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ABSTRACT

Dataset distillation aims to minimize the time and memory needed for training
deep networks on large datasets, by creating a small set of synthetic images that
has a similar generalization performance to that of the full dataset. However,
current dataset distillation techniques fall short, showing a notable performance
gap compared to training on the original data. In this work, we are the first to
argue that the use of only one synthetic subset for distillation may not yield optimal
generalization performance. This is because the training dynamics of deep networks
drastically changes during training. Therefore, multiple synthetic subsets are
required to capture the dynamics of training in different stages. To address this issue,
we propose Progressive Dataset Distillation (PDD). PDD synthesizes multiple small
sets of synthetic images, each conditioned on the previous sets, and trains the model
on the cumulative union of these subsets without requiring additional training time.
Our extensive experiments show that PDD can effectively improve the performance
of existing dataset distillation methods by up to 4.3%. In addition, our method for
the first time enables generating considerably larger synthetic datasets. Our codes
are available at https://github.com/VITA-Group/ProgressiveDD.

1 INTRODUCTION

10 20 30 40 50 60
Number of Images Per Class (IPC)

66

68

70

72

74

76

Te
st

 A
cc

ur
ac

y 
(%

) Our Multi-stage (PDD-MTT)
Single-stage (MTT)

Figure 1: Our multi-stage dataset distillation
framework, PDD, improves the state-of-the-
art algorithms by iteratively distilling smaller
synthetic subsets that together capture longer
training dynamics on full data. In the setting
shown in the figure, PDD uses MTT as its base
distillation method to incrementally generate
5 synthetic subsets of size 10, where each
subset captures 15 epochs of training on full
data. This yields much better performance
compared to generating the same number of
images (IPC) in a single stage, i.e., based on
the first 15 epochs of training on full data.

Dataset distillation aims to generate a very small num-
ber of synthetic examples from a large dataset, which
can provide a similar generalization performance to
that of training on the full dataset (Wang et al., 2018;
Loo et al., 2022; Nguyen et al., 2021a;b; Zhou et al.,
2022). If this can be achieved, it can significantly re-
duce the costs and memory requirements of training
a deep network on large datasets. Therefore, dataset
distillation has gained a lot of recent interest and
has found various applications, ranging from contin-
uous learning, neural architecture search, to privacy-
preserving ML (Zhao et al., 2021; Dong et al., 2022).

Existing dataset distillation methods generate a set of
synthetic examples that match the gradient (Zhao
et al., 2021; Zhao & Bilen, 2021b), Neural Tan-
gent Kernel (NTK) (Loo et al., 2022; Nguyen et al.,
2021a;b; Zhou et al., 2022), or weights (Kim et al.,
2022) of a number of randomly initialized models
being trained on the original (Zhao et al., 2021) or
synthetic data (Zhao & Bilen, 2021b). However, as
matching the entire training dynamics is intractable,
existing methods only match the dynamics of early training iterations, as short as the first four epochs
(Zhao et al., 2021). As the training dynamics of deep networks drastically changes during training,
a synthetic subset generated based on the early training dynamics cannot represent the dynamics
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of the later training phases. Hence, existing dataset distillation methods suffer from a substantial
performance gap to that of training on the original data (Zhao et al., 2021; Kim et al., 2022).

Recent results on optimization and generalization of neural networks revealed that gradient methods
have an inductive bias towards learning simple functions, especially early in training (Kalimeris et al.,
2019; Hu et al., 2020; Hermann & Lampinen, 2020; Neyshabur et al., 2014; Shah et al., 2020). That is,
models trained with (stochastic) gradient methods learn nearly linear functions in the initial training
iterations (Kalimeris et al., 2019; Hu et al., 2020). As iterations progress, SGD learns functions of
increasing complexity (Kalimeris et al., 2019). This implies that synthetic examples generated based
on early training dynamics can only train low-complexity neural networks that perform well on easy
examples that are separable by low-complexity models. This limitation is further supported by recent
studies (Pooladzandi et al., 2022; Yang et al., 2023), which observed that deep models benefit the
most from learning examples of increasing difficulty levels at various training stages and one subset
of the training data is not enough to support the entire training.

Building on this observation, to bridge the gap to training on the full data, it is crucial to synthesize
examples that can capture the dynamics of later training phases. However, this is very challenging.
First, synthesizing examples that match the training dynamics of many randomly initialized networks
over longer training intervals has a very high computational cost. Moreover, capturing complex train-
ing dynamics over longer intervals requires synthesizing more images, which makes it prohibitively
expensive. Finally, even if a larger subset can be generated to match the dynamics of a longer training
interval, it is not enough to bridge the gap to training on the full data.

In this work, we address the above challenges by proposing a Progressive Dataset Distillation (PDD)
pipeline. We are the first to employ a multi-stage idea: specifically, to generate multiple synthetic
subsets that can capture the training dynamics in different phases. To do so, we synthesize examples
that can capture the training dynamics of the full data in a given training interval. Then, we train the
model on the synthesized examples and generate another set of synthetic examples that, together
with the previous synthetic sets, capture training dynamics of the full data in the consecutive training
interval. Importantly, our progressive distillation approach captures the training dynamics of neural
networks more effectively, resulting in superior generalization performance. Figure 1 confirms that
by distilling the dynamics of the later training stages on CIFAR-10, PDD effectively improves the
performance when training on the distilled data.

