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Abstract—Recent advances in remote health monitoring sys-
tems have significantly benefited patients and played a crucial
role in improving their quality of life. However, while physi-
ological health-focused solutions have demonstrated increasing
success and maturity, mental health-focused applications have
seen comparatively limited success in spite of the fact that
stress and anxiety disorders are among the most common issues
people deal with in their daily lives. In the hopes of furthering
progress in this domain through the development of a more
robust analytic framework for the measurement of indicators
of mental health, we propose a multi-modal semi-supervised
framework for tracking physiological precursors of the stress
response. Our methodology enables utilizing multi-modal data
of differing domains and resolutions from wearable devices and
leveraging them to map short-term episodes to semantically
efficient embeddings for a given task. Additionally, we leverage
an inter-modality contrastive objective, with the advantages of
rendering our framework both modular and scalable. The focus
on optimizing both local and global aspects of our embeddings
via a hierarchical structure renders transferring knowledge and
compatibility with other devices easier to achieve. In our pipeline,
a task-specific pooling based on an attention mechanism, which
estimates the contribution of each modality on an instance
level, computes the final embeddings for observations. This
additionally provides a thorough diagnostic insight into the data
characteristics and highlights the importance of signals in the
broader view of predicting episodes annotated per mental health
status. We perform training experiments using a corpus of real-
world data on perceived stress, and our results demonstrate the
efficacy of the proposed approach in performance improvements1.

Index Terms—machine learning, eHealth, wireless health, men-
tal health, self-supervised learning, remote health monitoring

I. INTRODUCTION

The rising epidemic of mental health disorders, worsened
by the recent COVID-19 pandemic, speaks to the growing
need for effective and timely management of mental health
disorders.

1Codes are available at https://github.com/shayanfazeli/tabluence

The pandemic led to an increase in the need for mental
health services, while concurrently, given the circumstances
surrounding the outbreak, limited access to traditional modal-
ities of care. This necessitated the explosion in the usage
of alternative mechanisms to deliver mental health services,
mainly through remote formats [1].

For that reason, in spite of increased barriers to access,
unprecedented levels of funding have gone into programs to
address mental health issues among the general public. For
instance, in 2020 alone, the United States government spent
around 280 billion dollars on mental health services [2].

Therefore, even as the pandemic, and associated restrictions
on in-person activities, have subsided, the gaps it revealed
in traditional in-person-based therapeutic services persist, and
demand for remote solutions remains high.

While much of the focus of remote mental health services
has been around the use of video conferencing, instant mes-
saging, and other modes of communication to facilitate inter-
actions between therapists and patients, the use of mHealth
technology and passive monitoring has the potential to be
equally impactful at addressing barriers to care and gaps
in monitoring. Furthermore, by leveraging personal digital
devices equipped with numerous sensors that are capable
of monitoring many aspects of an individual’s physiology
and lifestyle (e.g., heart rate, activity level), remote health
monitoring provides a novel pathway to not only monitor
existing indicators of mental health, but also to improve upon
our understanding mental health disorders and their impacts
on one’s life.

Stress, commonly defined as ”physical, mental, or emotional
strain or tension,” is a widespread problem with numerous
potential causes. According to the American Institute of Stress,
73% of people suffer from acute bouts of stress to a degree
of magnitude that impacts their mental well-being. Incidents
of Anxiety often manifest similarly to stress, however, it is
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notable that it is not always immediately tied to a specific
triggering or inciting event and may take longer to resolve.

All told, both stress and anxiety problems are very common,
to the extent that most adults have been affected by at least
one anxiety-related disorder [3], [4]. Anxiety-related disorders
can have a significant negative impact on the quality of life,
leading to other mental health disorders such as depression,
as well as causing physical health problems [5].

In contemplating improved means to address mental health
challenges generally, and anxiety-related disorders specifically,
it is notable that a critical part of modern healthcare in-
volves accurate and efficient tracking of individuals’ well-
being through time. Examples include tracking athletes and
their training trajectories, and patients’ rehabilitation exercises
[6]–[10]. Compared to physiological health, the mental health
domain is less investigated in the context of remote health
monitoring. This is largely due to a confluence of reasons.
For one, the statistical sufficiency of observations obtained via
data-driven approaches is not often intuitively clear (e.g., can
one draw a conclusion regarding depression from the number
of phone calls?). Another reason is that the data required for
enabling the use of artificial intelligence (AI) is often not
readily available or exclusive due to privacy and regulatory
concerns.

