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Abstract—Developing the capability to continuously and non-
invasively monitor the mental health status of individuals is a
critical focus in the mHealth domain. The use of passively-
generated data gathered via smart and portable electronic devices
to monitor specific indicators of mental health has shown poten-
tial to serve as an effective alternative to traditional intrusive
survey-based approaches to monitoring mental health remotely.
In this study, we propose a remote health monitoring framework
for dynamic, flexible, and scalable assessment and detection
of physiological precursors of a stress response. Our method
comprises a smartwatch-based system for continuous monitoring
of primary physiological signals, followed by a deep neural
network architecture that performs the fusion and processing
of the multi-modal sensor readings. We empirically validate
our system on a cohort of university-affiliated members of
the military. Our findings demonstrate the effectiveness of our
passive-sensing system for tracking perceived stress, the results
of which can be used to obtain a better understanding of patient
behavior and improve personalized treatments1.

Index Terms—mental health, machine learning, ehealth, ad-
versarial learning, mobile health, time-series.

I. INTRODUCTION

Effectively managing mental health-related disorders is a
growing challenge to the healthcare community. In the United
States alone, estimates are that 20% of the population suffers
from at least one mental health condition. Spending on ther-
apeutics and treatments has now reached hundreds of billions
of dollars each year [1]. In addition to the significant costs
and considerable resources required to provide proper help
for patients, limited access to care renders seeking treatment
further challenging for the individuals in need of it [2]–[5].

Stress and anxiety disorders are among the most common
mental health problems within the mental health spectrum.
Around 60 million adults are affected by at least one anxiety-
related disorder (e.g., generalized anxiety disorder (GAD) and
social anxiety), with less than 40% of them seeking treatment
[6], [7]. Additionally, the rise of the COVID-19 pandemic,
which led to widespread quarantines, loss of loved ones, and

1We have released the codes for our framework at
https://github.com/shayanfazeli/tabluence

long-term health effects, has adversely affected the mental
health status across the population [8]. Anxiety disorders
negatively impact the quality of life, with effects ranging from
increasing the risk of mental health and behavioral disorders
(e.g., depression, suicide) to physical health issues [9].

Remote monitoring of stress, anxiety, and other mental
health disorders has significant benefits, such as helping with
early detection and improving treatments at the level of
individuals by providing medical experts with an abundance
of information on relevant behavioral patterns exhibited by
patients.

Given technological advancements in the past decades, more
focus has been put on personal electronics as potential means
to scale remote health monitoring systems.

A. Wearable Sensing and Mental Health

Within the spectrum of personal electronics, smartwatches
offer unique potential in the realm of remote health monitoring
[10]. While smartphones are the platform most typically
associated with mobile healthcare applications, smartwatches
are worn continuously and directly on the skin, enabling a host
of physiological sensing modalities that smartphones cannot
emulate. The watch’s location, worn at a distal point of a major
appendage (the user’s wrist), also typically results in a more
accurate reading of a user’s activities than smartphones, whose
location in relation to the user’s body may vary throughout the
day [11].

Embedded smartwatch sensors now increasingly rival the
capabilities and sophistication of dedicated wearable sensors
such as chest straps. Additionally, smartwatches have advan-
tages over dedicated sensors in that their interactive features
provide a means for engaging the user with additional queries
and therapeutic responses [12].

Finally, the generalized nature of smartwatches increases
the likelihood that users will utilize their healthcare features in
addition to the broader set of desirable functions that users find
in smartwatches. This is much like how a user is likely to be
more inclined to use a healthcare application on a smartphone
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rather than purchase and use a custom device solely for the
same intended purpose.

As previously noted, smartwatch devices provide near real-
time data measurements, allow users to provide feedback via
interactive queries, and enable intervention mechanisms in
normal day-to-day situations outside of clinical environments.
Furthermore, this platform aggregates and analyzes data from
patients that can then be communicated to their healthcare
providers and family members to improve their treatment
experience.

Due to their utility, this study focuses on the application of
smartwatch devices to the mental health domain.

B. The disconnect between emotional and physiological stress

While smart devices, like smartwatches, have demonstrated
the technical capacity to monitor physiological stress to vary-
ing degrees of accuracy, they demonstrate only a partial picture
of a wearer’s overall mental health.

This stems from the intrinsic disconnect between emotional
perceptions of stress and the underlying physiological stress
response. There is growing evidence that there are notable
differences in how individuals perceive their stress levels and
the actual physiological manifestation of a stress response. For
instance, a meta-analysis found that a significant correlation
between physiological stress and perceived emotional stress
was found in only 25% of social stress studies [13].

