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Abstract

We consider maximization of stochastic mono-
tone continuous submodular functions (CSF) with
a diminishing return property. Existing algorithms
only guarantee the performance in expectation,
and do not bound the probability of getting a bad
solution. This implies that for a particular run of
the algorithms, the solution may be much worse
than the provided guarantee in expectation. In
this paper, we first empirically verify that this
is indeed the case. Then, we provide the first
high-probability analysis of the existing methods
for stochastic CSF maximization, namely PGA,
boosted PGA, SCG, and SCG++. Finally, we
provide an improved high-probability bound for
SCG, under slightly stronger assumptions, with a
better convergence rate than that of the expected
solution. Through extensive experiments on non-
concave quadratic programming (NQP) and opti-
mal budget allocation, we confirm the validity of
our bounds and show that even in the worst-case,
PGA converges to OPT/2, and boosted PGA,
SCG, SCG++ converge to (1− 1/e)OPT , but at
a slower rate than that of the expected solution.

1 INTRODUCTION

While in general set functions are hard to optimize over,
the subclass of submodular functions have useful proper-
ties that allow us to predictably achieve a certain approxi-
mation of the true optimal value in polynomial time [27].
Submodular functions exhibit a natural diminishing returns
property and appear in a wide variety of applications such
as sensor placement [15], graph cuts [12], data summariza-
tion [17], marketing [14] and clustering [23]. Thus, theo-
retical bounds on what optimization methods can achieve
have important real-world implications. Continuous sub-
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modular functions (CSF) extend the notion of submodu-
larity to continuous domains and provide an interesting
class of non-convex functions that are still tractable to op-
timize over [3]. CSFs have several applications, including
non-convex/non-concave quadratic programming [3], ro-
bust budget allocation [25, 24], sensor energy management
[3], online resource allocation [7], learning assignments [9],
and e-commerce and advertising [19]. In addition, they en-
able solving many discrete submodular problems efficiently
through their continuous relaxation such as multi-linear [5]
or Lovas extensions [18]. This has motivated a body of work
on optimizing CSFs [2, 3, 4].

More recently, constrained maximization of stochastic sub-
modular functions has gained a lot of attention [11, 13, 20,
30]. A stochastic CSF can be formulated as the expected
value of stochastic functions F̃ : X × Z → R+:

max
xxx∈C

F (xxx) = max
xxx∈C

Ezzz∼P [F̃ (xxx,zzz)], (1)

where C ⊆ Rd
+ is a bounded convex set, xxx ∈ X is the

optimization variable, and zzz∈Z is a random variable drawn
from a (potentially unknown) distribution P. Note that
Problem (1) only assumes that F (xxx) is DR-submodular,
and not necessarily the stochastic functions F̃ (xxx,zzz). The
continuous greedy algorithm [3] can produce arbitrarily
bad solutions for Problem (1), due to the non-vanishing
variance of gradient approximations [11]. To address
this, Projected Gradient Ascent (PGA) with diminishing
step-sizes is first shown to provide a [OPT/2−ϵ] guarantee
[11]. Later, Stochastic Continuous Greedy (SCG) suggested
to reduce the noise of gradient approximations via a
momentum term and provided a tight [(1−1/e)OPT− ϵ]
guarantee [20]. This work was followed by Stochastic
Continuous Greedy++ (SCG++), which improved the
complexity of SCG [13], by leveraging a variance reduction
technique [8]. Most recently, boosted PGA algorithm
using a non-oblivious function is proposed [30], which also
achieves a [(1−1/e)OPT− ϵ] approximation guarantee.

However, the above algorithms only guarantee the per-
formance of the solution in expectation. This implies
that it is indeed possible that for a particular run of the
algorithms, the optimizer gets extremely unlucky with its
gradient estimates, and return a solution that is drastically
worse than the provided guarantee in expectation. Indeed,
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as we confirm by our experiments, all the algorithms for
stochastic CSF, namely PGA, boosted PGA, SCG, and
SCG++, may have a very high variance in their returned
solution, as the noise gets larger. Crucially, the provided
expectation bounds do not provide much insight, besides
perhaps a basic Markov inequality, into the probability
of getting these bad solutions. This is because expected
guarantees rely on bounding the variance of the gradient
estimation error, and cannot bound the total accumulated
error required for deriving high probability bounds.

In this paper, we address the above question by providing
the first high probability analysis of the existing methods
for stochastic CSF maximization. High-probability bounds
have been explored very recently for the most popular opti-
mization methods, namely, SGD [10], and momentum SGD
[16]. But, deriving high-probability bounds for submodular
optimization has remained unaddressed. Different than the
analysis of the expectation bounds for stochastic CSF maxi-
mization algorithms [11, 13, 21], our analysis leverages two
different strategies to bound the distance between the algo-
rithmic solution and the optimal value. The first strategy is
using a martingale process to model functions of the gradient
noise, allowing for the use of Azuma-Hoeffding inequality
to provide high-probability bounds on the algorithmic solu-
tion. The second strategy is to use Chebyshev’s inequality
to bound sum of squared errors in gradient estimators, with
a high probability. Table 1 summarizes our results.

Our contributions are as follows. We derive the first high-
probability analysis for stochastic CSF methods (under the
same assumptions used for their expectation bounds), and
show that after K queries to the stochastic gradient oracle:

• For Projected Gradient Ascent (PGA) [11] and Boosted
PGA [30], the lower-bound on the average function
value during a run of the algorithm converges at rate
O( 1

K1/2 ).

• For Stochastic Continuous Greedy (SCG) [20], the
lower-bound on the final solution converges at rate
O( δ

K1/3 ), where δ depends on the confidence threshold.

• For Stochastic Continuous Greedy++ (SCG++) [13],
the lower-bound on the final solution converges at rate
O( δ

K1/4 ), where δ depends on the confidence threshold.

