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Abstract—Despite the efforts to design better antivirus soft-
ware, malware continue to spread and cause enormous damages.
Effect of immunizing computer systems as the most effective
control policy for preventing such infections is two-fold. On
one hand, it increases the global immunity of the network by
providing indirect protection for unimmunized systems. On the
other hand, raising the awareness of users from the possibility of
infection can trigger behavioral changes by which users take mea-
sures to reduce their systems’ susceptibility using the antivirus
software. Here, we propose the Behavior-Immunity model that
allows measurement of vaccination effect based on the indirect
protective effect of immunization strategies. It also provides
a mean to utilize human behavioral changes to enhance the
effectiveness of immunization strategies. In this work, we focus on
the word of mouth as the source of user awareness and show that
immunization schema can appropriately utilized the behavioral
changes to practice better results. We also present a methodology
for network immunization which is provably close to the optimal
solution. Extensive computational experiments on some synthetic
and real-world networks revealed that this strategy offers a
significant improvement over well-studied targeted immunization
method based on degree centrality.

Index Terms—infection, antivirus, immunization, behavioral
response, economic optimization

I. INTRODUCTION

The fast growth of Internet and other communication net-
works makes them a suitable target for malicious activities.
An infection spreads through the links of such networks
constructed by computers and their communication channels
and caused millions or even billions of dollars in damage by
preventing the network from doing its proper functionality [1].
The process by which malicious objects such as worms, trojan
horses and computer viruses travel through computer networks
is analogous to the process of spreading epidemics through a
population. Concerning these similarities, classical epidemic
models like SIR and SIS has been widely adopted and used
to study the action of malicious objects throughout a network.

Vaccination (running anti-malicious software) is still known
to be the most effective and long lasting method for preventing
diffusion of infections. The protective effect of vaccination
strategies extends beyond vaccinated to unvaccinated members
of a network. Immunized nodes provide a measure of protec-
tion for those who have not developed immunity by disrupting
the chain of infection between infected and susceptible nodes.

Consider a malware that is being spread through a computer
network. In this settings, we are dealing with a two layer
network as shown in Fig (1). The top layer is a social network
of individuals and their social contacts. The bottom layer
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Fig. 1: The two layer network structure. Immunization of
computer ¢ provides indirect immuity for their neighbors in
the bottom communication layer (g). At the same time, user &
increases the awareness of her/his social neighbors about the
malware and raises their willingeness to buy the anti-virus (v)
and immunize their systems. Such behavioral reactions can
directly affect the infection dynamics. The Values of ¢ and v
are calculated assuming constant link weights.

is a network of computers interconnected by communication
channels that allow sharing of resources and information.
While infection is begin spread through the bottom com-
munication layer, awareness about presence of the malware
arises in the top social layer and triggers behavioral changes
of people trying to protect their computers by proactively
installing antivirus patches to prevent infection by malware.
Such reactions in the corresponding social layer can directly
affect the infection dynamics and alter the progression of the
infectious agent in the bottom layer.

Recently, substantial effort has been devoted to understand
the effect of human behavior on infection dynamics [2]-[6].
However, such efforts have not always made its way into
mathematical models. Economic incentives affect the people’s
decision and reaction in case of an outbreak. Surprisingly,
there has been relatively little systematic investigation into
understanding economic principles of human behavior and its
effect on the way individuals respond to the risk of infection.
Understanding the interplay between human behavior and
economic incentives can significantly enhance the design of
optimal prevention and treatment programs that takes account
of the costs of disease and control.

In this paper, we provide a detailed presentation of a
Behavior-Immunity Model that allows measurement of vacci-
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nation effect based on the indirect protective effect of immu-
nization strategies. Based on our model, we would be able to
obtain an estimation from the efficiency of different immuniza-
tion methods without assuming a set of initial infected agents
and relying on an specific epidemiological model for spread of
epidemics. It also provides a mean to link human behavior to
infection dynamics by having informed individuals try to buy
the anti-malware software and reduce the susceptibility of their
systems. Incorporating behavior into immunity model enhance
its utility in evaluating control measures and help us design
formal economic optimizations which allocate the minimum
possible resources to achieve the best possible effect [7].

