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Abstract – In this letter we studied the epidemic spreading on scale-free networks assuming
a limited budget for immunization. We proposed a general model in which the immunity of an
individual against the disease depends on its immunized friends in the network. Furthermore, we
considered the possibility that each individual might be eager to pay a price to buy the vaccine
and become immune against the disease. Under these assumptions we proposed an algorithm for
improving the performance of all previous immunization algorithms. We also introduced a heuristic
extension of the algorithm, which works well in scale-free networks.
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Introduction. – Infectious diseases have been a major
cause of death, disability, social and economic disrup-
tion for millions of people worldwide. The dynamics
of epidemics is strongly influenced by the underlying
structure of the contact network. Many real networks
show scale-free degree distributions [1–3], and it has
been revealed that the spread of infections on scale-free
networks does not have any epidemic threshold [4]. Find-
ing an efficient immunization method against the spread
of infectious diseases in these networks can significantly
reduce the cost and pains in case of an epidemic outbreak.
Models such as susceptible-infected-susceptible (SIS)

and susceptible-infected-removed (SIR) are well-known
models to consider infectivity [5] that assume equal trans-
mission probability over all links of the contact network.
However, this is not a realistic assumption in real scale-
free networks. In fact, the infection transmission proba-
bility over a link can be considered as a function of the
contact time between an infected and a susceptible indi-
vidual, the body resistance of the susceptible individual
against disease and many other factors. In the network
of possible contacts, these parameters can be modeled as
the weight of the links between the nodes or individu-
als. On the other hand, as a disease cannot be transmit-
ted from an immunized individual to healthy ones, the
immunized neighbors of an individual can make him/her
immune against the disease to some extent. In this paper,
we propose a new model in which the probability for an
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individual to be exposed to the infection is a function of
the immunized individuals in the network.
The effects of immunization strategies are often stud-

ied by ignoring the vaccination costs or assuming an infi-
nite budget; however, this might not be the case in real
situations. Here, we aim at a more natural objective by
finding an effective immunization strategy considering a
limited budget. We are interested in reducing the mini-
mum budget required for globally immunizing a network
against infections. To this end, models available for diffu-
sion of innovations [6,7] and influence maximization [8–10]
can be used. Here we aim at determining appropriate offers
to those who are eager to pay a price for the vaccina-
tion. The lower price increases the probability of selling
the vaccine thus decreasing the revenue that can be added
to the budget in order to immunize a higher number of
individuals in the network. The strategy should be able to
make a trade-off between these issues. We introduce two
approaches for determining applicable offer sequences in
different networks. Computational experiments show that
these methods can extensively increase the efficiency of
the immunization strategies.

Model. – Consider a network of individuals in which
each link represents a connection along which the infection
can spread. Let us suppose that producing each vaccine
piece has a unit cost and a limited budget is allocated for
vaccination. In addition, each individual i might be eager
to pay a price to become immunized.

Disease transmission and immunity model. The indi-
viduals who have been vaccinated against the disease do
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not get infected, and thus, do not transmit the disease.
Thus, immunization is of value from two perspectives. On
one hand, it decreases the overall probability of infections
by reducing the number of susceptible individuals in the
network. On the other hand, as the immunized individuals
cannot become infected, the disease cannot be transmitted
through their links to the susceptible ones. This reduces
the infections probability of the susceptible individuals in
the network. Based on this intuition, we model the immu-
nity of individual i, qi(.), as a function of the set of other
individuals in the network who have already been immu-
nized.
When the network is modeled by a graph, qi : 2V →R+

is a function of neighbors of node i in the graph, i.e.
qi(S) = fi(

∑
j∈s∪[i]wij/

∑
k∈v wik), where V is the set of

all individuals in the network, S⊆V \{i} is the set of
all individuals who have already been immunized in the
network and wij is the weight of link eij . Since the exact
information about the link weights cannot be obtained
in real contact networks, we assume that we know the
distribution from which the weights are drawn, i.e. the
values of wij ’s are drawn independently of a distribution
Fij for all j ∈ S.
Influence model. In order to model the willingness of