• Under the sub-Gaussian assumption on the stochas-
tic gradient oracle, we derive an improved high-
probability bound on the final solution of SCG that
converges to (1 − 1

e )OPT at a faster O( 1
K1/2 ) rate.

Interestingly, this rate even exceeds the rate of conver-
gence to the expected solution provided by [20]. Our
analysis involves providing the first high probability
bound for adaptive momentum optimization methods,
which can be applied to other smooth function classes
to provide superior convergence and generalization
properties [26]. Hence, it is of independent interest.

• Our extensive experiments on a non-concave quadratic
programming example (NQP) and a realistic optimal
budget allocation problem confirm the validity of our
bounds and show that even in the worst-case PGA
still converges to the OPT/2, and boosted PGA,
SCG, SCG++ still converge to (1−1/e)OPT , but at
a slower rate.

Our results characterize the full distribution of the solutions
for stochastic CSF maximization methods. In doing so, they
allow an algorithm designer to answer questions about worst
and best-case performance and even make modifications to
mitigate the risk of getting a bad solution.

2 RELATED WORK
Deterministic continuous submodular maximization.
Maximizing deterministic continuous submodular functions
have been first studied by Wolsey [27]. More recently,
[4] proposed a multiplicative weight update algorithm that
achieves (1−1/e−ϵ) approximation guarantee after Õ(n/ϵ2)
oracle calls to gradients of a monotone smooth twice dif-
ferentiable DR-submodular function, subject to a polytope
constraint (n is the ground set size). Later, a conditional gra-
dient method similar to the continuous greedy algorithm is
shown to obtain a similar approximation factor after O(n/ϵ)
oracle calls to gradients of monotone DR-submodular func-
tions subject to a down-closed convex body [3]. Such meth-
ods, however, require exact computation of the gradient of
the function, which is not provided in the stochastic setting.

Stochastic continuous submodular maximization.
For stochastic continuous submodular maximization,
conditional gradient methods may lead to arbitrarily poor
solutions, due to the high noise variance [11]. While the
noise variance can be reduced by averaging the gradient over
a (large) mini-batch of samples at each iteration, averaging
considerably increases the computational complexity of
each iteration and becomes prohibitive in many applications.
To address this, stochastic proximal gradient method are
first proposed. In particular, [11] showed that when the ex-
pected function is monotone and DR-submodular, Projected
Gradient Ascent (PGA) provides a OPT/2− ϵ guarantee
in O(1/ϵ2) iterations. Later, [20] introduced Stochastic
Continuous Greedy (SCG), which reduces the noise of
gradient approximations via exponential averaging and
achieves a (1−1/e)OPT − ϵ guarantee in expectation after
O(1/ϵ3) iterations. More recently, Stochastic Continuous
Greedy++ (SCG++) improved the complexity of SCG to
O(1/ϵ2), by using a stochastic path-integrated differential
estimator (SPIDER) [8] to reduce the variance of the
stochastic gradient. Most recently, boosted PGA algorithm
using a non-oblivious function is proposed [30], which also
achieves a [(1− 1/e)OPT − ϵ] approximation guarantee in
O(1/ϵ2) iterations. Existing works, however, only provide
guarantees in expectation and cannot deliver any insight
on the distribution of the solutions or worst-case analysis.
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Table 1: Comparison of existing expectation and our high-probability bounds for three stochastic monotone DR-submodular
maximization algorithms, namely PGA, SCG, SCG++. Here k is the number of queries to the stochastic gradient oracle∇F̃ .
Note that while our original bound is not tight for SCG, by using the slightly stronger condition of a sub-Gaussian gradient
noise one can achieve an O(1/K1/2) bound (see Sec. 4.3.1).

Algorithm Expectation Bound Original Noise Assumptions Bound Converges w.h.p?

PGA [11] ( 12 )OPT −O( 1
K1/2 ) ∇F̃ bounded Yes, at O(1/K1/2) rate

Boosted PGA [30] (1− 1
e )OPT −O( 1

K1/2 ) ∇F̃ bounded Yes, at O(1/K1/2) rate
SCG [20] (1− 1

e )OPT −O( 1
K1/3 ) V ar(∇F̃ ) bounded, sub-Gaussian* Yes*, at O(1/K1/2) rate

SCG++ [13] (1− 1
e )OPT −O( 1

K1/2 ) F̃ ,∇F̃ ,∇2F̃ , log(p(zzz)) bounded Yes, at O(1/K1/4) rate

High-probability bounds for stochastic submodular min-
imization. Very recently, [28] studied an extension of
the stochastic submodular minimization problem, namely,
the stochastic L♮-convex [22] minimization problem. L♮-
convex functions are reduced to submodular functions when
the ground set size is 2. Specifically, [28] developed a poly-
nomial time algorithm that returns a near-optimal solution
with a high probability. The proposed method relies on the
Lovász extension of an L♮-convex function to transform the
original problem to an equivalent continuous convex opti-
mization problem, and applies the stochastic subgradient
method to solve the continuous convex problem. To the best
of our knowledge, high-probability bounds for continuous
submodular maximization have not been explored before.

3 BACKGROUND AND PROBLEM
FORMULATION

Continuous submodular functions. We start by review-
ing definition of submodularity for set functions. A set
function f : 2V → R+, defined on the ground set V , is
submodular if for all subsets A,B ⊆ V , we have that

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B). (2)

The notion of submodularity can be extended to continuous
domains. A continuous function F : X → R+ defined on
the set X = Πn

i=1Xi, where each Xi is a compact subset of
R+, is continuous submodular if for all xxx,yyy ∈ X we have

F (xxx) + F (yyy) ≥ F (xxx ∨ yyy) + F (xxx ∧ yyy). (3)

Here, xxx∨yyy := max(xxx,yyy) is component-wise maximum and
xxx∧yyy := min(xxx,yyy) is component-wise minimum operations.
A submodular function F is monotone on X , if for every
xxx,yyy ∈ X ,xxx ≤ yyy we have that F (xxx) ≤ F (yyy). A function
F defined over X satisfies the diminishing returns (DR)
property, if for every xxx,yyy ∈ X ,xxx ≤ yyy, and any standard
basis vector ei ∈ Rn and any k ∈ R+ s.t. (kei + xxx) ∈ X
and (kei + xxx) ∈ X , it holds that

f(kei + xxx)− f(xxx) ≥ f(kei + yyy)− f(yyy). (4)

When F is twice-differentiable, DR-submodularity implies
that all diagonal entries of the Hessian are non-positive [3].