There are a number of factors that are presumed to con-
tribute to this low correlation. Foremost among them is
that, somewhat counter-intuitively, a direct linear relationship
between these two stress profiles is not present but instead
is influenced by many additional factors. A detailed study
concluded that self-reports of perceived stress did not provide
useful information about physiological stress responses [14].
Differing populations may also exhibit different correspon-
dence patterns that population-level models fail to account for
(e.g., individuals with ADHD, those who experience chronic
stress, those with family histories of substance abuse, etc.).
[13]

It is also theorized that differing response patterns may im-
pact how stress manifests physiologically. For instance, differ-
ing degrees of cognitive regulation of negative emotions may
result in individuals being able to adapt to stress differently
[15]. Previous work demonstrating a higher correspondence
between self-reported anxiety and physiological arousal in
women when compared to men is hypothesized to be explained
by men showing emotion-suppressing coping strategies to a
greater extent than women [15]. Finally, it has been observed
that positive emotions are more strongly associated with
physiological responses than negative emotions. This may be
due to their social acceptability and disinclination to control or
dampen a physiological response when compared to negatives
ones [15].

Perhaps the most challenging effort in effectively mapping
these two stress profiles stems from the fact that accurate
and consistent measurement of emotional stress experiences is
currently considered an intractable challenge for the academic

community [14]. While multiple scales have been developed to
assess differing quantifiable measures of mental health, there
is no clinically validated gold standard for assessing emotional
well-being accurately and consistently, both across a popula-
tion and across individuals over time. This stems from issues
with an individual’s recall and perception of stress, particularly
if data is collected after the fact, their evolving willingness to
be forthright and transparent regarding emotional well-being
and differences in the subjective assessment of stress across
individuals (what constitutes a moderate level of stress may
differ dramatically across individuals) [14].

In this work, we present a complete wearable stress recog-
nition and monitoring framework that provides the opportunity
for continuous, scalable, and low-cost monitoring of relevant
mental health indicators over time. Our contributions are as
follows:

• Focusing on users’ usual anxiety responses during ev-
eryday life events, we propose a smartwatch-based sys-
tem for non-invasive and efficient monitoring of key
physiological attributes, including heart rate, heart rate
variability, respiration, and pulse oximetry readings.

• In a 10-day anxiety study approved by the Internal
Review Board (IRB)2, we created a corpus of primary
physiological data from monitoring 14 college students
with an active-duty or ex-military affiliation.

• We designed a survey-based self-assessment method for
the subjects to receive feedback regarding time and inten-
sity of the moments and episodes they perceived as stress-
ful throughout the day. These assessments correspond to
the stressful episodes in their everyday lives and their
perceived levels of experienced anxiety. Labeling these
self-reported episodes was done with the help of domain
experts, which rendered our corpus an informative bench-
mark for empirical performance evaluations.

• We designed deep inference pipelines for the fusion
and processing of our smartwatch data [16]. Our frame-
work enables the efficient use of artificial intelligence
for stress-focused deep representation learning. This is
done by pre-processing preparation and fusion of the
multi-modal physiological time-series data recorded via
smartwatch sensors as well as leveraging the details of
self-reported stressful events.

• We employed an adversarial regularization technique in
enhancing subject invariance in the learned latent repre-
sentation, leading to improve generalization performance.

• Our empirical evaluation shows the advantages of our
integrated framework for continuous monitoring of ev-
eryday anxiety.

II. RELATED WORKS

The primary focus of mHealth research in remote moni-
toring of individuals has been on smartphones, smartwatches,
and custom body-area-networks (BANs). Personal electronics

2The Internal Review Board approved our study at the University of
California, Los Angeles.
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such as mobile phones and smartwatches have been the core
component of numerous mHealth studies on remote monitor-
ing of the physical and mental well-being of patients. An
example is the location readings captured via the phone’s
Global Positioning System (GPS). These data have been used
in the assessment of the likelihood of suffering from social
anxiety among college students [17]–[20]. In addition to the
location readings, almost all phones are equipped with various
sensors (e.g., motion sensors) that can be leveraged in passive
sensing frameworks. It has been shown that there can be
significant relationships present between features extracted
from these data and indicators of mental well-being [21].