Two data layers composing the Behavior-Immunity model.
The communication layer models the indirect immunity pro-
vided by the nodes equipped with antivirus for their neighbors
and offer a measure to determine the population-level or
global immunity of the network. The social layer models the
willingness of individuals to pay a price to buy and install
the antivirus software on their computers. The source of the
information which leads to behavioral changes can be of global
or local nature. In the first case, all people are effected from
the same sources, often mass media or companies providing
protection against cyber threats. However, in the latter case,
people base their decisions and consequent reactions on their
awareness from the local prevalence of an infection, such as
hearing from someone who witnessed the infection first hand.
Studies have revealed that awareness of the local prevalence of
an infection not covered by media or companies acting against
cyber threats has a more impact on people’s decision, and can
trigger larger cascades of behavioral changes in response to
epidemic [8].

Based on the proposed model, we present a general method-
ology for network immunization which uses the minimum
budget required for globally immunizing the network against
infection. Those who installed the antivirus patches increase
the awareness of their friends about the infection and presence
of an appropriate antivirus software. The positive feedbacks
people receive from their friends about the software increase
their willingness to buy and use the antivirus. When local
awareness triggers behavioral responses, people will have
different valuations for the antivirus. In such settings, the cost
of immunizing nodes are not constant. Even in the unit-cost
case, finding an immunization strategy which maximized the
global immunity in a network is NP-hard [9]. However, we
show that based on our Behavior-Immunity model, the global
immunity function of the network is non-negative, monotone
and submodular, i.e., it satisfies the intuitive “diminishing
returns” property: The marginal improvement in the global
immunity while vaccinating a nodes decreases as the set of
immunized nodes increases.

We also provide computational experiments on artificially
constructed model networks as well as several social and
technological networks, showing that change in the behavior
of people trying to protect themselves against the infection has
significant impact on reducing the infectivity of the network.
The interesting observation is that, immunization strategies

that gives the same priority to all nodes. i.e., selects the nodes
with the same probability to be vaccinated could hardly exploit
behavioral changes in the population to improve its result. On
the other hand, immunization schemas which take account of
the heterogeneity of scale-free networks could appropriately
utilized the behavioral changes to practice better results. Our
proposed strategy can effectively utilize the effect of locally
spreading awareness to prevent an infection from breaking out
in the network.

II. BEHAVIOR-IMMUNITY MODEL DEFINITION

Consider a collection of computers interconnected by com-
munication channels G; = (4, E7) and a set B of computer
users with their possible social contacts Gy = (B, Es). With-
out loss of generality, we can make the simplified but justifi-
able assumption that each user only uses his/her own computer.
The total set of users with their computers can be considered as
a two layer network G = (V, E) in which V = AUB and FE =
E1 UEQ UE3 where E3 = {(A17 Bl), (AQ, BQ), ceey (An, Bn)}
and n = |A| = |B|. A piece of malware such as a computer
virus or a self propagating worm can spread through the
bottom communication layer with or without user interaction.
Such process is often accompanied by a rise in awareness of
users in the top social layer and a subsequent change in their
behaviour. Users aware of the malware can take measures to
reduce their susceptibility by installing anti-virus patches on
their computers. At the same time, they can provide their
social neighbors by information about the presence of the
malware. The Behavior-Immunity model is composed of two
layers. The communication layer models the effect of installing
anti-virus on the dynamic of malware propagation. The social
layer models the valuation of users for buying the anti-virus to
protect their computers. In the following we provide a detailed
presentation of each data layer and of the basic equations that
defines the computational model.

A. Communication Layer and the Global Immunity Model

The computers equipped with anti-virus do not become in-
fected with the malware and do not transmit the infection while
exchanging data. Hence, they reduce the risk of infectivity
for their susceptible neighbors and protects them from being
exposed to the risk of infection.

Consider a network of computers interconnected by com-
munication channels along which information can be shared
and exchanged G; = (A, E1). Infection can spread along
the edges between susceptible and infected computers. In
case of an outbreak, each node ¢ € A can become infected
through a contact by any of its infected neighbors in the
network. On the other hand, ¢ benefits from the protection
provided by its neighbors equipped with anti-malware soft-
ware. When the network is modeled by a graph, the indirect
immunity that node ¢ acquires, can be modeled as a function,
¢; : 24 — R* of its immunized neighbors in the graph, i.e.
4:(8) = fi(Xesupsy Wi/ Spea wir) where 5 C A\ {i} is
the set of all computer that have been already immunized in
the network and w;; is the weight of link e;;.



If n nodes have already acquired immunity against the
infection, the global immunity of the network, G(.), is equal
to the sum of the immunity of all nodes, i.e. G =Y., ¢;(.).
In general, G(.) is the expected fraction of nodes that wont
become infected in case of an outbreak. In this work we
assume that functions f; are non-negative, monotone and
concave. Such concavity results a concave global immunity
function which has also been demonstrated by empirical
studies (see figure 1 in [10]). Such concave immunity functions
have another implication: once sufficiently many nodes have
become vaccinated, it is easy to see that additional vaccination
have little impact on the global immunity of the network.

