
Low Rank Pruning via Output Perturbation

Yuhan Liu, Siddharth Joshi, Baharan Mirzasoleiman

Abstract

Neural networks have become very widespread due to the mainstream
availability of computational devices such as GPUs, and as these devices
become more powerful, these networks have become much larger. With
the growing demand for fast, efficient networks, weight pruning has be-
come a popular technique for reducing both the speed and computational
time of these networks, but they introduce sparse matrices, which can be
tedious to implement properly. In this paper, we investigate a different
approach to model pruning involving low rank decompositions and output
perturbation.

1 Introduction

Neural network pruning comes in several forms. Some methods like [4] and
[7] aim to prune the connections between adjacent layers at initialization (or
close to initialization); other methods like [8] prune entire filters of convolu-
tions; lastly, there are methods such as [5], [1], and [6] that prune using low
rank decomposition. We investigate the effectiveness of using low rank decom-
positions in the context of high sparsities as well as a simple blocking technique
similar to that used in [5], [6], and [1] to achieve competitive results.

In many pruning methods, the layer pruning step can be motivated by the
Eckart–Young–Mirsky theorem, which guarantees the minimal difference in both
spectral norm and Frobenius norm of a single layer in the pruned network.
However, as noted in [5] and [3], the trickier aspect of multi-layer network
pruning lies in rectifying the pruning ratios across different layers–it’s not a
straightforward problem to decide how much each layer should be pruned.

Towards that endeavor, we explore two approaches that serve to score all
singular vectors on the same metric: output perturbation and output vari-
ance. The main idea stems from recognizing that singular values are not com-
parable across layers; due to the scale invariant property of neural networks,
one layer’s singular values may by much larger than other layers’, but it may
not indicate higher importance.

1



Figure 1: MNIST validation accuracy where the last layer’s size and rank was
varied

2 Motivation

We begin by analyzing some of the motivating factors regarding low rank neural
networks. In [2], the authors show that neural networks naturally learn a low
rank representation of the data. More notably, the linear function

y = WnWn−1 . . .W1x (1)

when trained using stochastic gradient descent will converge to a low rank rep-
resentation of the effective weights We =

∏n
i=1 Wi

We also empirically observed this behavior by training a small neural network
where the last layer’s rank and size was varied across different training runs.
From figure 1, we can see that in many settings, a low rank model was sufficient
to achieve the same accuracy as a full rank model.

We’ve also observed that training at rank 14 for any period of time before
switching to a different rank had no effect on the final validation accuracy.
However, training at any rank below 14 for 50 epochs would harm the validation
accuracy (see figure 2). This implies that the network’s last layer exhibits an
optimal rank of 14.

3 Problem Formulation

We define a neural network as the following function

y = σ(Wnσ(Wn−1 · · ·σ(W1x))) (2)

where there are n layers and σ(·) represents the activation function.

3.1 Convolutions as Matrix Multiplications

To incorporate convolutions into our framework, we treat a convolution with Co

filters, Ci input channels, and kernel size W×H as a matrix multiplication of an

2



Figure 2

input image patch with a matrix of dimensions Co × (CiWH). This definition
is consistent with other works that deal with low rank convolutions such as [5].
From this point forward, we’ll simply refer to this matrix as Wi, akin to the
dense layers in the network.

We’d like to point out that in PyTorch1 and TensorFlow2, convolutions are
implemented first by unfolding the input into column vectors and then right
multiplying each vector by the aforementioned matrix Wi. The unfolding oper-
ation, commonly known as ”Im2Col”, takes each patch of the input image and
flattens it into a vector3.

Because convolutions end up implemented as matrix multiplications, the rest
of the paper will treat each Wi matrix as a 2D matrices (and not tensors).

3.2 Blocking

Before decomposing weight matrices as left and right singular vectors, we first
perform a blocking operation on the weight matrix to allow for more flexibility in
choosing weights. Each block of the weight matrix becomes treated as a its own
independent matrix to be low rank approximated. The motivation is partially
outlined in [6], but we also show empirical validation that this technique helps
with low rank decomposition. Our low rank pruning techniques are thus done

1https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/Im2Col.

cpp
2https://github.com/tensorflow/tensorflow/blob/8a20d54a3c1bfa38c03ea99a2ad3c1b0a45dfa95/

tensorflow/python/ops/nn_ops.py#L2332
3https://towardsdatascience.com/how-are-convolutions-actually-performed-under-the-hood-226523ce7fbf

3



on blocked weight matrices, whose details are described below.

3.2.1 ALDS Blocking

Inspired by the use of channel blocking in [5], we implement a simplified version
of their blocking scheme by splitting each convolution’s input channels into
k = 4 subspaces. The choice is backed by the ablation study conducted in [5],
where they noted that fixing a constant k value worsens performance but not
significantly.

3.2.2 Square Blocking

Square blocking of a n×m weight matrix is motivated by solving the minimiza-
tion problem

argmin
(pi,qi)

B

∑
i∈B

r · (pi + qi) (3)

where B is the set of blocks, (pi, qi) represents the size of block i and r is the
rank of each block.

To solve this, we first assume that each block is of a fixed size piqi = Ci. By
the AM-GM inequality, the quantity r·(pi+qi) is minimized when pi = qi =

√
C.

Next, by considering the sparsity of each block

1− r · (pi + qi)

piqi
= 1− 2r

C
(4)

we can see that it is maximized when
√
C is maximized. Therefore, by creating

the largest blocks per weight matrix whose dimensions are equal to each other,
we arrive at the square blocking scheme.