I.e.,

∀i = j, ∀xxx ∈ X ∂2F (xxx)

∂xi∂xj
≤ 0. (5)

Stochastic continuous submodular maximization. In
this work, we focus on constrained maximization of stochas-
tic continuous DR-submodular functions. Formally, our
goal is to find xxx∗ that maximizes the expected value F (xxx)
of the stochastic function F̃ (xxx,zzz) over xxx, where the expec-
tation is with respect to the random variable ZZZ:

max
xxx∈C

F (xxx) := max
xxx∈C

Ezzz∼P [F̃ (xxx,zzz)], (6)

where C ⊆R+ is a convex compact set, and zzz is the real-
ization of the random variable ZZZ drawn from a distribution
P . We assume that the expected objective function F (xxx) is
monotone and DR-submodular and the stochastic functions
F̃ (xxx,zzz) may not be monotone nor submodular. We denote
by OPT ≜ maxx∈C F (xxx) the optimal value of F (xxx) over C.

4 HIGH-PROBABILITY BOUNDS FOR
STOCHASTIC CONTINUOUS
SUBMODULAR MAXIMIZATION

Next, we discuss our high-probability bounds for stochastic
CSF maximization algorithms, namely Projected Gradient
Ascent (PGA), boosted PGA, Stochastic Continuous Greedy
(SCG), and Continuous Greedy++ (SCG++).

4.1 Projected Gradient Ascent

We start by analyzing the worst-case performance of the
PGA method which achieves a [OPT/2− ϵ] approximation
in expectation, in O(1/ϵ2) iteration [11]. PGA starts from
an initial estimate xxx0 ∈ C. Then at every iteration t, it takes
a step in the direction of the noisy gradient gggt = ∇F̃ (xxxt, zzzt),
and projects the solution onto the convex set C. The update
rule at step t takes the following form:

xxxt+1 = PC(xxxt + µtgggt), (7)

where, µt is the diminishing learning rate at step t, and
PC denotes the Euclidean projection onto the set C. The
pseudocode is provided in Appendix B.
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Hassani et al. [11] provided a lower bound on the expected
function value, E[F (xxxτ )], at a time-step τ , sampled
uniformly at random from {1, . . . , T}. Important to note,
however, is that the derived expectation is not only over
this random variable τ , but also the noise coming from
the gradient estimates. This implies that it is possible that
the optimizer gets extremely unlucky with its gradient
estimates, in which case no xxxt satisfies the lower bound (for
example, consider the unlikely but still possible scenario
where ∀t, gggt = 0). In Theorem 1, we provide an exact
answer for how unlikely a failure event like this would be.

To do so, we make similar assumptions to [11]:

Assumption 1. The diameter of the constraint set C is
bounded by D. I.e., ∀xxx,yyy ∈ C, we have

∥xxx− yyy∥ ≤ D.

Assumption 2. The function F is Lipschitz smooth with
constant L, over X . I.e., ∀xxx,yyy ∈ C, we have

∥∇F (xxx)−∇F (yyy)∥ ≤ L ∥xxx− yyy∥ .

Assumption 3. Stochastic gradients gggt = ∇F̃ (xxx,zzz) are
bounded in distance from their mean∇F (xxxt) = E[gggt]:

∥∇F (xt)− gggt∥ ≤M.

The following theorem shows that for any fixed confidence
interval p, the lower bound on

∑
t∈[T ] F (xxxt)/T will con-

verge to OPT/2 at a rate of O(
√

log(1/1−p)
T ).

Theorem 1. Consider running PGA for T iterations with
step size of ηt = 2√

t
with Assumptions 1,2,3 satisfied. Then

with probability p≥1−δ, where δ∈ [0, 1], the average func-
tion value returned by the algorithm is lower bounded by

1

T

T∑
t=1

F (xxxt) ≥
1

2
OPT − C√

T
−DM

√
log(1/δ)

2T
(8)

≥ 1

2
OPT −O

(√
log(1/δ)

T

)
,

where we denote the constant C :=
(

8(L+M)2+D2

8

)
.

Unlike the expectation bound provided in [11], Theorem 1
assures that with high probability, at least one iterate from
a single algorithm run will be larger than the lower bound.
Therefore, one could modify the default PGA algorithm to
return the best iterate, maxt∈[T ] F (xxxt), which is guaranteed
to also be lower bounded with high probability by OPT/2.
We note that even in the case where the true function eval-
uation is hard to compute, one can still find the best iterate
with high probability given unbiased stochastic function
evaluations F̃ (xxx,zzz). Concretely, given the ordering of it-
erates from highest to lowest function value xxx[1], . . . ,xxx[T ],

consider the difference between the best two solutions d :=
F (xxx[1]) − F (xxx[2]). One can use a Hoeffding bound to de-
termine the relatively small number of samples, m, needed
to calculate F̄ (xxx) := 1

m

∑
F̃ (xxx) for each iterate, such that

F̄ (xxx[1])>F (xxx[1])−d/2 and F̄ (xxx[k])<F (xxx[2])+d/2 for all
k > 1 occurs with very high probability. Alternatively, since
F (xxx) ≤ OPT ∀xxx, at least r

r+(1/2)OPT fraction of solutions
are greater than

∑
t∈[T ] F (xxxt)/T − r for a slack variable r.