Our extensive experiments confirm that our multi-stage distillation approach outperforms existing
methods by up to 5% on ConvNet and 5% for cross-architecture generalization to ResNet-10 and
ResNet-18. Remarkably, PDD is the first method to enable generating larger synthetic datasets. In
doing so, it considerably bridges the gap to training on the full data by achieving 90% of the full
accuracy with only 5% of the full data size on CIFAR-10 and 8% of full data size on CIFAR-100
(Krizhevsky et al., 2009) and provides state-of-the-art accuracy on Tiny-ImageNet (Le & Yang, 2015).
We also conduct studies showing that: 1) our multi-stage synthesis framework achieves consistent
improvement if new intervals are introduced, which confirms its ability to serve as an effective base
method for further condensation (Liu et al., 2023a) where the budgets (i.e., number of images) are
subjected to change; 2) our framework generates synthetic samples with strong generalization ability
across various architectures; 3) the distillation process can be performed on progressively challenging
subsets of the full data at each stage, resulting in minimal performance degradation.

2 RELATED WORKS

Dataset Distillation (DD) (Wang et al., 2018) aims to generate a synthetic subset from a large training
data that can achieve a similar generalization performance to that of training on the full dataset, when
trained on. To achieve this, DD adopted an optimization process comprising two nested loops. The
inner loop involves training a model using the synthesized data until it reaches convergence, while
the outer loop aims to optimize the synthetic data such that the trained model generalizes well on the
original dataset. More recent studies (Loo et al., 2022; Nguyen et al., 2021a;b; Zhou et al., 2022)
leverage the same framework but use kernel methods, such as Neural Tangent Kernel (NTK), to
approximate the inner optimization in a closed form. While kernel-based algorithms achieved higher
accuracy than DD (Wang et al., 2018) on networks that satisfy the infinite-width assumption, they do
not work well in practice as the constant NTK assumption does not generally hold.

Another set of methods relies on gradient matching. In particular, DC (Zhao et al., 2021) minimizes
the distance between the gradients of the synthetic and original data on the network being trained
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on the synthetic data. DSA (Zhao & Bilen, 2021b) improves upon DC by applying differentiable
siamese augmentations to both the original and synthetic data while matching their training gradients.
Incorporating differentiable data augmentation has been adopted by almost all subsequent studies.
Later on, IDC (Kim et al., 2022) proposed a multi-formulation framework to generate more augmented
examples from the same set of synthetic data, to boost the performance with the same storage budget.
The synthetic data is generated by minimizing the distance between the gradients of the synthetic and
original data on the network being trained on the full data. Concurrent to our work, Feng et al. (2024)
proposes to unroll gradients within a randomly picked small window along the training trajectory and
generate nested synthetic datasets of different IPCs.

Besides matching the gradients, other methods involve matching the training trajectories of the
network parameters (Cazenavette et al., 2022) or the data distribution (Wang et al., 2022; Zhao &
Bilen, 2023). MTT (Cazenavette et al., 2022) pre-computes and stores training trajectories of expert
networks trained on the original data, and then minimizes the distance between the parameters of the
network trained on the synthetic data and the expert networks. CAFE (Wang et al., 2022) matches
the features between the synthetic and real data in all intermediate layers. To avoid the expensive
bi-level optimization, DM (Zhao & Bilen, 2021a) minimizes the distance between feature embeddings
of the synthetic and real data based on randomly initialized networks. More recently, HuBa (Liu
et al., 2022) proposed to distill a dataset into two components, Bases and Hallucination to increase
the representation capability of distilled datasets. IT-GAN (Zhao & Bilen, 2022) inverted the training
samples into latent spaces and further fine-tuned towards a distillation objective, GLaD (Cazenavette
et al., 2023) used generative adversarial networks as a prior to help the cross-architecture generaliza-
tion. More recently, DREAM (Liu et al., 2023b) selects representative samples during matching to
improve the performance and efficiency of dataset distillation, and DATM (Guo et al., 2024) aligns
the difficulty of the generated patterns with the size of the synthetic dataset.

Most existing works generate a set of synthetic examples that match the dynamics of neural networks
during early-training stage or at multiple random initializations. In contrast, we show that progres-
sively generating multiple synthetic subsets to match the training dynamics in different stages of
training yields superior performance.

3 PROBLEM FORMULATION AND PRELIMINARY

Given a large dataset T = {(xxxi, yi)} consisting of |T | samples from C classes, data distillation aims
to learn a synthetic set S = {(sssi, yi)} with synthetic samples |S| so that deep neural networks can be
trained in S and achieve comparable generalization performance to those trained on T . Formally,

Exxx∼P (D)[L(ϕθθθT (xxx), y)] ≃ Ex∼P (D)[L(ϕθθθS (xxx), y)], (1)

where P (D) is the real data distribution, ϕθθθT (.) and ϕθθθS (.) are models trained on T and S respectively.
L(., .) is the loss function, e.g., cross-entropy loss.