To further bolster the efficacy and scalability of such a
monitoring framework, in addition to proposing systems for
obtaining patient observations, researchers have worked on
automating the assessments of mental health status. Specif-
ically, the methodologies in machine learning and artificial
intelligence domains demonstrate the potential of learning
systems for effective monitoring of psychological indicators
[21], [22].

Smartwatches have been widely used for health moni-
toring frameworks [23], [24]. Their motion sensors provide
information on human activity types and movement levels.
This mobility information captured by them has been used
to efficiently track asthma patients’ health status [25], [26].
Some smartwatches provide access to less common sensors
such as skin temperature and galvanic skin response. These
data have been used in [22] to enable accurate classification
between healthy groups and patients from three critical disor-
ders: depression, bipolar, and schizoaffective. Cardiovascular
and respiration activity is shown to be especially associated
with stress levels. Specifically, the model in [27] is designed
to leverage particular handcrafted attributes (e.g., 80th R-R
intervals) in determining the stress. Using the same model
proposed in [27], a system centered around a physiological
sensor set was proposed in [28]. In that work, a wearable suite
was provided to the participants that they would wear under-
neath their clothes. The data regarding chest compression via
inductive plethysmography as well as a 2-lead electrocardio-
gram and accelerometer reading were then transmitted to the
participant’s smartphone. The data was then analyzed to make
inferences regarding stressful episodes. Measurement of stress
and inference regarding participants’ academic performance is
done in [29]. In [30], the authors focused on perceived stress
levels as well as predicting whether a 1-minute reading of
ECG and respiration data is a response to a stressor. In general,
the utilization of sensor data and processing their time-series
in making assessments regarding the inference is a difficult
problem and imposes numerous challenges [31].

Our work is different from the above mainly in the following
aspects: 1) Our system is focused on stress and general
anxiety responses, which is a more common and relatively
less-investigated problem in the domain of remote monitoring
of mental health indicators. 2) Our system is a single-device
framework relying on the smartwatch alone, improving the
overall convenience and usability of the proposed solution. 3)

Additionally, features that we employed in this system were
recorded via the usual physiological sensors on smartwatches,
which are commonly available in average commercial smart-
watches. This makes it easy to adapt our framework and use
it with similar hardware and input signals, and improves the
accessibility of the proposed methodology.

III. DATA

A. Cohort

Our cohort in this study consists of 14 students within
the University of California, Los Angeles community, who
were also active-duty or ex-members of the United States
military. This cohort is critical for our evaluations given that
both military members and college students are amongst the
groups more prone to higher levels of work-related stress
in their lives [32]. These individuals were asked to use our
wearable system for a period of 10 days as they go about
their everyday lives, allowing us to record and analyze their
main physiological time series data. The details of participant
counts per categorization by duty status and by service branch
are available in Table I.

TABLE I
NUMBER OF PARTICIPANTS IN OUR COHORT PER CATEGORY BASED ON

THEIR DUTY STATUS AND SERVICE BRANCH

Duty Status
National Guard 2
Active Duty 3
Veteran 9

Service Branch
Airforce 2
Marine 3
Navy 4
Army 5

B. System

The main component of our system is a smartwatch ca-
pable of recording physiological measurements concerning
heart rate, heart-rate variability, pulse-oximeter, and respiration
readings. In this work, we have used a Garmin vivoactive 4S
watch; nevertheless, our system is easily generalizable to other
devices as almost all smartwatches are able to perform the
required physiological measurements continuously.

We requested the participants to fill out a survey on a daily
basis with regards to the details of the events they perceived
to be stressful. Given that our focus has been on perceived
anxiety, the subjects were asked to provide the approximate
timespan of such episodes, and the intensity by which they
perceived it to be stressful (None, Low, Medium, and High).
These data serve a crucial role in our framework in connecting
the quantitative measurements pertaining to physiological sen-
sory readings and the qualitative user perception of the events.