That is, with only k true function evaluations, at least one
good solution is found with probabiliy p > 1− (1− r)k.

Theorem 1 relies on diminishing returns and smoothness of
F , along with the bound on C to first bound the difference
between F (xxxt) and F (xxx∗) based on the inner product be-
tween gradient noise andxxxt−xxx∗. However, instead of taking
the expectation of this inequality, it directly shows that with
Assumption 3, these random products satisfy the conditions
of a c-lipschitz Martingale difference sequence. This allows
using standard high probability bounds (Azuma-Hoeffding).
See Appendix A.2 for the full proof.

We note that Assumption 3 is stronger than simply bounded
variance and is necessary to apply the Azuma-Hoeffding
inequality. However if gggt = ∇F (xxxt) + zzzt with each zzzt
being zero mean and Sub-Gaussian, a similar version of
Theorem 1 can be derived following [10].

Corollary 1. Consider the case where we set δ =
exp(−

√
T ). Then the averaged function value of PGA is

lower bounded with probability p ≥ 1− 2 exp(−
√
T ) by:

1

T

T∑
t=1

F (xxxt) ≥
1

2
OPT −O

(
1

T 1/4

)
. (9)

We see that as T → ∞ we have both p → 1 and
O(1/T 1/4)→ 0. Thus, our lower-bound is tight.

4.2 Boosted Projected Gradient Ascent

Very recently, boosted PGA [30] is proposed to provide
[(1− 1

e−ϵ
2)OPT ] approximation in expectation, inO(1/ϵ2)

iterations. The idea is to find an auxiliary (non-oblivious)
function that can provide a better approximation guarantee
than the original DR-submodular function. Then the stochas-
tic gradients of the non-oblivious function F ′ (instead of the
stochastic gradient of the original DR-submodular function
F ) are leveraged by PGA. Specifically, [30] used the
following non-oblivious function F ′ and its gradient ∇F ′:

F ′(xxx) :=

∫ 1

0

e(s−1)

s
F (s ∗ xxx)ds, (10)

∇F ′(xxx) :=

∫ 1

0

e(s−1)∇F (s ∗ xxx)ds. (11)

This has the nice property that ⟨yyy − xxx,∇F ′(xxx)⟩ ≥
(1− 1/e)F (yyy)− F (xxx), which guarantees (1− 1/e)OPT
approximation. Additionally, when the original function
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is Lipschitz smooth (Assumption 2), F ′(xxx) is Lipschitz
smooth with constant L′ = L(1 + 1/e). To efficiently
approximate ∇F ′ given a noisy gradient estimate ∇F̃ ′,
[29] uses the following estimator:

∇F̃ ′(xxxt) := (1− 1

e
)∇F̃ ′(st ∗ xxxt). (12)

Here, st is independently sampled from a distribution P(SSS≤
s)=

∫ s

0
1

1−e−11(u∈ [0, 1])du, where 1 is indicator function.

The following theorem provides a lower bound on∑
t∈[T ] F (xxxt)/T , with high probability.

Theorem 2. Consider running boosted PGA for T
iterations with step size of ηt = 2√

t
with Assumptions 1,2,3

satisfied. Then with probability p≥ 1−δ, where δ ∈ [0, 1],
the average function value returned by the algorithm is
lower bounded by

1

T

T∑
t=1

F (xxxt) ≥ (1− 1

e
)OPT − C ′

√
T
−DM ′

√
log(1/δ)

2T

≥ (1− 1

e
)OPT −O

(√
log(1/δ)

T

)
, (13)

where we denote the constant C ′ :=
(

8(L′D+M ′)2+D2

8

)
,

and constant M ′ := (M + 2LD)
(
1− 1

e

)
.

Note that this bound has the same rate of convergence as
Theorem 1 up to a constant factor. This similarity also
means a result parallel to Corollary 1 can be derived,
demonstrating that this algorithm will also converge with
p→ 1 as T →∞. The proof of Theorem 2 follows a simi-
lar structure to Theorem 1. We bound the sum of differences
F (xxxt)− F (xxx∗) by a Martingale sequence with a bounded
difference property. The key distinction in the non-oblivious
case is that we must bound gradients from ∇F ′(xxx) as well
as∇F̃ ′(xxx). We defer the full proof to Appendix A.3.

Guarantees for weakly submodular functions. We note
that Theorems 1, 2 for PGA and boosted PGA can be ex-
tended to γ-weakly DR-submodular functions, where we
have γ = infxxx≤yyy infi([∇F (xxx)]i/[∇F (yyy)]i)). This setting
produces bounds with the same rate of convergence up to a
constant, to ( γ2

1+γ2 )OPT and (1−e−γ)OPT for PGA and
Boosted PGA, respectively. Note that γ = 1 indicates a
differentiable and monotone DR-submodular function.

4.3 Stochastic Continuous Greedy

Next, we analyze the worst-case performance of the Stochas-
tic Continuous Greedy (SCG) algorithm. SCG uses a mo-
mentum term to reduce the noise of gradient approximations.
It starts from xxx0 = 000, and at every iteration t, calculates:

ḡggt+1 = (1− ρt)ḡggt + ρt∇F̃ (xxxt, zzzt), (14)

where ρt is a stepsize which approaches zero as t approaches
infinity, and ḡgg0 = 0. The SCG is then ascent in the direction:

vvvt ← argmax
vvv∈C
{
〈
ḡggTt , vvv

〉
}, (15)

using the following updates rule with step-size 1/T :

xxxt+1 = xxxt +
1

T
vvvt. (16)

The stepsize 1
T and the initialization xxx0 = 000 ensure that

after T iterations the variable xxxT ends up in the convex set
C. The pseudocode is provided in Appendix B.