The works in this domain, therefore, have mostly focused
on longer-term patient phenotyping (e.g., classifying patients
into bipolar disorder vs healthy) [11].

While these high-level labels are useful, they can be limited
in their utility, as stress often manifests as an emotional and
physiological response of an individual to a triggering event,
and can occur to anyone regardless of a formal diagnosis. For
example, arguing with someone and being anxious about a
deadline are instances of interpersonal and work-related stress
that are liable to occur to anyone regardless of the existence of
a pre-existing mental health disorder. Furthermore, the highly
localized and temporary nature of these shorter-term episodes,
which given the scarcity of data, makes making the most out
of the available observations critical.

Inspired by the advancements in the domain of self-
supervised learning, we propose a multi-modal self-supervised
learning framework to learn the context of stress response
from continuous physiological readings. This proposed setup
addresses the following challenges and concerns regarding
data-driven monitoring of stress and anxiety:
• The proposed method is inherently modular with regards

to the different modalities of data, and therefore proper
data-layer transforms allows leveraging various devices
(e.g., smartwatches and wearable sensors different from
ours) to learn efficient representations for health monitor-
ing.

• The self-supervised component allows training the net-
work with a higher level of granularity and makes training
more efficient. This is especially needed as the amount
of labeled data available is often limited and costly
to acquire, in contrast to sensor data that is generally
trivially available in large quantities.

• The use of the attention mechanism enables a diagnostic
view of the system, allowing the researchers to look
into the empirical connection between various modes
of data for specific monitoring tasks, counteracting the
masking effect of many deep-learning frameworks on
interpretability.

• In developing this framework, we conducted experiments
on real-world data collected on perceived stress and have
shown that this approach improves the performance com-
pared to prior work leveraging early-fused embeddings of
the same benchmark dataset.

II. RELATED WORKS

Stress and anxiety-related disorders are common mental
health challenges. Such disorders can have significant nega-
tive impacts on people’s lives, including higher chances of
depression and suicide as well as associated comorbidities with
physical health issues [5]. Unfortunately, in many cases, these
issues remain inadequately treated due to challenges ranging
from lack of viable access to therapeutic services to associated
stigmas with utilization [3], [4]. However, even when an indi-
vidual decides to seek psychotherapeutic help to alleviate these
problems, challenges persist in the diagnosis and effective
treatment of their disorder. At the inception of care, the steps
to diagnose and monitor often include clinical evaluation and
comparing personalized symptoms to standardized criteria, for
example, the Diagnostic and Statistical Manual of Mental
Disorders (DSM-5), which is commonly used for this matter.
Researchers continue to study and improve the practicality and
accuracy of guidelines such as DSM-5 [12], [13], but there are
challenges in converting aggregated and generalized diagnostic
criteria, down to episodic-level incidents of stress and anxiety.

The most obvious approach to doing so leverages bio-
metric data, extracted from wearable sensors embedded in
smart devices, that measure a physiological stress response.
However, while such data is incredibly valuable, and notably,
sensing devices have become increasingly sophisticated at
monitoring physiological stress, the resulting analyses are
incomplete at best. This owes to the fact that from the
standpoint of straightforward correlative analytics, it is known
that there is not a direct monotonic correlation between the
emotional perception of stress an individual may feel and the
manifestation of the underlying physiological stress response.
A meta-analysis in the social stress domains, for instance, has
recently shown that merely 25% of studies in the domain
demonstrated a significant correlation between physiological
stress and perceived emotional stress [14].

Given that self-reports of perceived stress often do not
contain information on the physiological stress response, un-
derstanding the complex relationship between the two becomes
a crucial matter [14]. It is also plausible to assume that
such complexity also arises from various other confounding
factors (e.g., demographics, occupation, and other mental
health disorders such as attention-deficit hyperactivity disorder
(ADHD) can influence how prone someone is to stress).



This discrepancy has meaningful impacts on the utility
of passive detection of stress based largely on physiological
indicators. While sensors may be returning accurate readings
on physiological stress, if they do not align with the user’s own
perceptions of stress, notably if they fail to properly account
for moments when a user feels acute emotional distress, then
it will demotivate further engagement with a mental health
platform.

This hindrance comes in spite of considerable progress that
has been made in recent decades regarding the capabilities and
efficacy of personal digital devices, including smartwatches,
smartphones, and wearable devices. This fact has made such
devices attract a lot of research and commercial attention,
employing them for various monitoring objectives [15], [16].

