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Abstract

Complex networks serve as generic models for many biological systems that have been shown to share a number of
common structural properties such as power-law degree distribution and small-worldness. Real-world networks are
composed of building blocks called motifs that are indeed specific subgraphs of (usually) small number of nodes. Network
motifs are important in the functionality of complex networks, and the role of some motifs such as feed-forward loop in
many biological networks has been heavily studied. On the other hand, many biological networks have shown some
degrees of robustness in terms of their efficiency and connectedness against failures in their components. In this paper we
investigated how random and systematic failures in the edges of biological networks influenced their motif structure. We
considered two biological networks, namely, protein structure network and human brain functional network. Furthermore,
we considered random failures as well as systematic failures based on different strategies for choosing candidate edges for
removal. Failure in the edges tipping to high degree nodes had the most destructive role in the motif structure of the
networks by decreasing their significance level, while removing edges that were connected to nodes with high values of
betweenness centrality had the least effect on the significance profiles. In some cases, the latter caused increase in the
significance levels of the motifs.
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Introduction

Many real-world complex systems can be described as networks.
Examples include the Internet, World Wide Web, the brain
functional/anatomical networks, genetic regulatory networks,
metabolism of biological species, ecological systems, and networks
of author collaborations [1,2,3]. Scholars have found that many
real-world networks from physics to biology, engineering and
sociology have some common structural properties such as power-
law degree distribution [4] and small-worldness [5]. Studying the
properties of such networks could shed light on understanding the
underlying phenomena or developing new insights into the system.
For example, studying biological networks helps us to better
understand the organization and evolution of their units [6].
Recent developments in computing facilities let researchers mine
the data of real-world networks to discover their topological
properties.

In its simplest form, a network consists of a set of discrete
elements called nodes (or vertices), and a set of connections linking
these elements called edges (or links). One of the tricky parts of
research in this field is to extract the graph of system under study
that is to identify the individual nodes and reconstruct the links
connecting them. As network structure is identified, its structural
and dynamical properties are investigated. Network motifs are
among such attributes that are usually tested for natural networks.
It has been shown that networks in various fields exhibit interesting
features in terms of repeated occurrences of certain subgraphs, i.e.
motifs [7,8]. Network motifs are patterns (particular subgraphs)

that statistically overrepresented or underrepresented within the
network. The significance of a particular subgraph in a network is
usually measured by comparing its occurrences in the original
network against some properly randomized networks. Network
motifs have been identified in networks from different branches of
science and are suggested to be the basic building blocks of most
complex networks [9]. Analysis of this over/under abundant
substructures can help us in determining different network
properties and functions such as its hierarchal structure. The
motif structure of a network might be important in determining its
dynamical properties. For example, the evolution of cooperativity
[10,11], has been linked to the motif structure in real networks
[12].

One of the important features of many engineering and
biological networks is robustness against component failure
[13,14]. Real-world networks may undergo random or systematic
failures and consequently lose some of their components, i.e. nodes
and/or edges. Therefore, it is essential to investigate the tolerance
of critical network properties to errors– failures of randomly
chosen nodes and/or edges of the networks and attacks–
systematic failures of components that play a critical role in the
network [15,16]. It has been shown that many biological networks
exhibit high degrees of robustness against random errors that
might happen in their structure [13,14,15,17,18]. In general, it has
been shown that scale-free networks, i.e. networks whose node-
degree distribution follows a power-law, are robust against errors,
but, at the same time, they are fragile in response to systematic
attacks [15,19,20,21]. Several measures have been proposed for
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measuring robustness of networks against attacks and errors. One
of the frequently used ones is the largest connected component
whose size scales linearly with the number of nodes in the network
[15,20,22]. Efficiency is another important measure that is studied
in the context of robustness of complex networks against attacks/
errors [19]. The errors/attacks influence the evolution of
dynamical processes happening on the networks. Network
cooperativity, for instance, has been shown to be extremely robust
against random failures, while it is fragile when nodes with
maximum degree are removed from the network [23].

In this paper we investigated the influence of link failures in the
profile of network motifs. We considered protein structure network
[8] and functional network of human brain extracted through
functional magnetic resonance imaging technique [24]. A number
of strategies for choosing candidates edge for removal were taken
into account that included random removal, removing edges based
on the degrees of the end nodes, based on the betweenness
centrality of the nodes, and based on the closeness centrality of the
nodes. We then compared the profile of the network motifs as a
function of the percentage of removed edges. Interestingly,
different failure strategies resulted in different pattern of changes
in the motif structure where the strategy based on the betweenness
centrality was the most different with the other three.

