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Many technological networks can experience random and/or systematic failures in their components. More
destructive situations can happen if the components have limited capacity, where the failure in one of them might
lead to a cascade of failures in other components, and consequently break down the structure of the network. In this
paper, the tolerance of cascaded failures was investigated in weighted networks. Three weighting strategies were
considered including the betweenness centrality of the edges, the product of the degrees of the end nodes, and the
product of their betweenness centralities. Then, the effect of the cascaded attack was investigated by considering
the local weighted flow redistribution rule. The capacity of the edges was considered to be proportional to their
initial weight distribution. The size of the survived part of the attacked network was determined in model networks
as well as in a number of real-world networks including the power grid, the internet in the level of autonomous
system, the railway network of Europe, and the United States airports network. We found that the networks in
which the weight of each edge is the multiplication of the betweenness centrality of the end nodes had the best
robustness against cascaded failures. In other words, the case where the load of the links is considered to be
the product of the betweenness centrality of the end nodes is favored for the robustness of the network against
cascaded failures.
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I. INTRODUCTION

Network science has attracted much attention in recent
years, primarily due to its application in many areas ranging
from biology to medicine, engineering, and social sciences
[1,2]. Research in network science starts by observing a
phenomenon in real data and then tries to construct models
to mimic its behavior. Many real-world networks share
some common structural properties such as scale-free degree
distribution, small-worldness, and modularity. The dynamic
behavior of networks largely depends on their structural prop-
erties [3,4]. One of the topics that has attracted much attention
in this context is the robustness of networks against random and
systematic component failures [5– 7]. Networks might undergo
failures in a number of their components (i.e., nodes and edges)
and consequently lose proper functionality [8,9]. The failure in
a network can be random or systematic. When a random failure
(i.e., error) occurs in a network, a number of its components are
randomly removed from the network. While, in a systematic
failure (i.e., attack) the components are systematically broken
down [5,10]. For example, the hub nodes might be targets
for attacks. When the intrinsic dynamics of network flows are
taken into account, the systematic removal of the components
can have a much more devastating consequence than random
removal [11].

The modern societies are largely dependent on networked
structures such as power grids, information communication
networks, the internet, and transportation networks. Failure in
such networks might collapse normal daily life and result in
chaos in the society. Evidence has shown that locally emerging
random or systematic failures in networks can influence the
entire network, often resulting in large-scale collapse in the
network. Examples include large blackouts in the United States
due to failure in the power grid [12] and breakdowns of the
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internet [13]. Indeed, a cascaded failure has happened in such
cases [9,11].

Several studies have been devoted to the concept of
controlling cascaded failures [14– 17]. For example, islanding
or separating the survivable parts of a grid has long been
used to allow a transmission grid to continue its functionality.
Building a system for allocating competing resources during
an extended failure is another solution for controlling such
failures. While these are applicable solutions, they cannot
eliminate all failures [15]. Therefore, it is desired to design a
network that is robust against cascaded failures. The influence
of the cascaded failure in the size of the largest connected
component has been investigated in a number of network
models including preferential attachment scale-free [18],
Watts-Strogatz small-world [19], and modular networks [20].
In many of the studies, as a component fails, the loads
are recalculated and the components whose loads exceed
their capacity are removed from the network. The process is
repeated until the loads of all remaining components are below
their capacity [18– 20]. However, this might not be realistic in
some applications. For example, let us consider the internet. It
is natural that the load passing through a failed component is
redistributed among its neighboring components. To this end,
a local weighted flow redistribution rule has been proposed
[21]. In this model, the cascaded failure is triggered by
removing the edge with the maximal load. As an edge is
removed from the network, its load is redistributed among
the neighbors. Studying model networks with scale-free and
small-world properties and by applying the local weighted
flow redistribution rule, Wang and Chen found the strongest
robustness against cascaded failure at a specific weighting
strength [21].

In this paper we investigated a number of factors influencing
the robustness of the networks against cascaded failures. An
important question in this context is which component has
the largest cascaded effect on the network. We considered
the cascaded effect of failures in the edges. Furthermore, the
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networks were weighted according to different rules due to the
fact that many real-world networks are inherently weighted.
We used three weighting strategies: the betweenness centrality
of the edges, the product of the degrees of the end nodes, and
the product of their betweenness centrality. The numerical
simulations were performed on a number of model networks
such as preferential attachment scale-free [22], Newman-Watts
small-world [23], Erdős-Rényi [24], and modular networks
[20]. Furthermore, we considered a number of real-world
networks including the power grid, the internet in the level
of autonomous systems, the railway network of Europe, and
the United States airports network. We found that the networks
whose weights are the product of the betweenness centrality
of the end nodes have the most robustness against cascaded
failures. This study suggests that in order to enhance the
robustness of the networks against cascaded failures, one could
take the loads (weights) of the edges as the product of the
betweenness centrality of the end nodes.