State-of-the-art dataset distillation methods condense the real dataset into a small synthetic set by
matching the gradient of full data along the synthetic or real trajectory, expressed as follows:

argmin
S

Eθθθ0∼Pθθθ0
[

T−1∑
t=0

D(∇θθθLS(θθθt),∇θθθLT (θθθt))], (2)

where θθθt denotes the model parameters, and D computes distance between the gradients. DC (Zhao
et al., 2021) and DSA (Zhao & Bilen, 2021b) update θθθt by minimizing the loss LS(θθθt) on the synthetic
data. IDC (Kim et al., 2022) showed that updating θθθt by minimizing the loss LT (θθθt) on the full data
yields superior performance. Matching the gradient of the augmented version of the training and
synthetic examples further improves the performance (Zhao et al., 2021; Kim et al., 2022).

Alternatively, MTT (Cazenavette et al., 2022) trains two models on synthetic and real data and
matches weight trajectories θθθt+N of length N when training the model on synthetic data S with
weight trajectories θθθ∗t+M of length M ≫ N when training the model on real data T :

argmin
S

∥θθθt+N − θθθ∗t+M∥22
∥θθθt − θθθ∗t+M∥22

. (3)

Existing dataset distillation methods synthesize examples based on the gradients or weights of the
models during the initial training epochs (Cazenavette et al., 2022; Kim et al., 2022), or match outputs
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Figure 2: An illustration of the proposed Progressive Dataset Distillation (PDD) framework. It
consists of multiple distillation stages and transitions in between. In each distillation stage, we distill
a new set of images conditioned on images synthesized in the previous stages. In transitions, we
train models on all synthesized images so far, as the starting weights for the next distillation stage to
capture longer training dynamics. Our framework can be applied to any dataset distillation algorithm.

of multiple randomly initialized models (Zhao & Bilen, 2021a). The most successful methods,
synthesize examples that capture the training dynamics of models trained on full data (Kim et al.,
2022; Zhao et al., 2021). However, they only capture the early training dynamics. For example,
IDC (Zhao et al., 2021) and MTT (Kim et al., 2022) synthesize examples by matching gradients
and weights of the first 4 and 15 epochs of a 200 training pipeline respectively, when distilling
CIFAR-10 and CIFAR-100. This is because matching weights or gradients over longer intervals
becomes computationally difficult and does not yield high-quality synthetic data. This introduces a
performance gap to that of training on the original data.

4 PROGRESSIVE DATASET DISTILLATION (PDD)

Next, we introduce our Progressive Dataset Distillation (PDD) framework to generate synthetic
images that match the training dynamics of different stages of training.

4.1 DISTILLING MULTIPLE TRAINING STAGES

Algorithm 1 Progressive Dataset Distillation (PDD)

Input: A dataset distillation algorithm A, full
training set T
Output: Model trained on a series of synthetic
datasets: S1,S2, . . . ,SN
Generating synthetic subsets: PDD
S0 ← ∅
Initialize θθθ0 randomly
for i = 1, 2, . . . , P do
Si = A(θθθi, T | ∪i−1

j=1 Sj)
θθθi = argminθθθ L(θθθ,∪i−1

j=1Sj , θθθi−1)
end for
Evaluation: Training on the PDD subsets
Initialize θθθ0 randomly
for i = 1, 2, · · · , P do
θθθi = argminθθθ L(θθθ,∪i−1

j=1Sj , θθθi−1)
end for

To capture the learning dynamics of different
training stages, our key idea, shown in Fig-
ure 2, is to generate a sequence of small syn-
thetic datasets S1,S2, · · · ,SP , so that each
synthetic dataset Si captures the training dy-
namics in the full data in a different stage of
training. Then at test time, when the model is
trained on the synthetic images, we can train
the model on different subsets to mimic differ-
ent stages of training on full data.

However, naively dividing the full training
pipeline into P intervals and generating a sub-
set based on the training dynamics of each
interval does not yield a satisfactory perfor-
mance, due to the following reasons. First,
generating different synthetic subsets indepen-
dently results in capturing redundant informa-
tion in the subsets and does not improve the
performance. Second, since the synthetic sub-
sets are small, at test time when the model is trained on the synthetic images, minimizing the loss on
subset Si+1 results in forgetting the previously learned information from subsets S1, · · · Si. Finally,
even if forgetting can be prevented, transitioning from training on Si to training on Si+1 at test time
changes the training loss and interrupts the optimization pipeline. This does not allow the model to
learn well from multiple synthetic subsets.
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To address the above issues, we synthesize each subset Si based on the dynamics of training on the
full data at stage i, conditioned on the previous subsets S1,S2, · · · ,Si. That is, we generate Si such
that S1 ∪ S2 ∪ · · · ∪ Si captures the training dynamics at stage i. Note that we only synthesize Si
at interval Ti while keeping S1,S2, · · · ,Si−1 fixed. This prevents capturing redundant information
in subset Si that are already captured by previous subsets S1,S2, · · · ,Si−1. Next, to address the
discontinuity in training on multiple subsets, we synthesize every subset Si based on the training
dynamics of full data starting from parameters θθθi, where training on S1 ∪ S2 ∪ · · · ∪ Si−1 is finished.
This allows smooth transitioning between different subsets when training on the synthetic data.
Finally, at test time when the model is trained on the synthetic subsets, to prevent forgetting the
information learned from the previous subsets, we first train the model on S1, then S1 ∪ S2, and keep
training on the union of the previous subsets in addition to the new one S1 ∪ S2 ∪ · · · ∪ Si.
We summarize our pipeline in Algorithm 1. Formally, for i = 1, · · · , P , we generate a synthetic
subset Si as follows:

Si = A(θθθi, T | ∪i−1
j=1 Sj) s.t. θθθi = argmin

θθθ
L(θθθ,∪i−1

j=1Sj , θθθi−1), (4)

where L(θθθ,S, θθθi−1) is the loss of the model trained on data S starting from θθθi−1. A can be any
dataset distillation method, such as DC (Zhao et al., 2021), DSA (Zhao & Bilen, 2021b), IDC (Zhao
et al., 2021), and MTT (Kim et al., 2022), described in Equation 2 and 3.

Distillation and training costs Note that conditioning the distillation on previous subsets does not
increase the cost of synthesizing a new subset, as we generate the same number of synthetic images
at every interval. On the other hand, at test time, we train on fewer images in total. This is because
instead of training on k = |S| synthetic examples during the entire training, PDD with m intervals
first trains the model on k/m synthetic images. Then, it trains the model on 2k/m synthetic images
and keeps increasing the number of training examples until it trains on k examples at the final interval.

4.2 DISCARDING EASIER-TO-LEARN EXAMPLES AT LATER STAGES

As training progress, PDD generates synthetic examples that enable the network to learn higher
complexity functions. This implies that at later stages, we can safely discard the examples that are
learned early in training with lower-complexity functions from the distillation pipeline. To calculate
the learning difficulty of examples, we use the forgetting score (Toneva et al., 2019) defined as the
number of times the prediction of every example changes from correct to wrong during the training.
Examples with higher forgetting scores are learned later during the training with higher complexity
functions. On the other hand, examples that have a very low forgetting score are those that can
be classified by lower complexity functions, early in training. At every distillation stage, we drop
examples with low forgetting scores and focus the distillation on examples with increasing levels
of difficulty, measure by forgetting score. This improves the efficiency of PDD without harming the
performance, as we will confirm experimentally.

Next, we will show experimentally that PDD effectively trains higher-quality neural networks with
superior generalization performance without increasing the training time on the synthetic examples.

5 EXPERIMENTS
In this section, we assess the classification performance of neural networks trained on synthetic images
generated by our framework. In addition to evaluating on the architecture used for distillation, we
also investigate the transferability of the distilled images to larger models with different architectures.
We further show with ablation studies that PDD trains models with increasing classification accuracy
when we increase the number of intervals, and confirm the importance of conditioning and transitions.

5.1 EXPERIMENTAL SETTINGS

Datasets. We conduct our experiments on three datasets: CIFAR-10, CIFAR-100 (Krizhevsky et al.,
2009) and Tiny-ImageNet (Le & Yang, 2015). CIFAR-10 and CIFAR-100 consist of 50, 000 training
images, with 10 and 100 classes, respectively. The image size for CIFAR is 32× 32. Tiny-ImageNet
contains 100, 000 training images from 200 categories, with a size of 64× 64.

Baselines. We consider both data selection and distillation algorithms as baselines, including random
selection, Herding (Welling, 2009), K-center (Farahani & Hekmatfar, 2009), and Forgetting (Toneva
et al., 2019) for selection and DC (Zhao et al., 2021), DSA (Zhao & Bilen, 2021b), DM (Zhao & Bilen,
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Table 1: Test accuracy of ConvNets on CIFAR-10/100 and Tiny-ImageNet, trained on synthetic
samples generated by various models with different numbers of images per class (IPC). Our algorithm
(PDD) improves upon baseline methods through its multi-stage distillation pipeline, narrowing the
performance gap relative to training on the full dataset. PDD results are reported for 5 stages.

Dataset CIFAR-10 CIFAR-100 Tiny-ImageNet

IPC 10 50 10 50 10 50

Selection

Random 26.0± 1.2 43.4± 1.0 14.6± 0.5 30.0± 0.4 5.0± 0.2 15.0± 0.4
Herding 31.6± 0.7 40.4± 0.6 17.3± 0.3 33.7± 0.5 6.3± 0.2 16.7± 0.3
K-Center 14.7± 0.9 27.0± 1.4 7.1± 0.2 - - -
Forgetting 23.3± 1.0 23.3± 1.1 15.1± 0.2 30.5± 0.3 5.1± 0.2 15.0± 0.3

Distillation

DC 44.9± 0.5 53.9± 0.5 25.2± 0.3 - - -
DSA 52.1± 0.5 60.6± 0.5 32.3± 0.3 42.8± 0.4 - -
CAFE 46.3± 0.6 55.5± 0.6 27.8± 0.3 37.9± 0.3 - -

CAFE + DSA 50.9± 0.5 62.3± 0.4 31.5± 0.2 42.9± 0.2 - -
DM 48.9± 0.6 63.0± 0.4 29.7± 0.3 43.6± 0.4 12.9± 0.4 24.1± 0.3
MTT 65.3± 0.7 71.9± 0.2 39.6± 0.3 47.7± 0.2 23.2± 0.3 28.0± 0.3