SCG provides a tight [(1 − 1/e)OPT − ϵ] guarantee in
expectation for the last iterate T , with O(1/ϵ3) stochastic
gradient computations [20]. But, similar to PGA [11], the
expected guarantee of SCG does not tell us how frequently
bad solutions, with F (xxxT )< [(1 − 1/e)OPT − ϵ] are re-
turned.

Here, we answer the above question by providing a high-
probability bound on the value of the final solution, F (xxxT ),
returned by SCG. To do so, instead of assuming bounded
gradient error (Assumption 3), we use the weaker assump-
tion from [20] on the variance of the stochastic gradients:

Assumption 4. Stochastic gradients have mean E[gggt] =
∇F (xxxt) and bounded variance:

Ez∼p

[
∥gggt −∇F (xxx)∥2

]
≤ σ2.

Given Assumption 4, [20] showed that the variance of the
momentum error, i.e., E[∥F (xxxt)− ḡggt∥

2
], converges to zero,

as t grows. However, this cannot be directly used to provide
a high-probability bound on the value of the final solution
(as we require the summation rather than the expectation
of error terms). To address this, instead of using the bound
on the variance of the noisy gradient at step t, we apply
Chebyshev’s inequality to bound the probability of the noisy
gradient to be far away from its expectation. Then, we use a
union bound on iterations t∈ [T−1] to get the next Lemma:

Lemma 1. Consider the Stochastic Continuous Greedy
algorithm, with ρt =

4
(t+8)2/3

. Under Assumptions 1, 2, 4,
we have the following high probability bound on the total
variance of the noisy gradients during t ∈ {0, · · · , T − 1}:

P

(
T−1∑
t=0

∥∇F (xxxt)− ḡggt∥
2 ≤ δ2

T−1∑
t=0

Q

(t+ 9)2/3

)
≥ 1− T

δ2
,

(17)
whereQ:=max

{
∥∇F (xxx0)−ḡgg0∥

2
92/3,16σ2+3L2D2

}
,δ>0.

The proof can be found in Appendix A.4. Note that Lemma 1
does not rely on taking the expectation of the function values
or gradient approximations. Equipped with Lemma 1, we
derive the following lower-bound on F (xxxT ), by recursively
bounding the distance of the iterates to the optimum, F (xxx∗).
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Theorem 3. Consider the Stochastic Continuous Greedy
algorithm, with ρt =

4
(t+8)2/3

. Under Assumptions 1, 2, 4,

we have that with probability greater than 1− T
δ2 :

F (xxxT ) ≥ (1− 1

e
)F (xxx∗)− δ

2Q1/2D

T 1/3
− LD2

2T 2

= (1− 1

e
)OPT −O( δ

T 1/3
), (18)

whereQ:=max
{
∥∇F (xxx0)−ḡgg0∥

2
92/3,16σ2+3L2D2

}
,δ>0.

The proof can be found in Appendix A.4. Unlike our Theo-
rem 1 for PGA, we see that for any fixed confidence thresh-
old p implying δ =

√
T

1−p , our lower bound does not con-
verge. This is a direct result of the weakening of the noise
assumption, since the gradient noise may have bounded
variance but not be bounded itself. Next, we provide an
improved bound when gradient noise is sub-Gaussian.

4.3.1 Improved Bound under Sub-Gaussian Noise

The weak assumptions on the noisy gradients (only bounded
variance from Assumption 4) make it difficult to apply typ-
ical Martingale or sub-Gaussian inequalities. If instead,
we assume that the noisy gradient approximations are sub-
Gaussian, we arrive at a surprisingly tight lower bound. First
we describe the sub-Gaussian noise assumption as follows:

Assumption 5. Stochastic gradients have mean E[gggt] =
∇F (xxxt) and ẑzzt := ∥gggt−∇F (xxx)∥ is sub-Gaussian. I.e. for
σ > 0, we have:

E(eλẑzz
2
t ) ≤ eσ

2λ2/2 ∀λ ∈ R (19)

When using the SCG algorithm under this new assumption,
we can derive the following high probability bound:

Theorem 4. Consider the Stochastic Continuous Greedy
algorithm, with ρt = 1

tα where α ∈ (0, 1). Then under
Assumptions 1, 2, 5, with probability greater than 1− δ:

F (xxxT ) ≥ (1− 1

e
)OPT −

2DKσ
√
log(1/δ)

T 1/2
(20)

− (
4K + 1

2
)
LD2

T

= (1− 1

e
)OPT −O

(√
log(1/δ)

T 1/2

)
, (21)

where K := 1
1−αΓ

(
1

1−α

)
.

At a high level, the proof of Theorem 4 expands the mo-
mentum into a weighted summation of gradient approxima-
tions, which after some careful manipulations can be treated
as a summation of sub-Gaussian variables. This is to our
knowledge the first such result for adaptive momentum opti-
mization methods, where the momentum can change over

time. Notably, it is general enough to be used even in the
context of other smooth function classes. Adaptive momen-
tum enjoys some superior convergence and generalization
properties [26]. See appendix A.5 for the detailed proof.

Notably, the bound in Theorem 4 has a faster convergence
rate than the original expectation bound of [20], i.e., (1−
1
e )OPT − O(1/T 1/3). The new bound suggests that for
certain well conditioned problems, SCG can achieve the
same convergence rate as SCG++. In our experiments in
Sec. 5, we show that empirically the distribution of solutions
of SCG do converge when gradient noise is (sub-)Gaussian.