IV. METHODS

A. Pre-processing

Leveraging the smartwatch system, we would gather K
types of physiological time series (e.g., heart rate every 15
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Fig. 1. Pipeline overview: (a) Our smartwatch system and app capture the physiological data monitored through time as users go about their everyday lives
and store them in our cloud database. (b) Subjects’ responses to our survey are utilized to create teacher functions which provide the supervision signals
for guiding the training process. (c) The data will go through preprocessing, transformation, and fusion across different sequential data from various sources
(e.g., respiration). (d) Through a sliding window approach, the preprocessed sequential data will be used to create a training corpus of windows, each serving
as an observation in the Dtrain. (e) The inference model composed of source-specific recurrent neural networks in Long-Short Term Memory configuration
will process these windows. The gradient resulting from matching its prediction against the supervision signals from teacher function determines the training
direction. (f) The resulting predictions are used in computing the training loss.

minutes), which are stored as a list of tuples of timestamps
and value readings. Specifically, we have:

Dk,i = {(tj , xj)}
Ti,k

j=1

Where k is a physiological signal type (e.g., heart-rate), each
(tj , xj) is a single sampled datapoint consisting of timestamp
tj in unit of seconds and reading value xj . To account
for discrepancies in sampling rate and filling the missing
values, we consider the highest sampling frequency and use
interpolation to fill in the missing values during the fusion
phase as needed.

B. Supervision Signals

We gathered the responses input by the study participants in
our daily surveys and leveraged them to create the supervision
signals for training our models. An example of such a data
point and the data it contains is shown in Figure 2.

The following questions come to mind with regards to using
these data points to guide the training:

• How can we connect such single data points to continuous
observation windows?

• How can we account for the reported intensity levels
associated by the subject with the perceived episode?

To address these challenges, we propose a method to
formulate continuous teacher functions using these data for
each individual. This allows us to query information on stress
level at any timestamp defined in subject’s trajectory, so as to
use them as supervision signals.

It is noteworthy that there is not just one way to deal with
the challenges that this data structure and problem definition
impose. Nevertheless, our approach has the benefit of being
intuitive, simple to implement, and practical, as validated
through empirical observations.

The process for creating this teacher function for each
subject is as follows:

• We start with the teacher function for each subject being
a constant 0 function, which means that our assumptions
with regards to timestamps that we do not have data for
is non-stressed as it is the majority class.

• Every entry d obtained from user inputs has a
probe_datetime, the value for which is either a sin-
gle timestamp or a time-range. For instance, the subject
could indicate I was stressed because of X at 4:30 pm, or
I was stressed because of X from 2pm to 5pm. For each
datapoint, we would update f(·) as follows:

f(·)← f(·) + λ(d) · exp(−
t− µ(d)
2σ(d)2

)

The mean µ, coefficient λ, and standard-deviation for
this gaussian function will be computed based on the
details of each label, and the gradual nature of the
function would help account for the build-up and cool-
down times as well as the intensity-related magnitude,
with decreasing magnitude as we go further away from
the peak. Figures 3. and 4 show case an example data
window and its corresponding teacher function.

C. Inference

Considering the multi-modal nature of our data, the question
of how and when to fuse these different branches throughout
the inference pipeline is particularly important. The core model
used in this study can have a separate branch for each sequence
after fusion, followed by the latent representation fusion via
fully connected projections as shown in Figure 1. Therefore,
the current architecture allows both techniques of early and
late fusion.

Subject Invariant Features: In order to enhance the gen-
eralizability of our latent representations, we propose to un-
learn the redundant subject-specific features by following an
adversarial setup. Consider a discriminator model D(·;ψ1)
that takes the latent representation z ∈ Rdemb and predicts the
subject identifier. There also is a generator model G(·;ψ2),
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{
"subject_id": "12345",
"stress_type": "general",
"perceived_rate": "low",
"stress_rate": "low",
"stress_description": """
I was stressed because of a deadline
""",
"probe_datetime": (

datetime(
2021, 5, 10, 9, 0, 0,
tzinfo=timezone.utc),

datetime(
2021, 5, 10, 18, 0, 0,
tzinfo=timezone.utc))

}

Fig. 2. A sample stress probe datapoint, showing the record structure

which will be responsible for making it difficult for the
discriminator to recognize to which subject the given window
belongs. In our case, we consider the generator G(·;ψ2) to
be the main inference pipeline itself, and the discriminator to
be a multi-layer perceptron (MLP)-based head on top of the
latent representation:

D(·;ψ1) = fadv(·;ψ)

To facilitate this setup, we introduce an additional adversar-
ial regularization term LD − LG to the final loss, defined as
follows:

LG = E[lce(fr(fadv)(z(x)), ysub)]

LD = E[lce(fadv(sg(z(x))), ysub)]

Where fr(·) is the freeze operator (which freezes the pa-
rameter set ψ for this adversarial head) and sg(·) is the stop-
gradient operator, not allowing the gradients of this loss to
backpropagate through the network. Therefore, the network
will be inclined to remove the features that hurt subject
invariance.