PDD+MTT 66.9± 0.4 74.2± 0.5 43.1± 0.7 52.0± 0.5 27.3± 0.5 29.2± 0.6
IDC 67.5± 0.5 74.5± 0.1 45.1± 0.3 52.5± 0.4 - -

PDD+IDC 67.9± 0.2 76.5± 0.4 45.8± 0.5 54.4± 0.4 - -

Full Data 88.1 56.2 37.6

2021a), CAFE (Wang et al., 2022), IDC (Kim et al., 2022), and MTT (Cazenavette et al., 2022) for
distillation. Herding (Welling, 2009) greedily selects samples to approximate the mean of the entire
dataset; Forgetting score (Toneva et al., 2019) keeps track of how many times a training sample
is learned and forgotten during the training and keeps examples with the highest forgetting score;
K-Center (Farahani & Hekmatfar, 2009) selects the samples to minimize the maximum distance
between a data point and its center. Distillation baselines are introduced in Section 2.

Architectures. Our experimental settings follow that of Cazenavette et al. (2022): we employ a
ConvNet for distillation, with three convolutional blocks for CIFAR-10 and CIFAR-100 and four
convolutional blocks for Tiny-ImageNet, each containing a 128-kernel convolutional layer, an instance
normalization layer (Ulyanov et al., 2016), a ReLU activation function (Nair & Hinton, 2010) and
an average pooling layer. We include ResNet-18 and ResNet-10 (He et al., 2016) to assess the
transferability of the synthetic images to other architectures.

Distillation Settings. We adopt two representative baseline methods on which we apply our frame-
work: IDC and MTT, which are widely used state-of-the-art dataset distillation methods. During
the matching process, we adopt the optimal hyper-parameter reported in the original paper of each
dataset distillation method in each stage of PDD without further tuning. We report the number of
images PDD distills at each stage and also report the number of synthetic sets P in our results to
enable a comparison between PDD and the baselines. Note that the number of synthetic sets has a
monotonic effect on the models’ testing accuracies.

Evaluation. Once the synthetic subsets have been constructed for each dataset, they are used to train
randomly initialized networks from scratch, followed by evaluation on their corresponding testing
sets. For PDD, we sequentially train models after each interval on all synthetic samples that have
already been generated up to the current interval. For each experiment, we report the mean and the
standard deviation of the testing accuracy of 5 trained networks. To train networks from scratch at
evaluation time, we use the SGD optimizer with a momentum of 0.9 and a weight decay of 5× 10−4.
For IDC, the learning rate is set to be 0.01. For MTT, the learning rate is simultaneously optimized
with the synthetic images. During the evaluation time, we follow the augmentation strategies of each
method to train networks from scratch.

5.2 EVALUATING DISTILLED DATASETS

Setup. We demonstrate the effectiveness of the proposed multi-stage distillation by applying PDD to
MTT and IDC to distill CIFAR-10/100 and Tiny-ImageNet. Table 1 compares PDD with state-of-the-
art baselines for different values of Images Per Class (IPC) distilled in 5 stages. We specify baselines’
IPC and PDD’s IPC to be 10 and 50 for all the benchmarks. For Tiny-ImageNet, we only conduct
experiments with MTT as IDC’s distillation time is prohibitively expensive in this higher resolution.
Based on the default settings, single-stage IDC distills 4 epochs of training on the real images; MTT
distills 15 epochs for CIFAR-10, 20 for CIFAR-100, and 40 for Tiny-ImageNet.
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Figure 3: ConvNets’ test accuracy on CIFAR-10, CIFAR-100 and Tiny-ImageNet after training on
samples distilled by PDD + MTT with multiple stages with larger per-stage IPCs. Left: performance
on CIFAR-10; Middle: performance on CIFAR-100; Right: performance on Tiny-ImageNet. The red
lines indicate the performance of training on respective full data.

Comparing to Single Stage Distillation. We see that PDD consistently improves the performance
across all data selection and distillation baselines with the same IPCs, especially when we distill longer
training dynamics (i.e., 15 epochs with MTT) on the real images in each stage. Specifically, PDD +
MTT outperforms MTT by significant margins of 1.6%/2.3% on CIFAR-10 IPC-10/50, 3.5%/4.3%
on CIFAR-100, and 4.1%/1.2% on Tiny-ImageNet. After applying PDD to IDC, we witness an
substantial improvement on performance across different datasets: 0.4%/2.0% on CIFAR-10 IPC-
10/50, respectively, and 0.7%/1.9% on CIFAR-100 IPC-10/50, respectively.