4.4 Stochastic Continuous Greedy++

Finally, we analyze the worst-case performance of the
Stochastic Continuous Greedy++ (SCG++), which aims to
speed up SCG, using a stochastic path-integrated differential
estimator (SPIDER) [8] for the gradient. SCG++ assumes
that the probability distribution of the random variable zzz
depends on the variable xxx and may change during the opti-
mization. To obtain an unbiased gradient estimator ĝggt with
a reduced variance, SCG++ uses a mini-batch of samples to
first get an unbiased estimate of the Hessian, ∇̃2

t :

∇̃2
t =

1

|M|
∑

(a,zzz(a))∈M

∇̃2F (xxx(a), zzz(a)), (22)

where a is selected uniformly at random from [0, 1], zzz(a) is a
random variable with probability distribution p(zzz(a);xxx(a)),
xxx(a) := axxxt+(1−a)xxxt−1, andM is a mini-batch contain-
ing |M| samples of random tuple (a,zzz(a)). Then, SCG++
uses the Hessian estimate to recursively calculate unbiased
estimates of the gradient, based on the gradient differences
∆̃t:

∆̃t := ∇̃2
t (xxxt − xxxt−1). (23)

A gradient estimate, ĝggt, with a reduced variance is then
calculated as the initial noisy gradient estimate plus the
sum of all the gradient differences up to time t:

ĝggt = ∇F̃ (xxx0,M0) +

i∑
i=1

∆̃t. (24)

With the above gradient estimate ĝggt, SCG++ starts from
xxx0 = 000, and at each iteration t, performs a standard
Frank-Wolfe step with step-size 1

T . The full update
sequence is provided in Appendix B.

SCG++ converges in expectation to the same [(1 −
1/e)OPT − ϵ] approximation as SCG, but using only
O(1/ϵ2) stochastic gradient evaluations and O(1/ϵ) calls
to the linear optimization oracle [13]. However, similar to
PGA and SCG, the expected approximation guarantee of
SCG++ does not show the probability of returning a final
solution that is much lower than the expected solution.

The analysis of SCG++ requires stronger assumptions than
SCG. Besides the monotone DR-submodularity of F and
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the bounded diameter on C (Assumption 1), we use the same
assumptions originally used to analyze SCG++ in [13]:

Assumption 6. The function value at the origin is:

F (0) ≥ 0. (25)

Assumption 7. The stochastic function F̃ (xxx,zzz), its gradient,
and its Hessian are bounded:

F̃ (xxx,zzz) ≤ B, (26)∥∥∥∇F̃ (xxx,zzz)
∥∥∥ ≤ GF̃ , (27)∥∥∥∇2F̃ (xxx,zzz)
∥∥∥ ≤ LF̃ . (28)

Assumption 8. The function log p(zzz) has the following
bounds on gradient and Hessian:

E
(
∥∇ log p(zzz)∥4

)
≤ G4

p, (29)

E
(∥∥∇2 log p(zzz)

∥∥2) ≤ L2
p. (30)

Assumption 9. The Hessian of the stochastic function
F̃ (xxx,zzz) is L2 Lipschitz continuous with constant L2,F̃ . The
Hessian of the function log p(zzz) is L2 Lipschitz continuous
with constant L2,p.∥∥∥∇2F̃ (xxx,zzz)−∇2F̃ (yyy,zzz)

∥∥∥ ≤ L2,F̃ ∥xxx− yyy∥ , (31)∥∥∇2 log p(zzz)−∇2 log p(zzz)
∥∥ ≤ L2,p ∥xxx− yyy∥ . (32)

Under the above assumptions and with O(ϵ−1) calls to the
stochastic oracle per iteration, the variance of the gradient
approximation ĝggt converges to zero [13]. Instead of directly
upper bounding variance as in [13], we use Chebyshev’s
inequality to prevent any expectations from appearing in our
bound. Specifically we use the following Lemma:

Lemma 2. Given SCG++ under Assumptions 1,5-8, we
have the following high probability bound:

P

(
T−1∑
t=0

∥∇F (xxxt)− ĝggt∥
2 ≤ δ2

T−1∑
t=0

2L2D2

t2

)
≤ 1− T

δ2
.

(33)

Lemma 2 allows us to directly bound the function value of
last iterate of SCG++, F (xxxT ), with a high probability.

Theorem 5. Consider applying SCG++ under Assumptions
1, 5-8. Then with probability 1− T

δ2 :

F (xxxT ) ≥ (1− 1

e
)F (xxx∗)− δ

LD2

T 2
− LD2

2T 2

= (1− 1

e
)OPT −O( δ

T
). (34)

For a fixed probability threshold p we get the next Corollary:

Corollary 2. For δ=
√

T
1−p , with probability greater than

p, we have:

F (xxxT ) ≥ (1− 1

e
)F (xxx∗)− LD2

√
1− p

1√
T
− LD2

2T 2
(35)

= (1− 1

e
)OPT −O( 1√

T
) (36)

SCG++ makes O(T ) queries to the stochastic gradient ora-
cle per iteration, and K = T 2 queries in total. Hence, with
probability greater than p the bound in Corollary 2 becomes:

F (xxxT ) ≥ (1− 1

e
)OPT −O( 1

K1/4
). (37)

For any fixed confidence interval p, the lower bound still
converges to (1− 1

e )OPT , albeit at a slower rate. However,
we believe that a tighter 1/

√
K high probability bound

likely exists, as evident by our experimental results in Sec. 5.

5 NUMERICAL RESULTS

In our experiments, we first show that bad solutions of
PGA, boosted PGA SCG, and SCG++ can be much worse
than their expected values. Then, we validate our proposed
bounds on three simulated and real-world datasets. In prac-
tice, due to measurement errors or inexact function calcu-
lations, the function and thus the gradient evaluations are
often noisy. In such situations, our high probability bounds
can effectively quantify the worst-case performance and be
utilized to mitigate the risk of getting a bad solution.

5.1 Continuous Submodular Problems

First, we introduce three monotone continuous DR-
submodular problems that we use in our experiments.

Non-convex/non-concave quadraticprogramming (NQP).
NQP functions of the form f(xxx) = 1

2xxx
THHHxxx+ hhhTxxx arise in

many applications, including scheduling, inventory theory,
and free boundary problems [2]. When all off-diagonal
entries of HHH are non-positive, the NQP is submodular.