individuals to buy the vaccine and become immune, we
use the influence extraction model [10]. Consider a seller
and set V of potential buyers; vi(S) : 2V →R+ is the value
of the good for buyer i if the set S of buyers already own
the item. Each buyer i receives feedbacks from the set of
his/her neighbors who have bought the same item. For
high-quality items these feedbacks will be positive and
increase the valuation of the buyer i for the good. The
valuation of the buyer i can be modeled as a non-negative
monotone concave function fi :R+→R+ [10]. For all i∈
V \S, we have vi(S) = fi(

∑
j∈S∪[i]wij/

∑
k∈V wik), where

the link weights represent the influences that individuals
have on each other.

Immunization strategies. –

Random immunization. Random or uniform strategy
selects all the individuals within the population with the
same probability. Recall that a network remains conta-
gious if immunization does not destroy its connectivity.
In other words, a network acquires global immunization if
removal of the immunized individuals damages the global
integrity of the network. It is well-established that scale-
free networks possess high resiliency to random connection
failures, i.e. almost all the nodes in a scale-free network
need to be removed in order for a network to become
disconnected [4,11].

Acquaintance immunization. Without having global
information about the node degrees in a network, acquain-
tance immunization can significantly boost the effective-
ness of the random strategy [12]. In this approach a
random acquaintance of a randomly chosen node will
become immunized. The nodes with higher degree are

more likely to be chosen by the acquaintance method. An
enhanced acquaintance immunization strategy was also
proposed to improve its efficiency [13]. In this method,
first, a random node is selected. Then, one of its neigh-
bors with higher degree is randomly chosen and becomes
immunized. Alternatively, one might choose the neighbor-
ing nodes if they have degrees larger than a threshold kcut.
If there are no such neighbors, no node is chosen.

Targeted immunization. Although scale-free networks
are very robust against random failures, selective damages
can strongly affect their integrity [11]. We can take advan-
tage of this property to devise an efficient targeted immu-
nization scheme that takes into account the heterogene-
ity of scale-free networks. The heavily connected nodes
are highly exposed to the infection and are more likely
to spread the disease. Targeting these nodes, therefore,
hinders the infections from penetrating through other
parts of the network and noticeably boosts the effective-
ness of an immunization strategy. Several studies on model
and real scale-free networks revealed the efficiency of the
targeted immunization strategy, see for example [11,14],
which makes it the simplest solution to the optimal immu-
nization strategy in heterogeneous networks.

Greedy hill-climbing. Finding an optimal immuniza-
tion strategy can be considered as a problem of finding the
initial set of nodes S to be immunized in order to maximize
the global immunity g(S ) in the network. The greedy hill-
climbing algorithm is a mathematical optimization tech-
nique for finding a local optimum out of all possible solu-
tions. Starting with an empty set S, in any iteration, the
element which maximizes the function value is added to
the solution set S. The algorithm based on a hill-climbing
approach is as follows.

1) Initialize set S = ∅.

2) Among buyers who accept the offered price choose
buyer i such that i= argmaxi g(S ∪ {i}) − g(S).

3) If g(S ∪ {i})! g(S), output S.

4) S = S ∪ {i} and go to step 2).

Computational experiments on large networks showed
that this approximation algorithm significantly outper-
forms the targeted strategy and results in a better influ-
ential set [9]. Although the problem of selecting the most
effective nodes for immunization is NP-hard, the greedy
hill-climbing provides an approximation guarantee arbi-
trarily close to (1 − 1/e) —slightly better than 63%—
for any non-negative submodular function as the immu-
nity function of each node in a network [8]. Function
f(.) is submodular if it satisfies the intuitive “diminishing
returns” property, i.e. adding an element to a small set
increases the function value more than adding an element
to a large set.
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Finding the optimal pricing strategy. – Each
individual in the network might be eager to voluntarily pay
a price to buy the vaccine and become immune. In order
to improve the result of an immunization strategy, we offer
the vaccine to the individuals chosen by the algorithm
with a discounted price in a way that most of them accept
the offer. These values can be added to the initial budget
to make a higher number of people immune against the
disease.
In the sequel we introduce two strategies to determine

an appropriate offer sequence.