V. EXPERIMENTS

A. Signals and Targets

In our experiments, we followed the strategy below in
parameterizing the teacher function for every subject:

µ(d) =

d[‘probe_datetime‘] if single timestamp

avg(d[‘probe_datetime‘]) if time range

σ(d) =


30× 60 sec if single timestamp

len(d[‘probe_datetime‘])
(30× 60 sec)

if time range

In this work and as a proof of concept, we focused on
predicting whether a window ends in a high-stress note. We
considered the coefficient λ(d) which adjusts the magnitude
of each probe to be proportionate to the reported stress levels,

TABLE II
PERFORMANCE OVERVIEW FOR THE TASK OF RECOGNIZING HIGH-STRESS

WINDOWS

Acc
Supervised Setup 62.0
Supervised Setup
+ Adversarial Subject Invariance 64.5

and respectively defined the high-stress window as one that the
corresponding teacher function returning a value larger than
0.5 for its endpoint, which led to a high consistency between
the resulting teacher functions and the reported episodes.
The sensory data used in our work was based on heart-rate
(every 15 seconds), a measure of heart-rate variability (every
3 minutes), pulse-oximeter (every 1 minute), and respiration
rate (every 2 minutes). On the input side and to help stabilize
the training further, we fit min-max normalizers on the features
across the time slices in the train set.

B. Modeling and Optimization

The recurrent neural network module we considered is
a 4-layer bi-directional RNN in Long Short Term Memory
(LSTM) configuration, leading to a z ∈ R256 latent represen-
tation. To prepare the inputs for processing, we perform early
fusion of the sensory readings and create a sequence of vectors
representing physiological status at each timestamp, as it is a
more intuitive approach for modeling the inputs in this case.

Our optimization protocol employed the Adam algorithm
with a learning rate of 1e-3 and a weight decay of 1e-4 to
help with overfitting. We also made use of cosine annealing
scheduling, reducing the learning rate across our 100 epoch
experiments.

With regards to adversarial regularization for enhancing sub-
ject invariance, our fadv(·;ψ) is a two-layer MLP mapping the
latent representation to the subject identifier label. The results
shown in Table II indicate an increase in the generalization
performance.

VI. DISCUSSION

A. Limitations

Given the importance and sensitivity of the problem our
work tries to address, it is of paramount importance to provide
an in-depth discussion of its limitations.

1) Label Noise: The self-labeling mechanism in our frame-
work inquired subjects once per day to indicate the time and
level of their perceived stress for stressful events. This implies
that the presence of noise is possible. Such label noise takes
place due to the subject not remembering an event accurately
or at all or misremembering the time and duration of it.

2) Statistical Sufficience: The relationship between certain
short-term attributes of physiological signals and stress is
well understood in relatively severe stressful episodes (e.g.,
increased heart rate is expected when a person is agitated).
Nevertheless, such a relationship is less investigated when it
comes to low levels of perceived intensity and over longer
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Fig. 3. Example: A slice of patient physiological signals recorded via smartwatch system
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Fig. 4. Example: Anxiety levels - Subject trajectories through time

periods of time. Our results in this work demonstrate that
such physiological features are very helpful in efficiently
performing stress prediction. That being said, augmenting such
a dataset with accurate personal information such as more thor-
ough clinical assessments can lead to further improvements in
performance.

3) Stress Types: Due to the small cardinality of our dataset,
we focused on the task of predicting stressful versus non-
stressful episodes (based on the definition given before). How-
ever, it is possible to categorize the reported stressful episodes
into different types and look at each category separately (ex-
ample groups are interpersonal, induced, and general stress).
A larger dataset and additional features can pave the way for
obtaining better insight into this domain, and to shed light on
to what extent the features used in this work are statistically
sufficient for distinguishing between such subtypes.

4) Dataset Size: Our dataset focused on a relatively small
cohort of college students. Therefore, certain data biases such
as skewness towards certain age groups can be expected. We
posit that employing a larger dataset with more subjects across
different groups and communities can circumvent such issues
while using the same inference methodology. The codes for
our framework are released for this purpose to help facilitate
research in this domain.

VII. CONCLUSION

In this article, we proposed an end-to-end stress monitoring
framework which covers steps from data acquisition to the
inference-making pipeline. We conducted a proof-of-concept
study on college students with military affiliations and empiri-
cally demonstrated the effectiveness of our remote monitoring
technology for an accurate and scalable inference mechanism
for recognition of perceived anxiety leveraging continuous
monitoring data.
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