Scaling up synthetic datasets: towards bridging the gap to training on the full data. In
Figure 3a and 3b, we extend our experiments with MTT by maintaining a constant per-stage IPC while
progressively increasing the number of stages. This setting enables scaling of synthesis process to
generate larger total IPC, because the images generated in earlier stages are employed in subsequent
stages. We conduct these experiments on CIFAR-10 and CIFAR-100, respectively, and set the per-
stage IPC to 10/50 for CIFAR-10, 10/20 for CIFAR-100, and 2/10 for Tiny-ImageNet. Remarkably,
PDD considerably bridges the gap to training on the full dataset by achieving 90% of the full accuracy
with only 5% of the full data size on CIFAR-10 (which means that IPC = 250) and 10% of full
data size on CIFAR-100 (which means that IPC = 50). Notably, for CIFAR-100, we utilize 20%
of the complete dataset, resulting in an IPC value of 100, yet achieve a comparable performance.
On Tiny-ImageNet, applying PDD with MTT could also reach 80% of the performance obtained by
training on the full data after distilling 50 images per class.

5.3 CROSS-ARCHITECTURE GENERALIZATION

Table 2: Performance on other architectures of
networks with synthetic datasets generated on Con-
vNets by baselines vs. PDD + baselines.

(Total) IPC Method ResNet-10 ResNet-18

10

IDC 63.0± 0.6 63.6± 0.4
PDD+IDC 63.2± 1.4 63.9± 0.6
MTT 46.4± 0.4 45.2± 0.3

PDD+MTT 47.1± 0.3 46.0± 0.4

50

IDC 70.7± 0.6 69.8± 0.3
PDD+IDC 72.4± 0.4 71.6± 0.3
MTT 63.1± 0.4 62.6± 0.4

PDD+MTT 64.6± 0.9 63.5± 0.5

Next, we evaluate the generalization perfor-
mance of PDD on architectures that are differ-
ent from the one we used to distill CIFAR-10.
Following the settings of cross-architecture ex-
periments in the original papers, we use batch
normalization layers when evaluating on IDC,
and use instance normalization layers for MTT.
We follow the same evaluation pipeline for each
baseline method to acquire and present the test
accuracy in Table 2.

Images distilled by PDD improves other architec-
tures’ performance (1.7%/1.5% on ResNet-10
and 1.8%/0.9% on ResNet-18) when using IPC
= 50, and show considerable improvement (0.2%/0.7% on ResNet-10 and 0.3%/0.8% on ResNet-
18) compared to using the single-stage MTT and IDC when the total IPC is 10. These results indicate
that our distilled images from multiple stages are robust to changes in network architectures.

5.4 ABLATION STUDIES

Effect of Progressive Training. When training a model on the P synthetic subsets, PDD pro-
gressively trains on the union of the first i synthetic sets, for i = 1, · · · , P . To demonstrate the
effectiveness of this progressive way of training, we explore multiple choices of training pipelines
with the PDD generated synthetic sets: (1) Union: we train on the union of the synthetic sets generated
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in all P stages, i.e., ∪Pj=1Sj ; (2) Sequential: we train on different Si in the order they are generated;
(3) Progressive: we progressively train on union of the first i synthetic sets, i.e., ∪ij=1Sj .

Table 3: Effect of training on PDD distilled
subsets. Testing accuracy on CIFAR-10 af-
ter being trained on 10 IPC per stage distilled
by PDD + different base methods. In ‘Train-
ing’ column, U, S, P correspond to training on
∪Pj=1Sj , or Si, or ∪ij=1Sj , at stage i, respec-
tively.

P Training Test Accuracy

MTT + PDD IDC + PDD

1 - 65.3± 0.7 67.5± 0.5

2
U 60.4± 0.6 71.1± 0.2
S 64.1± 1.0 68.5± 0.1
P 68.7± 0.8 71.4± 0.2

3
U 65.4± 0.7 74.2± 0.4
S 67.4± 1.1 68.2± 0.7
P 71.5± 0.4 74.0± 0.3

4
U 63.2± 0.7 75.4± 0.3
S 66.0± 0.9 69.9± 0.5
P 73.1± 0.6 75.4± 0.1

5
U 65.9± 0.4 76.2± 0.6
S 67.4± 0.8 69.9± 0.5
P 74.2± 0.5 76.5± 0.2

Table 3 compares the above training methods
when evaluating the synthetic sets PDD distilled for
CIFAR-10 with a fixed per-stage IPC = 10 and dif-
ferent numbers of stages P . For all the base distilla-
tion algorithms, namely MTT and IDC, progressive
training is consistently better than union and out-
performs sequential training with a large margin in
particular for larger P . This confirms the necessity
of progressive training to prevent forgetting the pre-
viously learned information. Note that PDD + MTT
performs poorly with the union pipeline because
MTT learns the learning rate for each set of synthetic
images, so a single learning rate is not suitable for
training on the union.

Importance of transitions and conditioning.
There are two key designs in PDD that are essen-
tial for the success of multi-stage dataset distillation:
(1) transition between stages by generating a new
synthetic subset based on the training trajectory start-
ing from the point where training on the union of
the previous synthetic subsets is finished; and (2)
conditioning on synthetic images distilled in earlier
stages when generating a new synthetic set for the
current training stage.

In Table 4, we show both components are crucial
by comparing the test accuracy of ConvNet after being trained on the PDD distilled datasets with
both or without one of the two designs. For PDD + MTT and both variants, we fix the number of
images per class to distill in each stage to be 10. We observe a decreased performance of PDD when
it distills images for each training stage independent of the previous stages, and the difference is
more significant when we distill longer training intervals with more stages.