Pricing based on average degree. Here we introduce a
strategy that uses only the average degree of a network (µ)
to determine an appropriate offer sequence in any network.
We then prove that this approach improves the result of
any immunization strategy.
As the individuals in the network are influenced by those

who have already been vaccinated, all the nodes have zero
value before the immunization starts. Therefore, we should
give away the vaccine for free to the first nodes chosen
by an immunization algorithm to increase the exerted
influence on the remaining individuals. Let us suppose that
giving away the item to k1 nodes who are added to the set
S, the exerted influence on any nodes i∈ V \S becomes at
least di/µ, where di is degree of node i. From this point
on, all the nodes chosen by the algorithm buy the vaccine
with a price at least equal to f(1/µ). Therefore, we can
offer the vaccine to the next k2 individuals chosen by the
algorithm with the price of f(1/µ) and be assured about
the acceptance of the offers. We continue this process until
the exerted influence on any nodes i∈ V \S becomes at
least 2di/µ, and then, offer the vaccine to the next k3
individuals with the price of f(2/µ). Indeed, in step j,
where j = 1, . . . , n, n= ⌊µ⌋ 1, we offer the item with the
price of f(j − 1/µ) to the kj individuals chosen by the
algorithm. Adding these nodes to the set S the values of
the remaining individuals in V \S become at least equal
to f(j/µ).

Lemma 1. In a network of size N, for any set S, |S|" kNµ
and all i∈ V \S, the expected value of v i is at least f( kµ ).

Proof. Consider real-valued random variableX(j), j ∈ S
as follows:

X(j) =

{
1, if wij > 0,
0, if wij = 0,

(1)

where i is an arbitrary node. The expected influence on
node i is

E

⎛

⎝
∑

j∈S∪{i}

[X(j)]

⎞

⎠ =
∑

j∈S∪{i}

E([X(j)])

≈
∑

j∈S∪{i}

di · F̄ij
N · F̄ij

= k
di
µ
. (2)

where F̄ij is the expected value of the distribution from
which the link weights are derived.

Thus, the value of buyer j is

fi

⎛

⎝
∑

j∈S∪{i}

wij

/∑

k∈V
wik

⎞

⎠ ≈ fi
(
k · di · F̄ij
µ · di · F̄ij

)
= fi

(
k

µ

)
.

(3)
Lemma 2. Using the pricing strategy based on µ with

any immunization algorithm will increase the global
immunity in the network.

Proof. Considering Lemma 1, for any immunization
algorithms, we guarantee that any node chosen by the
algorithm can buy the item with the offered price. As we
do not give away the item for free to all nodes in set S
some value will be added to the initial budget which can be
utilized to immunize more people and improve the global
immunity in the network.
Note that this method does not use any information

about the structural properties of the network or the
immunization algorithm. This is particularly interesting
for the case of random strategy, since the exact structure of
the contact networks cannot be usually extracted, in many
cases and the random immunization is the only applicable
strategy.

Greedy pricing approach. In many networks we can
extract complete or at least partial information about
the connectivity. The targeted strategy can appropri-
ately use this information to significantly improve its effi-
ciency in scale-free networks. Immunization of the heavily
connected nodes has two major effects. On the one hand,
many connecting paths between different parts of the
network become disconnected and the giant component
of the network is partitioned into many smaller isolated
components. This prevents the disease from propagat-
ing throughout the network. On the other hand, highly
connected nodes increase the willingness of many other
nodes to voluntarily pay a price and become immunized. In
this section we introduced a strategy which uses network
structural properties to further improve the result of the
targeted strategy in scale-free networks.
Similar to the previous approach, we determine the