II. LOCAL WEIGHTED FLOW REDISTRIBUTION RULE

The local weighted flow redistribution rule (LWFRR) has
been recently introduced and studied by Wang and Chen [21].
In this model, when an edge is subject to an attack and
removed from the network, the flow passing through this
edge is redistributed to its nearest-neighbor edges [21,25].
As a consequence, the load of each neighbor edge increases
proportional to its weight. More precisely,

!Fim = Fij

wim∑
a∈"i

wia+
∑

b∈"j wjb

(1)

where eij is the attacked edge, "i and "j are the set of neighbors
of nodes i and j , respectively. Fij is the flow on eij before being
broken and !Fim is the additional flow that the eim receives.

Every edge eij has some limited capacity Cij determining
the maximum load that the edge can handle. The capacity Cij

of the edge eij is assumed to be proportional to the initial
load of the edge wij (i.e., Cij = Twij ). That is, there exists a
constant threshold value T > 1 such that if

Fim + !Fim > T wim = Cim (2)

Then, the edge eim cannot tolerate the additional flow and will
break apart. As a result, the network faces further redistribution
of the flows, and consequently, more edges might break.
Cascading failure continues as long as there is no edge euv

whose flow dominates its capacity (i.e., Fuv > T wuv).
The lower the number of broken edges, the more robust the

network is against attacks. There exists a minimum threshold
at which removal of an edge does not lead to cascading
failure anymore. A phase transition is occurred at this critical
threshold (Tc), where for T < Tc the network preserves its
robustness against any random or systematic failure. On the
other hand, for T < Tc failure of a part can trigger the
failure of successive parts of the network and cascading failure
suddenly emerges. Tc is a significant measure in determining
a network’s robustness; the lower the value of Tc is the
stronger the robustness of the network is against removal of its
components.

In real-world networks, cascading failure is often studied
in order to protect many infrastructure networks. Computer
networks and the internet are such examples that should
be protected against cascaded failures [26,27]. Protecting
electrical grids against failures and a society against spread
of an infectious disease are other examples where the studies
in this context can be beneficial. Let us consider a computer
network. If a few important cables break down, the traffic
should be rerouted either globally or locally towards the
destination. This will lead to redistribution of the traffic in the
network. When a line receives extra traffic, its total flow may
exceed its bandwidth (threshold) and cause congestion. As a
result, an avalanche of overloads emerges on the network and
cascading failure might occur. As another example, suppose a
disease appears in a region. It might spread to other regions
through infected individuals traveling across the regions. It
is obvious that immunization of individuals who travel from
populated regions prevents the widespread distribution of the
disease. Consequently, spending more money for vaccinating
these individuals seems a reasonable action. In the power grid
example, when an element (completely or partially) fails, its
load shifts to nearby elements in the system. Some of those
nearby elements might be pushed beyond their capacity and
become overloaded; thus get broken and shift their load onto
other neighboring elements. This surge current can induce
the already overloaded nodes into failure, setting off more
overloads and thereby taking down the entire system in a very
short time. Under certain conditions, a large power grid might
collapse after the failure of a single transformer. All these
networks are examples of weighted networks in which the
weight of each edge can be interpreted as either its capacity
or cost of immunization and failure of an edge causes an
immediate increase of the load of its nearest-neighbor edges.

III. WEIGHTING METHODS

In network characterization, the centrality of an element
is a significant measure and plays a fundamental role in
studying cascading failure [28]. The degree of a node is an
obvious topological metric that can be used for determining
its connectivity as well as centrality. The degree of the node i
is defined as

ki =
N∑

1

aij , (3)

where N is the size of the network and A= (aij ), i, j = 1, . . ., N ,
is the adjacency matrix of an undirected and unweighted
network. However, there may exist some nodes that play a
crucial role in connecting different parts of the network despite
their small degree. Such nodes are called bridges or local
bridges that connect parts of the network that would become
disconnected otherwise. Because of their topological positions
in the network, many shortest paths (often the only plausible
route between many pairs of nodes) pass through these nodes.
These reasons motivated the introduction of another measure
for centrality of a node in the network (i.e., node betweenness
centrality). Node betweenness centrality is defined as the
number of shortest paths between pairs of nodes that pass
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through a given node [29]. More precisely,

Bi =
∑

p ̸=i ̸=q

["pq(i)/"pq] (4)

where "pq is the number of shortest paths from the node p
to node q and "pq(i) is the number of these shortest paths
making use of node i. The larger the betweenness centrality
of a node is, the more its significance in the formation of the
shortest paths in the network.