Table 4: ConvNet’s performance on CIFAR-10 with differ-
ent synthesis modes using MTT with PDD.

P w/o transition w/o conditioning PDD

1 65.3± 0.7 65.3± 0.7 65.3± 0.7
2 66.0± 0.6 67.9± 0.5 68.7± 0.8
3 66.3± 0.4 69.8± 0.9 71.5± 0.4
4 65.6± 0.5 71.4± 0.5 73.1± 0.6
5 63.6± 0.7 71.9± 0.7 74.2± 0.7

Table 5: Models’ testing accuracy on
CIFAR-10. PDD with different numbers
of stages (P ) and per-stage IPC.

P per-stage IPC Accuracy

1 10 65.3± 0.7
2 5 65.5± 0.9
5 2 66.9± 0.4
10 1 64.4± 0.6

Distilling more training stages vs more images per stage. Given a fixed total number of images per
class, we can distill longer training dynamics by having more stages, or choose to distill more images
in each stage to capture the dynamics better. To understand which of the above two strategies leads
to better performance, we study four different combinations of the number of stages and per-stage
IPC, and record the models’ test accuracy in Table 5. We observe that establishing more stages can
generally improve the results, as long as per-stage IPC is not too small (IPC = 1 per stage leads
to degraded performance). In particular, with 10 as a fixed number of images in total, best result
corresponds to P = 5 and per-stage IPC = 2.

Discarding easy-to-learn examples at later stages. Next, we confirm that samples that are easier to
learn can be dropped from the distillation pipeline in later intervals. To do so, we use the forgetting
score (Toneva et al., 2019) defined as the number of times the prediction of every example changes
from being correctly classified to incorrectly classified during the training. Examples with higher
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forgetting scores are more difficult to learn for the network and are learned later during the training
(Toneva et al., 2019).

Table 6: ConvNet’s performance on CIFAR-10
trained on synthetic set with 10 images per class
using MTT with PDD by distilling from easy to
difficult samples. In i-th stage we select samples
with forgetting score within [3(i − 1), 3i). We
report the portion of training samples used in each
setting.

P Data Used Testing Accuracy

1 36.5% 65.9%
100% 65.3%

3 55.8% 71.6%
100% 71.5%

5 66.4% 73.7%
100% 74.2%

We separate training examples into multiple par-
titions based on their forgetting scores, with an
increment of 3. More specifically, at the i-th
stage only the examples with a number of for-
getting events between 3 × (i − 1) and 3 × i.
Subsequently, we apply PDD to distill the cor-
responding partition of data examples at each
stage, starting from the partition that contains
examples with the lowest forgetting scores and
progressing to those with the highest scores. Ta-
ble 6 shows that when PDD explicitly distills
examples with increasing learning difficulty at
different stages, models trained on the distilled
images have the same test performance as when
the distillation is based on the full training set
at all stages. This observation not only confirms that PDD naturally creates a curriculum with its
synthetic sets but also confirms the possibility of reducing the distillation cost of PDD as the training
examples used in each stage can be significantly reduced.

5.5 CONTINUAL LEARNING
Table 7: Continual learning performance using distilled sam-
ples generated by different methods on CIFAR-100.

Methods Stage1 Stage 2 Stage 3 Stage 4 Stage 5

DSA 52.5 45.7 40.4 35.0 31.1
Herding 48.4 43.3 39.6 36.4 33.1
MTT 55.7 52.1 48.3 43.0 41.2

PDD+MTT 61.2 56.6 51.5 48.3 45.1

In this section, we adopt a class in-
cremental setting (Zhao et al., 2021;
Zhao & Bilen, 2021b) to show that
PDD can improve the performance
in the application of continual learn-
ing. We apply PDD on MTT to dis-
till CIFAR-100 across 5 phases, in
each of which we can only access 20
classes with 20 images distilled in total per class. During the evaluation, a model will be trained
sequentially on samples available at each stage. Table 7 shows the performance using different
methods, which demonstrates that PDD + MTT consistently outperforms MTT at each stage and
showcases PDD’s ability to improve baselines’ performance in the application of continual learning.

5.6 SYNTHESIZED SAMPLES VISUALIZATION

Stage 1

Stage 3

Stage 5

Figure 4: Synthesized images of CIFAR-
10 using PDD + MTT from Stage 1, 3 and
5. The images from classes “automobile”
and “birds” at each stage are selected for
demonstration.

In Figure 4, we provide examples of synthetic samples
on CIFAR-10 using PDD + MTT at different stages. We
distill CIFAR-10 in 5 stages with a per-stage IPC of 10.
From the images we can observe that the synthetic samples
at later stages show diversified patterns, demonstrating
lower saturation in color and more abstract textures. This
evolution of visual patterns indicates a shift in the focus
of the distillation process and thus provides an empirical
support to our multi-stage design. Figure A5 shows all the
samples from Stage 1 to 5 where the transition of distilled
patterns on all classes are clearly presented.