Materials and Methods

Motif Structure
Many real-world complex networks have been shown to be

composed of well-defined building blocks called motifs. Network
motifs are patterns of interconnection or subgraphs that occur in
natural networks much more frequent than those in randomized
networks [7,8]. They can be thought of as simple building blocks
of complex networks [8], which can provide valuable information
about structural design principles of networks. First discovered in
the gene regulation (transcription) network of the bacteria
Escherichia coli by Alon and his team [8,25], they have been found
in many networks ranging from biochemistry to neurobiology
networks, ecology, and engineering [9,26,27]. Study of network
motifs is therefore propitious for revealing the basic building blocks
of most complex networks.

Some studies have related the function of networks to the
structure of their motifs. Transcription networks are among those
heavily studied both theoretically and experimentally. For
example, negative-autoregulation which is one of the simplest
and most abundant motifs in Escherichia coli has been shown to be
response-acceleration and repair system [28]. Positive-autoregula-
tion motif is important in biomodal distribution of protein levels in
cell population [29]. Feed-forward loop that is commonly found in
many gene systems and organisms is important in speeding up the
response time of the target gene expression following stimulus
steps, pulse generation and cooperativity [30]. Dense Overlapping
Regulons that occur when several regulators combinatorially
control a set of genes with diverse regulatory combinations, has
also been shown to be important in the function of Escherichia coli
[31].

Although subgraphs of different sizes can be studied in natural
networks, among them, biological networks contain three and
four-node substructures far more often compared to randomized
networks with similar structural properties. Many beneficial
outcomes have been ensued from these observations. Often the
network motifs are detected by comparing the network against a
null hypothesis, that is, the number of appearance of a specific
subgraph is counted in the networks and is subsequently compared
with the number of appearances in properly randomized networks.

The randomized networks can be constructed in various ways.
However, they should at least share some common properties with
the original network. For example, the randomized networks
should have the same number of nodes and edges with the original
network. One possible method is to build the corresponding
Erdos-Renyi version for the networks [32]. A better way of
constructing the randomized networks is to preserve not only their
size and average degree but also their degree distribution or at
least degree sequence. This can be simply done by shuffling the
adjacency matrix [33]. Many of the motif detection strategies use
this algorithm for constructing the randomized version of the
original network under study. The motif detection algorithm can
be summarized as follows [7,8]:

1) Consider a specific subgraph i

2) Count the number of appearances of the subgraph i in the
network Ni

3) Generate sufficiently large number of randomized networks
with the same number of nodes and degree distribution as
the original network

4) Count the number of appearances of the subgraph i in each
of the randomized networks

5) Compute the average number of appearances of the
subgraph i in the randomized networks ,Nrandi. and its
standard deviation std(Nrandi)

6) Compute the significance of appearances of the subgraph i
as

Zi~
Ni{SNrandiT

std Nrandið Þ : ð1Þ

7) The networks motifs are subgraphs for which the probability
P of appearing in the randomized networks an equal or
greater number of times than in the original network is
lower than a cutoff value (e.g. P,0.01). Thus, higher
absolute values of Z-scores correspond to more significant
network motifs.

Note that the Z-score of a motif can be positive or negative;
positive when it is highly overrepresented in the original network
as compared to randomized ones and negative when it is highly
underrepresented.

It has also been proposed to normalize the Z-scores [7]. The Z-
score of an specific motif may depend on the network size and it
tends to be higher in larger networks [7]. Since complex networks
may vary widely in size, one can take an approach that enables to
compare different network’s local structure. To this end, the
normalized Z-scores can be calculated as

Zi~
ZiffiffiffiffiffiffiffiffiffiffiffiffiP
i

Z2
i

r : ð2Þ

The normalization emphasizes the relative significance of
subgraphs rather than the absolute significance, which is
important for comparison of subgraph of different sizes [7].

A motif of size k is called a k-motif. The runtime of counting
process grows very fast with k. This is one of the reasons why only
small k-motifs (usually three- or four-nodes) have been studied in
most of the works. Different tools have been developed for the
detection and analysis of network motifs such as Mfinder [34],
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MAVisto [35], and FANMOD [36]. In this work we used
Mfinder, which uses a semi-dynamic programming algorithm in
order to reduce the running time [34]. It also uses an efficient
sampling algorithm that significantly reduces the running time
compared to the cases where all edges are visited.

