Calico
data which has significantly more cells than TMS. To op-
timize the hyperparameters with cross-validation, we set
aside cells from one young and one aged replicate in each
round for validation set and use the rest of the cells for
training. Our aim here is to construct a realistic training
scenario where the validation set is independent from the
training set. (2) We repeat the same training procedure but
purify the training set before model fitting. (3) We test the
predictive performance of the models on the independent
cohort of TMS and measure the Area Under the ROC curve
(AUC). (4) As an additional baseline we also measure the
performance of a similarly optimized classifier that uses
data that contains equal number of cells from each replicate.

Our results are summarized in Table 1. Purification im-
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Figure 2. Spearman correlation of cell type specific DGE results, each point represents a cell type in TMS. Correlation between the
augmented and the original data based DGE is indicated on the x-axis, and correlation between the purified and the original data is shown
on the y-axis. Diagonal lines represent equal similarities, points above the diagonal indicate improvement with purification. From left to
right, results at increasing augmentation levels are shown (1.05,1.1X, 1.2X, 1.3X, 1.4X, 1.5X).

Table 1. Cell-type specific classification results on aged vs. young cells. Classifiers are trained on the Calico dataset (Kimmel et al., 2019),
evaluation is based on the cohort of TMS (Consortium et al., 2020). Columns from left to right: hyperparameters used indicating the
number of PCs M , number of neighbors k, fraction of the young cells selected ry , fraction of aged cells selected ra, regularization coef.
of the baseline model αori, regularization coef. of the purified model αpure; AUC measured on TMS in case of models trained on the
original data AUCori, the purified data AUCpure and the balanced subsampled data AUCbal; difference of AUCpure and AUCall.

ORGAN, CELL TYPE M k ry ra αORI αPURE AUCORI AUCPURE AUCBAL AUCPURE −AUCORI

KIDNEY, ENDO. CELL 20 20 0.4 0.2 1.00 0.06 0.661 0.767 0.726 0.106
KIDNEY, EPITH. CELL 20 10 1.0 0.2 1.00 0.80 0.564 0.638 0.522 0.074
KIDNEY, MONOCYTE 20 20 0.4 0.8 0.40 0.20 0.526 0.680 0.388 0.154
LUNG, ENDO. CELL 20 20 0.8 1.0 0.10 0.08 0.841 0.885 0.820 0.044
LUNG, MONOCYTE 20 15 0.8 1.0 0.60 0.80 0.822 0.826 0.810 0.004
LUNG, T CELL 20 10 0.6 0.2 0.10 0.01 0.801 0.902 0.769 0.101
SPLEEN, B CELL 20 15 1.0 1.0 0.08 0.04 0.841 0.862 0.816 0.021
SPLEEN, T CELL 20 20 1.0 0.8 0.02 0.04 0.886 0.906 0.883 0.02

proves the predictive performance in each cell type, espe-
cially in case of cell types where training on the whole
original datasets results in fairly low performance, i.e., in
cell types from the kidney. Substantial improvements can
be observed for cell types where training on the whole data
results in good performance as well. For example, there is
an additional 0.1 gain in AUC in case of the lung T cells
(purification is visualized in Fig. 3).

4. Discussion and Conclusion
Here we introduced a coreset selection based method to
purify single-cell datasets. We have shown that the sug-
gested algorithm can aid downstream analyses, in particular
differential gene expression, as it is protective against repli-
cate specific biases. Additionally, we found that it leads
to single-cell age classifier models that have substantially
higher performance when validated on an independent co-
hort without the need of any integration between the two
datasets. Crucially, coreset selection does not alter the gene-
cell count matrix in any way. Consequently, it is possible
to apply the proposed computational tool together with any
downstream application including differential gene expres-
sion, trajectory analysis, cell annotation, or to couple it with
any data correction method. In our future work we intend to
investigate the hyperparameter fine tuning of purification.
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Figure 3. UMAP (McInnes et al., 2018) visualization of lung T
cells of the Murine aging cell atlas (Kimmel et al., 2019). left: cells
colored by biological replicate right: purified data is highlighted
in blue, the rest of the cells are colored in grey.