These monitoring approaches focus primarily on fitness and
health-related aspects, resulting in a large body of research
and countless commercialized applications. Examples include
tracking athletes’ training, detecting falls for the elderly,
tracking post-surgery therapeutic and rehabilitation exercises,
and posture correction [7], [17]–[19]. While the central focus
of health monitoring applications has undoubtedly been on
physical health, a wide range of research works has focused on
understanding the relationship between observations obtained
leveraging digital devices and some aspects of individuals’
mental health status. It is noteworthy that a primary goal in
designing smart and automated approaches for mental health
monitoring has to do with proposing meaningful passive-
sensing tools so that informative observations regarding health
status can be made by eliminating or diminishing the need to
interfere with users’ daily activities or request repeated active
interactions.

As a remote mental health monitoring task, social anxiety
was studied in the previous literature, and it was shown that an-
alyzing trajectories obtained via smartphone location services
can paint a comprehensive picture concerning individuals’
proneness to it. To do so, the movements and the nature of
locations visited (which were obtained by cross-referencing
location data with a map API) were taken into consideration,
and the hypothesis of whether or not such corpus is informative
for recognizing the presence of social anxiety was tested [20]–
[23]. Smartphones have also been helpful in developing an
understanding of anxiety [24].

Another choice of hardware for gathering data pertinent
to health data is application-specific wearable sensors. For
instance, wearable electrocardiogram (ECG) sensors were used
to recognize perceived anxiety via pattern recognition [25].

Smartwatches have a unique position amongst the wide
range of various commonly used digital devices. They are in
close contact with the skin and, given their attachment user’s
wrist, which is a distal point of a major appendage, make it
possible to obtain most measurements (e.g., activity) at higher
accuracy, as well as enabling additional measurements such
as heart-rate or pulse oximeter. In case of the need for brief
questions, interactions, or Ecological Momentary Assessments
(EMAs), smartwatches can also be used to issue messages
and acquire responses and entries by the user [15], [16],

[26]. Additionally, smartwatches are prevalent, and relying
on them as the hardware for health applications provides a
better alternative in most cases to application-specific wearable
devices in terms of cost, comfort, and user-friendliness. Data-
driven analyses leveraging smartwatches’ sensory readings
have been successful at the problem of patient classification
for bipolar disorder, schizoaffective disorder, and depression
[11]. It has also been shown that physiological readings made
by basic smartwatch sensors enable efficient modeling of
perceived stress response [27].

In the health analytics domain, data and human annotations
are often limited. Therefore, dealing with overfitting and
memorization is a crucial matter. Additionally, it is beneficial
to go beyond the limited number of human annotations avail-
able in training efficient inference pipelines. Less reliance on
annotations by focusing on unsupervised and self-supervised
approaches has received a lot of research attention in recent
years [28]–[31]. The core idea in most works in this area
is that comparing and contrasting the latent representations
of examples that are expected to share certain similarities
(e.g., augmented versions of the same image) can benefit the
trained weights and help with regularizing the learned decision
boundaries [32].

In short, this work is primarily focused on addressing
the limitations in the previous literature on remote mental
health monitoring. The previous works do not go beyond
leveraging scarcely available annotations in training network
parameters and mainly rely on data augmentation to improve
their performance. They do not focus on encapsulation in
embedding different modalities, which can be an obstacle
in employing optimal encoders for each modality and can
hinder transfer learning. Additionally, they do not focus on
the interpretability of the inference pipeline, which is crucial
in health-related applications.

To address these challenges, this work proposes a frame-
work for leveraging smartwatch-based sensor-driven data to
recognize perceived stress, enabling a novel approach to
remote mental health monitoring. Our proposed inference
pipeline is modular and hierarchical and is composed of
modality-specific embedding branches. The final embedding
is computed via a task-specific attention-pooling mechanism,
which also provides an interpretation of the estimated contri-
bution of each modality’s information to the last embedding.
During training, we leverage an inter-modality contrastive
objective so as to encourage consistency among the predictions
and tune all encoder branches. Figure 1 depicts the overview
of our proposed framework. The details of our approach are
discussed in the next section.