4 Scoring Importance of Singular Vectors

Let y be the output of the original network and ybi be the output of the network
where singular vector i in block b is pruned.

4.1 Output Perturbation

The limitation of using the magnitude of singular values as a metric for the
importance of the singular vectors is that singular vectors corresponding to large
singular values could potentially be aligned with singular vectors corresponding
to small singular values in its input and/or subsequent layers. The converse is
also possible. In such cases, the magnitude of the singular value is not a good
metric for the importance of a singular vector both within a layer and across
layers. Output perturbation addresses this by measuring the magnitude of the
contribution of a given singular vector to the final output.

In particular, the importance score of singular vector i of block b is defined
as ∥y − ybi∥2

4



In practice, this score is computed by taking the mean of the aforementioned
expression over a subset of the data to be computationally efficient.

4.2 Output Variance

An alternative approach to scoring singular vectors is by quantifying how much
variance they provide the model.

Since the network has a vector output, there are different approaches that
can be used to measure the variance contributed by a singular vector.

A simple yet effective (validated empirically) approach is to measure the
variance of y − ybi component-wise across a subset of data.

5 Results

We evaluate our techniques on a VGG16 network with CIFAR10. There are
three blocking schemes: alds, square, and no blocking; and four pruning algo-
rithms: magnitude, relative error, alignment output, and alignment variance.
We also compare our results with ALDS ([5]).

The first observation from figure 3 is that magnitude based pruning leads
to layer collapse very early on. This supports the scale invariant hypothesis
mentioned previously where some layers are scaled more than others as a result
of training.

Next, we observe that blocking (of both simple ALDS and square blocking)
improves accuracy at the 95% and above sparsity regime. More so, we note that
square blocking creates more blocks than ALDS (around 400 blocks for square
blocking and 50 for ALDS). Although the pure ALDS code performs better
than our method, we would like to point out that ALDS takes 2 minutes to
search over a large number of block sizes, whereas square blocking is computed
in less than a second.

6 Future Work

There are several orthogonal directions that can be explored further from this
project.

1. Alignment pruning One shortcoming of alignment pruning is that net-
works like VGG16 have thousands of singular vectors. This makes the
process of testing each singular vector quite time consuming (∼ 10 min-
utes). A possible direction to explore is efficient stochastic algorithms
where singular vectors are sampled from a distribution. Alternatively, our
analysis show that between alignment pruning and relative error pruning,
there’s a Spearman’s rank correlation coefficient of 0.87. This high corre-
lation suggests one may only need to perform alignment pruning/scoring
on a subset of singular values, noticeably those with neither very high nor
small singular values.

5



(a) Pruning results at all sparsities

(b) Pruning results at high sparsities

Figure 3: Pruning results for magnitude, relative error, alignment, and baseline
ALDS.

6



2. Blocking schemes The square blocking scheme yields promising results,
but can be expanded on through permutations of input and output neu-
rons for more effective blocking. For example, [6] and [1] permute output
neurons of an embedding layer by clustering or examining word frequen-
cies. Another approach is to look at sets of outputs per layer that are
closely correlated with each other and group these into one block. Then,
one can expect the transformation whose image is those blocks to be low
rank by definition.

3. Blocked matrix multiplication implementation A more technical di-
rection would be to implement low rank layers in an efficient form within
PyTorch and TensorFlow to measure actual speedups. Theoretically, the
number of operations is improved by a factor of nm

r·(n+m) , which for small

ranks should see a significant speedup. Even though the left and right sin-
gular vectors must be multiplied sequentially, we can increase the batch
size such that per forward/backward pass, the net throughput is still in-
creased.

References

[1] Patrick Chen et al. “GroupReduce: Block-Wise Low-Rank Approximation
for Neural Language Model Shrinking”. In: Advances in Neural Information
Processing Systems. Ed. by S. Bengio et al. Vol. 31. Curran Associates,
Inc., 2018. url: https://proceedings.neurips.cc/paper/2018/file/
a2b8a85a29b2d64ad6f47275bf1360c6-Paper.pdf.

[2] Minyoung Huh et al. The Low-Rank Simplicity Bias in Deep Networks.
2022. arXiv: 2103.10427 [cs.LG].

[3] Jaeho Lee et al. “Layer-adaptive Sparsity for the Magnitude-based Prun-
ing”. In: International Conference on Learning Representations. 2021. url:
https://openreview.net/forum?id=H6ATjJ0TKdf.

[4] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. “SNIP: SINGLE-
SHOT NETWORK PRUNING BASED ON CONNECTION SENSITIV-
ITY”. In: International Conference on Learning Representations. 2019.
url: https://openreview.net/forum?id=B1VZqjAcYX.

[5] Lucas Liebenwein et al. “Compressing Neural Networks: Towards Deter-
mining the Optimal Layer-wise Decomposition”. In: Advances in Neural
Information Processing Systems. Ed. by A. Beygelzimer et al. 2021. url:
https://openreview.net/forum?id=BvJkwMhyInm.

[6] Alaa Maalouf et al. “Deep Learning meets Projective Clustering”. In: In-
ternational Conference on Learning Representations. 2021. url: https:
//openreview.net/forum?id=EQfpYwF3-b.

7



[7] Chaoqi Wang, Guodong Zhang, and Roger Grosse. “Picking Winning Tick-
ets Before Training by Preserving Gradient Flow”. In: International Con-
ference on Learning Representations. 2020. url: https://openreview.
net/forum?id=SkgsACVKPH.

[8] Shixing Yu et al. Hessian-Aware Pruning and Optimal Neural Implant.
2021. arXiv: 2101.08940 [cs.CV].

8