appropriate offer sequence in n step, n= ⌊µ⌋ 1. In step
j, the goal is to offer the vaccine to the potential buyers
at a discounted price of f(j − 1/µ) in a way that they all
accept the offer and buy the vaccine. From this point on,
we can offer the vaccine at a higher price of f(j/µ) and
still guarantee the acceptance of the offer. As the targeted
strategy immunizes the nodes in decreasing order of their
connectivity, in the earlier steps a lower number of nodes
are needed to guarantee the acceptance of the offers in the
following steps compared to the previous strategy.
Consider a non-negative, monotone concave function f

as the value function of the nodes in a network. Let us
suppose that adding kj nodes to set S in step j, the
value of other potential buyers become at least f(j/µ). We
divide the area under vi(.) into r= ⌊µ⌋ regions, and in each
step, add the nodes in decreasing order of their degree to
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Fig. 1: (Colour on-line) vi(.) as a function of normalized
influence for a network with 4! µ< 5. The area under vi(.) is
divided into r= 4 influence regions. In each step, the number of
nodes in the blue interval should be maximized. Panels (a)–(d)
show the intervals that should be maximized in steps 1–4.

the set S until the number of nodes in interval j becomes
maximized. The goal is to maximize the number of nodes,
especially influential ones, in some interval and offer them
an appropriate discount for the item. This way we guaran-
tee the acceptance of the offer by almost all the candidate
buyers chosen by the targeted strategy. The normalized
influences on an arbitrary buyer i can be in the inter-
val [0, 1], i.e. 0! vi(S) =

∑
j∈S∪{i} wij/

∑
k∈V wik ! 1.

Therefore, we divide the area under the concave value
function vi(S) into r influence regions each with width
1/r as shown in fig. 1.
Our greedy algorithm for determining the discount

sequence is as follows.

1) Sort the nodes of a network in decreasing order of
their degrees in array D.

2) Initialize k0 = 0, i= 1.

3) For j = 1, . . . , n, repeat the following steps.

4) If j >
i∑
r=1

⌊
µ
2r

⌋
, then i= i+1.

5) Z =
⌊
µ
2i

⌋
.

6) Find km = argmaxk(
∑
S=D(1:k), i∈V/S|di!Z X(i)),

where

X(i) =

{
1, jr !

∑
j∈S∪{i} wij/

∑
k∈V wik,

0, otherwise,

for all i∈ V \S.

7) kj = km − km−1.

8) Offer the vaccine with the price of f(j − 1/µ) to the
nodes chosen by the targeted strategy until kj nodes
accept the offer and buy the vaccine.

In order to find an appropriate value for kj , we should
examine the normalized influence on an appropriate set of

Fig. 2: (Colour on-line) vi(.) and qi(.) as a function of “ y= 6×
normalized influence on each individual”. The dashed line (in
red) in (a) shows the probability of being exposed to the
disease.

potential buyers. In the early steps, the nodes with small
degree are not likely to be chosen by the targeted strategy.
Thus, we should ignore these nodes in the early steps.
As the number of nodes chosen by the targeted strategy
increases, the probability that the low-degree nodes are
chosen increases. In scale-free networks, the probability for
a node to have k connections has inverse relation with k.
Considering this fact, in order to study the normalized
influence on an approximately equal number of nodes in
each step, we examined the nodes whose degree lies in the
same logarithmic interval in each step. In the first step,
we consider nodes which have a degree larger than µ/2 in
the first n/2 steps. Then, we consider nodes which have a
degree larger than µ/4 in the next n/4 steps and so on.

Experiments. –

Immunity and influence models. We choose a non-
negative, monotone concave function (generalized Pareto
cumulative distribution function) for qi as follows:

F(ξ,µ,α) (y) =

⎧
⎪⎪⎨

⎪⎪⎩

1 −
(
1+
ξ (y − µ)
σ

)−1/ξ
, for ξ ̸= 0,

1 − exp
(
− y − µ
σ

)
, for ξ = 0.