III. METHODOLOGY

Consider a cohort of P individuals undergoing a study
wearing a smartwatch-based remote monitoring system. This
wearable setup allows for the collection of sensory readings
pertinent to users’ exhibited physiological and activity patterns
throughout the day. In our case, the study in question monitors
the connection between readings made by the smartwatch,
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Fig. 1. Our proposed multi-modal self-supervised learning pipeline. Modality-specific data from different distributions are encoded through dedicated
encoders and mapped to a shared latent representation space. The aggregated embedding of the segment is then computed by applying attention pooling to
the modality-specific representations. A self-supervised contrastive objective aligns this aggregate embedding and the mode-specific representations.

which are mostly related to physiological signals, health and
activity status, and short-term perceived stress reported by the
user. The smartwatch’s readings can thus be grouped into fea-
tures corresponding to several modalities: m ∈ {1, 2, · · · ,M}.
This grouping depends mainly on the nature of the features, as
well as the setup and the interface provided by the smartwatch.
From each modality, we have a sequence of observed feature
vectors:

xxx(p)m = {x(p)m,t}t∈[T (p)
m,max]

(1)

From a user’s timeline, we extract short-term timespans,
each of which corresponds to an episode e, which is the
result of filtering the timeline and restricting it to the episode’s
timespan: e = (tstart, tend):

xxx(p)m,e = {x
(p)
m,t ∈ x(p)

m |t ∈ e} (2)

We have a parameterized domain-specific2 encoder f(·; θm)
for each modality m ∈ [M ], which performs the task of
mapping the observed data from this modality to a shared
semantic space S:

f(·; θm) : Xm → S ∀m ∈ [M ] (3)

Hence, the latent embedding denoted by z(p)m,e can be found as
follows:

z(p)m,e = f(xxx(p)m,e; θm) ∀m ∈ [M ] (4)

One could argue that it is plausible to assume that the con-
tributions of observations from different modalities to the final
prediction on a specific task follow a non-uniform distribution
in most cases. For instance, there is no reason to assume the
statistical significance of heart-rate time series is the same as
pulse oximeter readings for the task of stress detection. Going
one step further, such disparity can manifest itself in the level
of instance representations as well. To illustrate this further,

2The term domain in this manuscript refers to the observation type, for
example, a Transformer-based Language Model could efficiently represent
data from textual domain, and there could be multiple modalities with their
observations being text data, each represented by their own specific encoder.

consider a simple case of ”missingness” in data or presence
of noise. This could mean that even though mode m1, for
example, is more informative (in expectation) to the task τ , in
an instance where the data from this group appears missing
or clearly corrupt, the importance of other modalities could
change respectively. Therefore, we have designed a modality
importance head, implemented as a fully connected pipeline,
which determines the contribution of each mode by weighing
their respective embedding vectors, which were projected to
the same semantic space. The first step to this attention-based
pooling mechanism involves using the modality importance
head and obtaining (yet unnormalized) weight a(m)

i for the
latent embedding of modality m’s information in an instance
i:

a
(m)
i ← g(zzz

(m)
i ;ψψψ) ∀m ∈ [M ] (5)

This is followed by a softmax operation to make sure that
the summation of the predicted contributions maps to unity,
in other words, the contribution matrix is right stochastic:

α
(m)
i =

exp(a
(m)
i )∑

j∈[M ] exp(a
(j)
i )

(6)

And thus the final aggregated latent is computed using these
attention weights: z =

∑M
i=1 α

(m)
i · zm.

We leverage the cosine similarity φ(·, ·) to measure the
compatibility between the latent representation of each mode
and the aggregate representation zi.

φ(uuu,vvv) =
h(uuu)T · h(vvv)
‖h(uuu)‖2 · ‖h(vvv)‖

(7)

In other words, we use the aggregated embedding z as
an anchor and define a contrastive objective to leverage the
distances and inconsistency between the latent embeddings:

Lcl =
1

|B|
∑
i∈B

1

|M|
∑

m∈M
− log

exp(φ(zzz
(m)
i , zzzi)/τ)∑

j∈B,j 6=i exp(φ(zzz
(m)
i , zzzj)/τ)

(8)
We have experimented with Lcl in the following training

schemes:



• Pre-training: Pre-training the model parameters by opti-
mizing Lcl through a long training sequence. Afterward,
start with the resulting weights as the initial point for
the supervised fine-tuning of the model with the cross-
entropy objective:

Lcross-entropy = −
∑
c∈C

yc ln pc (9)

In the equation above, C is the set of all classes (e.g.,
in our experiments, the two categories of stressed and
non-stressed for each episode), and pc is the predicted
probability of class c for an observation, computed by
passing representations through a final projection and
Softmax layer.