For our experiment, we randomly generate n = 100
monotone DR-submodular NQP functions, where each
HHH ∈ Rn×n is a symmetric matrix sampled uniformly
from [−100, 0]. We further generated a set of m = 50
linear constraints to construct the positive polytope
P = {xxx ∈ Rn,AxAxAx ≤ bbb, 0 ≤ xxx ≤ ūuu}, where entries in
AAA ∈ Rm×n are uniformly sampled from [0, 1], ūuu = 1, and
bbb = 1. To make f monotone, we ensure the gradient of f
is non-negative by setting hhh = −HHHūuu.

Optimal budget allocation with continuous assignments.
The budget allocation problem can be modeled as a bipartite
graph (S, T ;W ), where S is a set of advertising channels
and T is a set of customers. The edge weight pst ∈ W
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Figure 1: The distribution of minτ∈[T ] F (xxxτ )− E[F (xxxτ )]
for PGA and boosted PGA, and F (xxxT ) − E[F (xxxT )] for
SCG and SCG++ on NQP, over 100 runs with T = 5 (left),
and T = 100 (right). Bad solutions can be much worse than
the expected values.

represent the influence probability of channel s on customer
t. The objective is to maximize the total influence on the
customers by allocating the budget to the set of advertis-
ing channels. The total influence on customer t from all
the channels can be model by a monotone DR-submodular
function It(xxx) = 1−

∏
(s,t)∈W (1−pst)

xxxs , where xxxs ∈ R+

is the budget allocated to channel s. Then for a set of k
advertisers, where xxxi ∈ RS

+ is the budget allocation of the
ith advertiser and xxx = [xxx1, · · · ,xxxk], the overall objective is

g(xxx) =

k∑
i=1

αif(xxx
i), with f(xxxi) =

∑
t∈T

It(xxx
i), (38)

0 ≤ xxxi ≤ ūuui, ∀1 ≤ i ≤ k,

where αi is a constant weight coefficient and ūi is the budget
limit on each channel for the ith advertiser.

For a real-world instance of the budget allocation prob-
lem, we use the Yahoo! Search Marketing Advertiser Bid-
ding Data [1], which includes search keyword phrases and
the bids placed on them by online customers. The dataset
consists of 1,000 search keywords, 10,475 customers and
52,567 edges, where each edge between a keyword and cus-
tomer represents the customer has bid on the keyword. A
customer may bid on one phrase multiple times, and we use
the frequency of a (phrase, customer) pair to measure the
influence probability of the phrase on that customer. Addi-
tionally, we use the average bidding price across all the bids
in the dataset as the limit on the budget of all the advertisers.

5.2 Bad Solutions and High-probability Bounds

Setup. We repeat every experiment 100 times, and use
a step-size of 1e − 4, 1e − 2 for PGA methods on NQP
and Yahoo! respectively. We set the step-size to 1/T for
SCG and SCG++, and use batch size of T for SCG++.
For SCG, we use 4

(t+8)2/3
as the momentum coefficient.

For PGA methods, we randomly initialize xxx0 ∼ N (0, 1)
from a Gaussian distribution, and for SCG and SCG++ we
initialize xxx0 = 000. Additionally, for PGA, boosted PGA, and
SCG experiments, we add a noise sampled from a Gaussian
distribution with mean 0 and standard deviation proportional
to the gradient norms normalized by its dimensionality to

the queried gradients. SCG++ uses noisy estimates of the
Hessian, hence we add a smaller Gaussian noise with mean
0 to the Hessian.

Bad solutions are far from expectation. First, we look at
the solution of PGA, SCG, and SCG++ on NQP, to see how
far the solution may be from the expected value. Note that
when running each algorithm for T iterates, PGA returns the
solution for a random iterate τ ∈ [T ], and SCG, SCG++ re-
turn the solution of the final iterate T . Fig. 1 shows the distri-
bution of minτ∈[T ] F (xxxτ ) for PGA, and F (xxxT ) for boosted
PGA, SCG and SCG++ for T = 5 (left), and T = 100
(right), over 100 runs. We see that bad solutions of the algo-
rithms can be much worse than their expected value. While
more number of iterations reduces the variance of SCG, we
see that PGA and SCG++ have a very high variance even
after T = 100 rounds (see Appendix C for more details).
This shows the insufficiency of the expected guarantees, and
confirms the necessity of high-probability analysis.

High-probability bounds. Next, we empirically confirm
the validity of our high-probability bounds. To do so, we
first apply PGA, Boosted PGA, SCG, and SCG++ to the
continuous submodular problems discussed in Sec. 5.1.
Then, we compare the empirical results with our bounds
in Theorems 1, 2, 4, 5. Specifically, for each iteration t,
we report the average utility up to t, i.e. 1

t

∑t
i=1 F (xxxi), for

PGA; and the value of F (xxxt) for Boosted PGA, SCG, and
SCG++. To avoid the need for calculating the exact scaling
constants in Theorems (e.g. L,D,K, etc.) and the true
optimal value OPT (which determines the asymptote), we
fit a line in the same form of the lower bound derived in
Theorems 1, 2, 4, 5, to the output of the algorithms. For
each line, c1 corresponds to fraction of OPT the bound
is converging to, while c2 scales the rate of convergence
depending on the problem-specific constants and desired
confidence threshold. Specifically, for each algorithm we
fit a line of the form l(t) = c1− c2√

t
. Importantly, as SCG++

uses batch size of O(T ), an equivalent form of this fitted
line is l(t) = c1− c2

k1/4 , which is slower than the previous
two algorithms. For c1, we use the same value for min,
median, and different percentiles, by taking the average of
the c1 values obtained from the fitted lines for an algorithm
on the same dataset. Using the above c1, we fit the curves
again to get the corresponding c2 for each line.