Another measure of centrality is edge betweenness central-
ity, which has been widely used to model the traffic load or
weight of an edge; it is defined similar to node betweenness
centrality. The edge betweenness centrality of an edge is the
number of shortest paths between pairs of nodes that pass
through the edge eij [29], that is,

Bij =
∑

p ̸=q

["pq(ij )/"pq] (5)

where "pq(i) is the number of shortest paths that go through
the edge ij.

These centrality measures can be used to determine the
loads in an unweighted network or estimate the weights in
a weighted real network. Wang and Chen [21] used node
degrees to model the traffic on a network and studied cascading
failure. They used the power-law function of degrees of the two
ends of an edge as measure for edge centrality and obtained
several experimental results on different real-world networks.
According to their definition, the weight of an edge is modeled
by

wij = (kikj )θ , (6)

where ki is the degree of node i and θ is a tuning parameter.
They showed that θ = 1 leads to the strongest robustness on
various networks [21].

We introduce a weighting method based on node between-
ness centrality. Our studies showed that this weighting method
is in accordance with the weights of many real networks. The
intuition for this weighting method is based on the observation
that an edge is important in a network when its two end nodes
are important. As an example, assume one is flying from
London to Melbourne. He probably chooses some central cities
such as Dubai or Kuala Lumpur and flies through them on his
way to Melbourne. Therefore, an edge is chosen when its two
ends have high centrality. A similar observation can be made
for packet routing on the internet. The links between central
points are more probable to be chosen when sending a packet.
Based on the above observation, one can take into account the

centrality of both end nodes of an edge and define the weight
of an edge eij as

wij = (BiBj )θ . (7)

In this method, the weight of an edge has a power-law
dependence on the product of betweenness centrality of its two
end nodes. This is indeed somehow the case in many real-world
networks, where the weights of the links do not follow the
betweenness centrality of the edges. However, it shows high
correlation with the weights introduced through Eqs. (6) and
(7). We showed the correlation between the above weighting
strategies in a number of real-world networks including:

US airlines. An airlines connection network in the USA
consists of 332 nodes and 1063 edges. The weights correspond
to the number of seats available on the scheduled flights [30].

US airports network. This is the network of the 500 busiest
commercial airports in the USA. The weights correspond to
the number of seats available on the scheduled flights [31].
This network has 2980 edges.

Lesmis. Coappearance network of characters in the novel
Les Miserables. This network has 77 nodes and 127 edges [32].

Netscience. Coauthorship network of scientists working in
the field of network theory and experiment. This network
contains 1589 nodes and 1371 edges [33].

Bkham. The network of human interactions in bounded
groups and on the actors’ ability to recall those interactions.
This network consists of 44 nodes and 153 edges [34].

Table I shows the Pearson correlation coefficients between
the real weights and different metrics including the between-
ness centrality of the edges Bij , the product of the betweenness
centrality of the end nodes, BiBj , and the product of the degree
of the end nodes kikj . As it is seen, except for Netscience,
the edge betweenness centrality has almost no correlation with
the real weights, whereas, the product of the degrees and the
node betweenness centralities showed significant correlation
with the real weights. The results indicate that these two mea-
sures could be a good candidate for the weights of the edges.
This issue is important especially in designing technological
networks where the link weights (or loads) are not necessarily
the edge betweenness centrality and can be appropriately de-
signed. Next we investigate which of the weighting strategies
has the best robustness against cascaded failures.

IV. NETWORK DATA

In this section, the cascaded failure is investigated in
artificially constructed model networks as well as in a number
of real networks, weighted through different strategies.

TABLE I. Person correlation coefficients between real weights and different metrics including the betweenness centrality of the edges Bij ,
the product of the betweenness centrality of the end nodes, BiBj , and the product of the degree of the end nodes kikj in a number of real-world
networks.

Network Correlation with BiBj Correlation with kikj Correlation with Eij

USAir97 0.24 0.28 0.08
USAirport500 0.29 0.61 − 0.04
Lesmis 0.25 0.36 − 0.04
Netscience 0.21 0.10 0.19
Bkham 0.54 0.63 0.05
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