• Regularization: Use λreg · Lcl as a regularization term in
the overall loss, and train the model by optimizing this
loss simultaneously as the supervised learning objective.

There are several points worth remarking upon with regard to
the comparison of these two training schemes. To begin with,
deciding whether pre-training is going to lead to better general-
ization performance versus the regularization-based approach
depends on model complexity, availability of data, and the
challenges of the specific task that one is targeting. That being
said, the regularization approach is expected to be considerably
faster than the two-stage pre-training and fine-tuning method,
and in our experiments on the task of predicting stress labels,
it led to better test performance as well.

IV. EXPERIMENTS

A. Data
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Fig. 2. A sample portion of a continuous supervision signal generated based
on user inputs, from which episode stress labels can be sampled

The cohort in this study consists of 14 college students who
are ex or active-duty members of the United States military.
The status of these individuals, both as military members as
well as students, renders them an interesting cohort for our
stress study, given that the individuals from both groups are
known to be relatively more prone to experiencing stress.

The smartwatch in this study was Garmin vivoactive 4S.
Nevertheless, it is noteworthy that there is no component
in the proposed methodology that limits the solution to this

heart resp pulseox stress

0

0.1

0.2

0.3

Fig. 3. The average contribution of the four modalities to the final episode
embeddings.

TABLE I
NUMBER OF PARTICIPANTS PER CATEGORY BASED ON THEIR DUTY

STATUS AND SERVICE BRANCH

Duty Status
National Guard 2
Active Duty 3
Veteran 9

Service Branch
Airforce 2
Marine 3
Navy 4
Army 5

smartwatch. The feature groups and various modalities in our
configuration are shown in Table II.

B. Labeling

The focus of this study has been on making predictions on
perceived stress, for which the participants agreed to indicate
the episodes in which they felt stressed and provide us with
the intensity and timespans of these episodes.

For each record input to our system by an individual, we
created a softened (via a Gaussian function) time-series per
the following steps:

• The peak (corresponding to the mean of this Gaussian
function) is set to the given timestamp, or the midpoint
of the timespan ((tstart + tend)/2).

TABLE II
DATA MODALITIES AND THE FEATURES THEY ARE FOCUSED ON

Modality Focus

Daily

heart-rate readings,
number of floors
climbed,
BMR kilocalories,
distance traveled,
activity levels,
aggregated HRV measures

Pulse Ox SPO2
Respiration Respiration rate
Stress HRV-based readings



• The standard deviation of 30 minutes (scaled proportional
to the length of time-span, if a time span of over one hour
is provided).

• The magnitude of the peak point corresponds
to the indicated for the episode: {0, 1, 2, 3} for
{None,Low,Medium,High}, respectively.

The summation of these Gaussian signals comprises the signal
used as the primary supervision objective. The way the labels
are computed is by looking at the end-point of each episode,
and its stress label is marked True if the value of this signal
on that point is larger than a threshold of 0.5, and False
otherwise.

C. Modeling

Our inference model is composed of a specific encoder for
each modality. In our case, each encoder is defined based
on an initial mapping and normalization (via fully connected
layers) followed by a bi-directional recurrent neural network
(RNN) in long short-term memory (LSTM) configuration.
Specifically, the data from each modality was first projected
to a 32-dimensional vector via a multi-layer perception (MLP)
with one hidden layer. The output was then forwarded to
the modality-specific bi-LSTM with the hidden-layer neuron
count of 64. The last stage for representing each modality
was another fully-connected projection layer, generating a 32-
dimensional vector per modality, which were used as modality
representations in our framework.

Note that the overall pipeline does not have any constraint
on the local modality encoders as long as they share the final
semantic space to which they project that modality’s observa-
tions. Given that we were mainly dealing with time-series data,
we used RNNs to model each branch. Nonetheless, modalities
from substantially different domains and their encoders (e.g.,
Transformer-based Language Model for textual data) can also
fit into the same system.

D. Results

Focusing on our real-world perceived stress corpus, we
conducted experiments under the main settings of 1) super-
vised training baseline, 2) pre-training the contrastive objective
and fine-tuning via supervised objective, and 3) training the
supervised objective and simultaneously optimizing a scaled
version of the contrastive term as a regularizing loss.