In a communication network, several factors should be
considered in determining the link weights. Among them are
the number of messages interchanging between ¢ and j and
the security vulnerabilities of ¢. Since in real networks exact
information about these parameters cannot be obtained, we
assume that we know the distribution from which the link
weights are drawn. With this assumption, each w;; is drawn
independently from a distribution F;; for all 5 € S. The
distribution F; g can be derived from the distribution F;; for
all j € S and each ¢;(.) can be treated as random variables
from distribution F; g for all S C A\ {¢} and for all € A.

B. Social Layer and the Behavioral Model

As contagions spread through the communication network,
it will be accompanied by behavioural responses of users
trying to protect their computers against the infection. The
actions taken by individuals can have strong effects on the
epidemic dynamics of the infection.

In social networks, people are affected by decisions of their
friends. The feedbacks people receive from their neighbors
have significant impact on their decision to adopt the same
behavior. In case of an outbreak, those who immunized their
computers against the infection increases the awareness of
their peers and raise their willingness to become vaccinated.
The information people receive from their neighbors will
lead to self-initiated, voluntary behavior by which people try
to protect their devices from being infected. The more the
number of people who are aware about the contagion, the more
valuation individuals have for buying the software patches and
protect their devices.

Based on the above discussion the valuation of individ-
ual ¢ to immunized her/his device can be modeled as a
function v; 2B Rt of people who have already
vaccinated their computers against infection, ie. v;(S) =
fi( esuqiy wij/ 2opep wir). The validity of this approach
has been demonstrated by empirical studies: [11], [12] studied
the probability of joining a community given that some of your
friends were already members. [13] studies the effect of social
influence on increasing the buyers valuation for an item.

The link weights represent the influences that individuals
have on each others. Studies like [11] used the link structure
of online social networks to estimate w;;. However, without
having exact information about the influences, we assume
that we have distributional information about them. With this

assumption, the link weights are derived independently from
distribution function Fj;. Note that ), - 5 w;; in the denomi-
nator is just a scaling factor for normalizing the influences and
does not change the validity of the model. The distribution 7 g
can be derived from the distribution F; for all j € S.

C. Properties of the Global immunity model

Naturally, the global immunity function G(S) is non-
negative and monotone, i.e. for all A C B C V,G(A4) <
G(B). Monotonicity of G implies that vaccinating a device
can only increase the global immunity in the network. How-
ever, the most interesting property of G is its submodularity.

Theorem 1. Ler I;(S) be the immunity function for node i
given that set S have already become vaccinated. If all the
immunity functions I; for ©« € V are non-negative, monotone
and submodular, then the expected global immunity function
9(5) = Yiewnsli(S) is a non-negative submodular set
function.

Proof. We use the following facts about submodular functions
to prove the sumbodularity of G.

Fact 1. Submodularity is closed under nonnegative linear
combinations, i.e. for any submodular functions f1, fa, ..., fx
and real numbers a1, as, ..., ;. Then, the set function g :
2V — R where g(S) = Zle a;f;(S) is a submodular
function. Consider any submodular function f, the set function
g where g(S) = f(V'\ S) is also submodular. Moreover, for
a fixed subset T C V', function g where g(S) = f(SUT) is
also submodular.

Using the above facts, in the following we show that assum-
ing monotone concave immunity function I; for ¢ € V, the
global immunity function G(.5) is a nonnegative submodular
function.

Since the immunity function of the individuals, I; are non-
negative for all ¢ € V, the global immunity of the network
G = Y@, 1, is also a non-negative function. In order to
prove the submodularity of G, we need to prove that for any
set ACV and BCV:

G(A) + G(B) > G(AUB) + g(An B),

Monotonicity of I; for ¢ € V follows from the non-negativity
of the weights and the non-negativity and monotonicity of f;.
Using this fact, for each i € (A\ B) U (B \ A) we have:

S LB+ Y L(A)= Y L(ANB)+ > L(AUB)

i€A\B i€B\A i€A\B i€B\A
(D
Now, using submodularity of I;, for each i € V' \ (AU B),
ILi(A)+ I;(B) > ,(AUB) + I,(AN B)

Therefore, summing the above inequality for all i € V' \ (AU
B), we get:

Z I;(A) + Z I;(B)
i€V\(AUB) i€V\(AUB)
> Y L(AUB)+ > L(ANnB) )

i€V\(AUB) i€V\(AUB)