(4)

Choosing ξ = 0, µ= − 0.1, we simply have an exponential
cumulative distribution function which is shifted along
the x -axis. Furthermore, we considered σ= 2, y= 6x,
x∈ [0, 1], to have a function that takes values in the
interval [0.04, 0.95]. By choosing µ= − 0.1 the possibility
for “spontaneous” (or “automatic”) infection is also
considered [15]. Here, we assume 0.04 as the possibility
for spontaneous infection and a probability of 0.05 for
each individual to be intrinsically immunized against the
disease [15]. Finally, σ= 2 allowed us to have a function
with low concavity. This makes our results comparable
to those of standard SIR and SIS models. Recall that
in these models the probability for a node to become
infected is a linear function of the number of its sick
neighbors [16] (fig. 2(b)).
As our influence model (vi) we considered an exponen-

tial cumulative distribution function: F (y|µ) 1 −
exp (− y−µσ ) with σ= 2, y= 6x, x∈ [0, 1] whose values vary
in the interval [0, 0.95]. We also chose σ= 2 in order to
decrease the concavity of the exponential function. Under
this assumption, the valuation of the individuals in set
V \S does not rapidly grow as more of their friends buy
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the vaccine (fig. 2(a)). Certainly, assuming a function
with higher concavity or a function with values greater
than the cost of producing each vaccine unit considerably
improves the results of the immunization. In this work, we
considered a more conservative approach by considering
the smallest convexity.

Algorithms and implementation. Suppose that we
want to immunize a population with a specific immu-
nization strategy. During the immunization process, we
offer the vaccine with a predetermined price to each
person chosen by the immunization method. The offer
sequence can be determined from the proposed pricing
strategies before the immunization starts. If the chosen
person accepts the offer, the value she pays for the vaccine
will be added to the initial budget in order to produce
more vaccine units and continue vaccinating more individ-
uals with the immunization method. Otherwise, the immu-
nization method chooses the next candidate and offers the
vaccine with the specified price to him/her. We can deter-
mine the global immunity of the network as a function of
the immunized individuals, q(.).
We investigated the performance of the random,

acquaintance, enhanced acquaintance and targeted
immunization strategies using the two pricing methods
introduced in the previous section. We also compared
our results with those of the greedy hill-climbing algo-
rithm. Despite of its high computational complexity, the
hill-climbing strategy gives a (1 − 1/e)-approximation of
the optimal solution. It should be noted that, when the
individuals pay a price to buy the vaccine, the problem
of maximizing the immunity in the network becomes
non-monotonic submodular, and thus, we cannot use the
hill-climbing strategy. We assumed that the link weights
are derived independently of the distribution function Fij
that is considered as uniform cumulative distribution on
the interval [0, 2].

Results. The results in fig. 3 correspond to applying
the µ-based pricing strategy on the random, acquaintance
and enhanced acquaintance immunization strategies. The
global immunity (the fraction of immunized nodes) as a
function of initial budget for the immunization is shown
for the preferential attachment Barabasi-Albert (BA) [17]
andWatts-Strogatz (WS) [18] networks. It is seen that this
simple approach already offers a significant improvement
over the original immunization methods.
Figure 4 shows the global immunity as a function

of initial budget for the immunization for BA [17] and
Forest-Fire (FF) [18] network models, respectively. For
each network, the results of using the pricing approach
based on µ are shown for the random and high-degree
targeted strategy (HD). Furthermore, the global immunity
that resulted by using the greedy discount approach
with the targeted strategy is compared to the global
immunity of the greedy hill-climbing algorithm. These
results revealed that the greedy hill-climbing strategy
outperformed the basic targeted algorithms. However, the

Fig. 3: (Colour on-line) Global immunity of the network (the
fraction of immunized nodes) as a function of initial budget for
immunization, for (a) the Barabasi-Albert network with 1000
nodes andm= 3 and (b) the Watts-Strogatz network with 1000
nodes, n= 3 and p= 0.3. The black, cyan, red, dashed cyan,
dashed black and dashed red lines correspond, respectively, to
the global immunity from random immunization (RA), apply-
ing pricing based on µ with random strategy, acquaintance
immunization (AI), applying pricing based on µ with acquain-
tance strategy; enhanced acquaintance immunization (EAI),
applying pricing based on µ with enhanced acquaintance strat-
egy. The results are averaged over 10 realizations.