We observed that leveraging more features and following
a late-fusion protocol for combining modality representations
did lead to an improved generalization performance over
the supervised setup proposed in [27], which combined the
features at the beginning of the pipeline. In the case of our
cohort, training with contrastive regularization led to the best
generalization on the unseen test data, and the results are
shown in Table III. Note that, in general, it is hard to say
which self-supervised setup (pre-training versus regulariza-
tion) is best, as it could depend on other factors, including
model complexity, optimization, data availability, and task

TABLE III
PERFORMANCE COMPARISON FOR THE TRAINED PIPELINE UNDER

DIFFERENT LEARNING SETUPS

Method Test Accuracy
Early-fusion + Supervised Training [27] 64%
Late-fusion + Supervised Training 66%
Late-fusion + Contrastive Pre-training + Fine-tuning 70%
Late-fusion + Supervised Training
+ Contrastive Regularization 73%

difficulty. That being said, our approach allows learning high-
quality representations by optimizing the modality-contrastive
objective via both of these setups.

Additionally, we focused on interpretability as well and
leveraged the task-specific attention mechanism in our
pipeline, which pools the representations from different modal-
ities, to study the utility and contribution of observations from
each feature group. This enables the network to dynamically
assign weights to each modality’s latent representation (in the
shared space) as it processes each instance, allowing us to
study their contribution both per instance and in expectation
for performing the desired task. In Figure 3, we have shown
the results on this matter for the contrastive regularization
setup3. The results indicate that even though the contributions
of the different modalities follow a non-uniform distribution
as expected, none of them were ignored by the model and they
all play a part in the final predictions.

V. DISCUSSION

A. Broader Impact

In the context of remote health monitoring, there are several
factors addressing which is of paramount importance. In what
follows, we elaborate upon these factors and how the solution
proposed in this work attempts to address them:
• Affordability and Compatibility: For the scalability of a

proposed remote health monitoring framework, focusing
on widely available devices that are sold at affordable
price renders it easier to deploy the system. In this work,
we focused on basic physiological signals for which read-
ing sensors are available in most commercially available
smartwatches. Nonetheless, the proposed methodology
has no intrinsic limitation regarding the modalities used;
thus, additional data available in often more expensive
devices (e.g., galvanic skin response) can also be utilized
in the same methodology, and the main requirement is
providing a modality-specific encoder fit for the data
domain. Furthermore, this framework offers a more en-
capsulated view in representing different modalities as the
observation from each can be embedded by a dedicated
encoder first, and the contrastive objective encourages
each local branch to optimize its parameters towards
the given task as well. This has clear advantages in
terms of transferring knowledge as well, an example of

3The label heart in Figure 3 corresponds to the daily modality’s
information, given that its main focus is heart-rate.



which could be initializing each branch separately via
pre-trained weights so as to prepare a better starting point
for the model and optimization.

• Ease of use: Optimizing a remote health monitoring
with regards to minimizing the amount of required user
interaction makes it easier for individuals to use the
system. This is why passive monitoring techniques are
receiving more attention in the eHealth domain.

• Interpretation: In all automated healthcare applications
of machine learning, any insight and interpretation into
what parts of the observation a model mostly focused on
in determining the final decision, is crucial and can help
experts better validate the system as well. In this work,
we incorporated a task-specific attention mechanism for
pooling the representations from different modalities,
which helps determine the weights assigned to each
modality (per instance and in expectation) to perform the
task efficiently.

• Limited Data: The data availability for eHealth applica-
tions is often limited due to the difficulty and costs of
conducting large-scale studies, the exclusivity of data,
and privacy reasons. It is, therefore, important to try to
maximize the use of data in training inference pipelines.
This work combines label smoothing with inter-mode
self-supervision objectives to go beyond self-reported
supervision objectives.

B. Limitations
It is crucial to discuss the limitations of this work given

the sensitive nature of dealing with health as its objective.
In this work, we relied on self-reported entries to decide
the supervision signals for individual timelines. This has
the issue of being prone to human error, as one might not
accurately recall the time and extent to which one has felt
stress. Additionally, reports on the intensity of the felt stress
are also subject to noise. Another challenge is the small size
of our dataset. A primary reason behind our self-supervision
component in this work was alleviating the negative impacts
associated with the aforementioned limitations.

C. Conclusion
We proposed a remote health monitoring solution that is

modular and multi-modal, thus, allowing the use of various
encoders best suited for each modality. We proposed an
instance-level attention mechanism to tune the contribution
of each modality to the final representation and provide
insight into the expected importance of each modality for the
task at hand. We conducted experiments with the proposed
method to recognize perceived stress in short-term episodes
and empirically demonstrated its superior performance over
supervised training.
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