6 CONCLUSION

In this work, we proposed a progressive dataset distillation framework, PDD, that generates multiple
sets of synthetic samples sequentially, conditioned on the previous ones, to capture dynamics of
different training intervals. The multi-stage nature of PDD enables it to capture the training dynamics
of neural networks more effectively, and simultaneously reduce the complexity associated with
training the entire synthetic dataset. Extensive experiments confirm the effectiveness of PDD in
improving the performance of existing dataset distillation methods on various benchmark datasets.
For future works, we are interested in exploring PDD’s potential to serve as an effective base method
for further condensation (Liu et al., 2023a) where the budgets may vary, aligning well with the
inherent design of our approach.
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A1 EXPERIMENT DETAILS

A1.1 EXPERIMENT SETTINGS

On CIFAR-10, the networks are trained for 2000
P+1 epochs at each stage. Consequently, the total

iterations taken is P (P+1)
2

2000
P+1 ×

n
B = 1000Pn

B , where B is the batch size and n is the number of
images newly distilled at each stage. This quantity proves to be adequate in achieving favorable
outcomes without inflating the computational burden of network training. Notably, it aligns with
utilizing all available images for a training duration of 1000 epochs. Additionally, it is important to
note that augmenting the number of epochs could lead to further enhancements in the test accuracy
of the trained networks. For CIFAR-100, the networks undergo training for 500 epochs during each
stage to facilitate improved convergence.

A2 MORE VISUALIZATION

In Figure A5 we visualize the synthetic samples of CIFAR-10 distilled at stages 1 to 5 using PDD +
MTT. We observe a significant shift of visual features in these distill images. The images distilled at
the first stage are the most colorful among all the distilled samples, while the images distilled at later
stages contain more abstract features and less focus on colours. These figures show that PDD helps
distill diverse features according to different stages.

Stage 1 Stage 2 Stage 3

Stage 4 Stage 5

Figure A5: Visualization of synthesized samples from Stage 1 to Stage 5.
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A3 MORE EXPERIMENT RESULTS

A3.1 RESULTS ON MORE METHODS

Experiments on DC, DSA and DM. We further apply PDD to DC (Zhao et al., 2021) and DSA (Zhao
& Bilen, 2021b) to distill images from CIFAR-10. Table A8 shows the ConvNet’s accuracy after
trained on the distilled images. On DC and DSA, compared to using the single stage synthesis, PDD
+ DC and PDD + DSA generates samples that lead to higher performance, improving the baselines’
performance by 2.4% and 0.7%, respectively.

Additionally, we have conducted experiments with DM on CIFAR-10 with IPC=50. Note that DM
does not distill the training dynamics but rather enforces the similarity between features extracted
from synthetic and real samples by enormous models with random weights. Our experiments show
that for IPC=50, DM hits an accuracy of 63.0% while PDD + DM can reach 63.4%, showing a slight
0.4% improvement in performance. This mild improvement is expected, as DM does not capture any
training dynamics of training on full data, and only captures similarity between features based on
random weights.

Table A8: ConvNets’ test accuracy on CIFAR-
10 after trained on synthetic samples generated
by DC, DSA and DM with different numbers of
images per class.

Dataset CIFAR-10
IPC 50

DC 53.9± 0.5
DSA 60.6± 0.5
DM 63.0± 0.4

PDD + DC 56.3± 0.5
PDD + DSA 61.3± 0.4
PDD + DM 63.4± 0.5

Full 88.1

Table A9: ConvNets’ test accuracy on CIFAR-
10 after trained with samples distilled by
DREAM and DREAM+PDD.

Dataset CIFAR-10
IPC 10 50

Accuracy of DREAM 68.7 74.8
Accuracy of PDD + DREAM 69.3 76.7

Improvement of PDD 0.6 1.9
Standard Deviation 0.3 0.2

Full 88.1

Experiments on DREAM. We have conducted an additional set of experiments applying PDD to
DREAM on CIFAR-10. The results using the IPC values of 10 and 50 are presented in Table A9,
where we can observe that PDD can further improve the performance of DREAM beyond the current
state-of-the-art method.

A3.2 EXPERIMENTS ON UPDATING PREVIOUS FROZEN SUBSETS

We have conducted an additional set of experiments that allows images synthesized at early stages to
be updated during late stages with a smaller learning rate. We choose MTT as the base method and
set up 5 stages with a per-stage IPC of 10, resulting in a total IPC of 50. During the evaluation phase,
we ensure the fairness of comparison by only using the last set of synthesized images to train models.
This is to keep the number of synthesized samples to be the same when compared with other results.
The trained model hits a test accuracy of 69.1%, which is inferior to our proposed method.

The decline in performance can likely be attributed to the fact that expert trajectories, i.e, the
subsequent model checkpoints obtained by training on the full real dataset and synthetic samples (if
applicable, from previous stages), are not derived from a consistent set of synthetic samples. Note
that we first train on synthetic examples produced in previous stages to generate expert trajectories
and synthesize data for the next stage. If the synthesized images of the previous stages are updated,
the distilled samples from stage 1, which serve as the foundation for generating trajectories in stages
2 to 5, vary with each subsequent stage. When the samples synthesized in stage 1 are updated in
stage 2, they gradually deviate from the initial synthetic samples (i.e., those employed to generate
the expert trajectories for stage 2). Hence, training on the synthesized images that are being updated
results in a different training dynamics each time. This eventually leads to discrepancy and ultimately
results in a decrease in performance.
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