Two Biological Networks
Techniques from complex networks have been widely applied to

many biological systems (e.g. see reviews [6,13,37]). Recent
developments in designing efficient techniques in molecular
biology have led to extraordinary amount of data on key cellular
networks in a variety of simple organisms [8,38,39,40,41]. This
allowed scholars to study networks such as protein interaction,
transcriptional regulatory, and metabolic in different organisms.
Networks have also been widely studied in neurosciences
[42,43,44]. The brain networks can be studied on a micro-scale
containing a number of neurons with some excitatory/inhibitory
connections in-between [45,46,47]. However, this approach
cannot be used for studying the whole-brain connectivity network.
For such cases, one should use functional magnetic resonance
imaging, diffusion imaging, magnetocephalography, or electroen-
cephalography techniques to extract the large-scale functional/
anatomical brain connectivity networks [48,49,50,51].

In this work, we have considered two biological networks:
protein structure network [7], and human brain functional
network extracted through functional magnetic resonance imaging
[24]. Figure 1 shows their structure by representing the nodes and
edges connecting them. Their properties including, size, average
degree, standard deviation of the degrees, average path length and
clustering coefficient is represented in Table 1. We used Mfinder
to determine the significance of all three- and four-nodes
subgraphs of these networks. In order to obtain a high level of
accuracy, we set the parameters of random network generation
algorithm and counting motifs in the tool as follows [34]

N Number of random networks = 10000

N Uniqueness threshold is ignored

N No threshold on mfactor to use when counting motifs

N No threshold on Z-score to use when counting motifs

N Default values were considered for other parameters, including
switching method for generating random networks.

Table 2 summarizes the set of three- and four-node motifs
with their corresponding normalized and non-normalized Z-
scores in the networks. As we can see motif #7 — a four-node

motif with five edges — has the highest positive Z-score, and
thus, is the most significance motif structure in both of the
networks and can be considered as the dominant motif. On the
other hand, motif#1 has the highest negative Z-score in both of
the networks, and thus, is the most significant anti-motif in the
set of three- and four-node subgraphs. There is a significant
direct correlation between the Z-scores of the motifs in these
two networks (r = 0.9328, P,0.001; Pearson linear correlation
and r = 0.9286, P,0.0025; Spearman rank correlation). This
indicates the similarity of these two networks in the structure of
their building blocks, i.e. #2, #5, #7, and #8, have always
positive Z-score, i.e. they are significantly more abundant in
these networks as compared to random networks. As the
clustering coefficient of the real networks is relatively large (see
Table 1), it seems natural that the subgraphs that include a
triangle structure have a positive Z-score. In some sense, the Z-
score of motifs #5, #7 and #8 seems strongly dependent on the
Z-score of motif #2. The negative Z-score of motif #1 seems
also correlated to the positive Z-score of motif #2. Subgraph
#1 and #4 (motif #6 that has small Z-score and is not a
significant motif) has always negative Z-score meaning that they
are anti-motifs appearing much less in the original networks as
compared to random ones.

Random and Systematic Failures in the Edges
Random or systematic failures can occur in some of the

networks’ components, i.e. nodes and edges. For example in
protein-protein interaction network, while attacking nodes may
correspond to breakdown of polypeptides by appropriate enzymes,
attacking edges of the network can be interpreted as preventing
physical interaction between two polypeptides in order to prevent
carrying out their biological functions. In this work we considered
failures in the edges and investigated its influence on the profile of
the motif structure of the networks. Failures in the networks are of
two types, in general: random failures that are called errors or
systematic failures that are called attacks.

Let define some preliminary metrics of graph theory. Consider
an undirected and unweighted network with adjacency matrix
A = (aij), i, j = 1, …, N, where N is the size of the network. Let
denote the edges between the node i and the node j by eij. The
degree of the node i can be obtained as

ki~
XN

j~1

aij : ð3Þ

Edge betweenness centrality (load) is a centrality measure of an
edge in a graph, which counts the number of shortest paths passing
through the edge. The betweenness centrality Lij of the edge eij

between nodes i and j that is defined by [52]

Figure 1. Topology of sample biological networks. (a) Protein
structure network [7] and (b) human brain functional network extracted
through functional magnetic resonance imaging [24].
doi:10.1371/journal.pone.0020512.g001

Table 1. Characteristics of considered biological networks.

Network Type N ,k. std(k) P C

Protein structure 99 4.2828 0.4748 5.2607 0.3600

Functional human
brain

200 4.5400 0.5690 5.2200 0.2858

First columns: the name of the networks. Second to sixth columns: network size
(N), average node-degree (,k.), standard deviation of node-degree (std(k)),
average characteristic path length (P), and clustering coefficient (C).
doi:10.1371/journal.pone.0020512.t001
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