Fig. 4: (Colour on-line) Global immunity of the network (the
fraction of immunized nodes) as a function of initial budget
for immunization, for (a) the Barabasi-Albert network with
1000 nodes and m= 3 and (b) the Forest-Fire network with
1000 nodes, p= 0.37 and pb = 0.32. The black, cyan, red,
dashed cyan and dashed black lines correspond, respectively,
to the global immunity from high degree targeted strategy
(HD), applying pricing based on µ with targeted strategy,
greedy pricing strategy, greedy hill-climbing, and applying
pricing based on µ with random strategy (RA). The results
are averaged over 10 realizations.

proposed average degree-based and the greedy pricing
approaches outperformed the hill-climbing approach in the
BA network, while they have a close performance in the
other network types. Although the hill-climbing algorithm
can guarantee the (1 − 1/e)-approximation of the optimal
solution for non-negative monotone submodular functions,
its high computational complexity makes it inapplicable
on the large networks. Therefore, it is interesting to
find out that the targeted strategy reached a similar
performance with a considerably lower complexity level.
Another interesting observation was that the initial budget
required for stopping the epidemic spread significantly
decreased by using the two pricing strategies. As it is seen,
the proposed pricing-based random immunization can be
more influential than the targeted immunization.
Figure 5 shows the result of the experiments on a

number of real networks including the Facebook-like
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Fig. 5: (Colour on-line) Global immunity of the network as
a function of initial budget for immunization, for (a) the
Facebook-like social network with µ= 14.61, (b) the yeast
protein interaction network with µ= 6.14, (c) the high-energy
physics theory citation networks with µ= 25.69, (d) the
CAIDA AS relationship network with µ= 4.03, (e) the Enron
email network with µ= 10.73, and (f) the corporations inter-
relationships with µ= 2.07 (EVA) network. Other designations
are as in fig. 4.

social network [19], the yeast protein interaction network
whose social behavior has been discussed in [20], the
high-energy physics theory citation networks [18], the
CAIDA AS relationship network [18], the Enron email
network [21] and the corporations inter-relationships
(EVA) network [22]. In all these networks, similar
qualitative behavior was observed for the discounting
strategies. The average degree-based pricing strategy
extensively improved the global immunity of the random
strategy. Furthermore, this approach globally immunized
the network against infections with considerably smaller
budget than the traditional targeted strategy. This
strategy can be simply used in networks in which no
structural information is in hand. Another interesting
observation was that using the greedy pricing approach
with the targeted strategy, the network can be immu-
nized with a considerably smaller budget compared to
the hill-climbing strategy. In many cases, the greedy
pricing approach achieved a higher immunity than the
hill-climbing algorithm for small initial budgets.

Conclusion. – We proposed a general model in which
the immunity of an individual against the disease depends
on the set of his/her immunized friends in the network.
Furthermore, we considered the possibility that each indi-
vidual might be eager to pay a price to buy the vaccine
and become immune against the disease. We proposed

pricing-based immunization algorithms in order to
enhance immunization strategies. We also proposed an
algorithm based on the greedy hill-climbing strategy.
Extensive simulations on model networks as well as
several real networks showed that our strategies can make
the result of the targeted strategy comparable to the
results of the greedy hill-climbing algorithm. Further-
more, applying the pricing strategies on the random,
acquaintance and targeted strategies, these algorithms
can stop the spreading of the epidemy with a significantly
smaller budget compared to the hill-climbing one.
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