Although here we focused on purification, coreset selec-
tion has the potential of summarizing massive single-cell
datasets. The ever increasing number of cells captured in
transcriptomic experiments often makes it difficult to reuse
these data in secondary or follow-up analyses by different
research groups. Coreset selection provides an opportunity
to shrink transcriptomic data by representative summaries
that include the same information as the original count ma-
trices, but have less noise and are much easier to handle in
any potential future analyses. We hope that coreset selection
based purification will emerge as a best practice that extends
the current single-cell analysis pipelines.
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A. Concept of the synthetic data augmentation based experiment and summary of data sets used
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Figure 4. Concept of the synthetic data augmentation based experiment. DGE results based on the augmented data, with and without
purification, are compared to the DGE results calculated from the original dataset.
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Table 2. Summary of the datasets used. From left to right, for each cell type we list the number of cells, number of young cells, number of
aged cells, number of replicates, number of young replicates, and the number of aged replicates. Rows highlighted in grey are only used
for testing classifiers in Section 3.3. Abbreviations: CSC: crypt stem cell, endo. cell: endothelial cell, epid. cell: epidermal cell, epith.
cell: epithelial cell, HSC: hematopoietic stem cell, macro.: macrophages, oligo.: oligodendrocytes, SMC: smooth muscle cell.

organ, cell type # cells # young cells # aged cells # repl. # young repl. # aged repl.

Tabula Muris Senis (TMS.)

brain, endo. cell 819 300 519 6 3 3
brain, microglia 8,328 2,154 6,174 9 3 6
brain, oligo. 1,254 962 292 7 4 3
fat GAT, macro. 342 166 176 8 3 5
fat GAT, stromal cell 860 308 552 8 3 5
fat MAT, B cell 225 66 159 7 2 5
fat MAT, stromal cell 817 256 561 7 2 5
fat SCAT, macro. 414 134 280 8 3 5
fat SCAT, stromal cell 779 279 500 8 3 5
heart, fibroblast 1,482 529 953 10 4 6
heart, monocyte 716 214 502 8 3 5
intestine, CSC 580 100 480 7 2 5
intestine, secretory cell 964 186 778 8 2 6
kidney, monocyte 78 17 61 4 1 3
kidney, endo. cell 159 41 118 7 2 5
kidney, epi. cell 241 50 191 9 3 6
liver, hepatocyte 774 193 581 6 2 4
lung, endo. cell 155 45 110 7 2 5
lung, monocyte 263 88 175 9 3 6
lung, T-cell 117 12 105 5 1 4
marrow, granulocyte 2,488 534 1,954 8 2 6
marrow, HSC 1,997 943 1,054 8 3 5
pancreas, beta cell 743 226 517 5 2 3
pancreas, acinar cell 236 53 183 5 2 3
pancreas, alpha cell 298 182 116 5 2 3
skin, basal cell 495 204 291 7 3 4
skin, keratinocyte 915 447 468 8 3 5
spleen, B cell 1,550 352 1,198 8 2 6
spleen, T cell 351 88 263 8 2 6
thymus, thymocyte 1,090 418 672 8 3 5

Murine aging cell atlas (Calico)

kidney, endo. cell 2,243 1,661 582 7 4 3
kidney, epith. cell 1,175 777 398 7 4 3
kidney, monocyte 571 256 315 7 4 3
lung, endo. cell 5,644 3,267 2,377 6 3 3
lung, monocyte 3,053 1,010 2,043 6 3 3
lung, T cell 2,541 1,107 1,434 6 3 3
spleen, B cell 17,829 8,669 9,160 7 4 3
spleen, T cell 7,138 3,523 3,615 7 4 3