Fig. 2(a)-(h) show the median, minimum, and 90% per-
centile of utility over the course of training of each algo-
rithm, compared to our predicted lower bounds. We see that
our bounds closely match these utility statistics for various
iterations of PGA, SCG, SCG++, and boosted PGA applied
to different problems. Since for each percentile level the
bound is of the same order, the differences in percentiles
decrease as well (e.g. a

t1/2
− b

t1/2
= c

t1/2
). This effect

can be seen as the minimum returned value across runs ap-
proaches the median and 90% returned values as the number
of training iterations increase.
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(a) NQP, PGA (b) NQP, Boosted PGA (c) NQP, SCG

(d) NQP, SCG++ (e) Yahoo!, PGA (f) Yahoo!, Boosted PGA

(g) Yahoo!, SCG (h) Yahoo!, SCG++ (i) NQP, SCG

Figure 2: (a)-(h) Median, minimum, and 90% percentile of the normalized solutions obtained by PGA, Boosted PGA, SCG,
SCG++ compared to our bounds provided in Theorems 1, 2, 4, 5. The results of PGA, Boosted PGA, SCG, SCG++ are
averaged over 100 runs. (i) validating our bounds on a simple NQP example where the constants are known.

We further validate our bounds by adding a simple exam-
ple where the constants are known and running SCG on
the problem. We construct a small NQP where HHH ∈R5×5

is sampled uniformly from [−1, 0]. Hence, the Lipschitz
constant L = ∥HHH∥2 =

√
λmax(HHHTHHH). We use linear

constraints as Sec. 5.1 and set AAA = [0.2, 0.2, 0.2, 0.2, 0.2].
Thus, diameter D = ∥1∥2. For a clipped Gaussian noise
clip(N (0, σ),−2σ, 2σ) to queried gradients for SCG, M =
2
√
5σ. The optimal value for the problem is approximated

by taking the maximum value across 100 SCG runs with
5000 iterations. Using above constants in Theorem 1, 2, 4,
5, Fig. 2(i) shows our predicted lower bound with 99% con-
fidence converges quickly to the minimum of the collected
utility trajectories.

6 CONCLUSION

We derived the first high probability analysis of the existing
methods for stochastic Continuous Submodular Function
(CSF) maximization, namely PGA, boosted PGA, SCG, and
SCG++. When assumptions on the stochasticity of gradients

are strong enough, we showed that even in the worst case the
solutions of the algorithms are lower bounded by a function
converging to their expected guarantees. Specifically, with
K stochastic gradient computations, we demonstrated that
PGA converges with rate of O( 1√

K
) to the expected OPT/2

and the boosted version at the same rate to (1− 1/e)OPT .
For SCG and SCG++, we showed that both algorithms con-
verge at rates of at least O( δ

K
1
3
) and O( δ

K
1
2
) to the expected

(1− 1/e)OPT , where δ depends on the confidence thresh-
old. Besides, under the sub-Gaussian assumption on the
gradient noise, we provided an improved lower bound of
O( 1√

K
) for the convergence of SCG, that is faster than the

existing convergence rate to the expected solution. Our re-
sults allows characterizing worst and best-case performance
of CSF maximization in stochastic settings, and mitigating
the risk of getting a bad solution.
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A ADDITIONAL PROOFS

A.1 Background on Martingale Sequences

We first provide a brief review on Martingale sequences, which can be found in any standard text on stochastic processes
such as [6]. Given probability space Ω and probability distribution p, we first denote F as a σ-field on Ω. We also denote
the filtration F as a nested sequence of σ-subfields:

F := {Ft}t≤n s.t. F0 ⊂ F1 ⊂ · · · ⊂ Fn = F (39)

We say that a sequence of random variables {Xt}nt=1 := {X1, . . . , Xn} is Martingale with respect to filtration F if the
following properties hold:

E[|Xt|] ≤ ∞
E[Xt+1|Ft] = Xt (40)

In other words, given past observations, the next random variable in the sequence is expected to take on the value of the
previous one.

A Martingale difference sequence {Yt}t≤n with respect to filtration F is defined as having a conditional expectation of zero

E[Yt+1|Ft] = 0 (41)

It is easy to see that given a Martingale sequence {Yt}nt=1, one can construct a difference sequence by setting Yt = Xt−Xt−1.

Lastly, we say a Martingale is c-lipschitz if ∀t
|Xt −Xt−1| ≤ ct (42)

This is equivalent to saying all random variables Yt in the corresponding Martingale difference sequence are bounded.

A.2 Proof of Theorem 1

We first make use of an alternative form of the usual Azuma-Hoeffding inequality from [6]:

Theorem 6. (Chung and Lu 2006, theorem 5.2) If martingale X is c-lipschitz, then

P

|X − E(X)| ≤
√

2
∑
i

c2i log(1/δ)

 ≥ 1− δ (43)

Next, we prove theorem 1.

Proof. Submodularity guarantees that for any two points x, y ∈ X :

∇F (xxx) ≥ ∇F (yyy) for all xxx ≤ yyy (44)

Using eq 7.2 from Hassani et al. 2017 in [11] we know that for any two points xxx,yyy ∈ X we have the relation

F (yyy)− 2F (xxx) ≤ ⟨∇F (xxx), yyy − xxx⟩ (45)

This allows us to proceed with a derivation of convergence similar to [29] for SGD: First replace our yyy,xxx in the previous
inequality with xxx∗ (the maximizing input to our function) and xxxt (the t-th iteration of our algorithm) respectively. Then
letting ẑzzt := gggt −∇F (xxxt) denote the random difference between the true and noisy gradient we have

F (xxx∗)− 2F (xxxt) ≤ ⟨∇F (xxxt),xxx
∗ − xxxt⟩

= ⟨xxx∗ − xxxt, gggt⟩ − ⟨xxx∗ − xxxt, ẑzzt⟩

≤ 1

ηt

〈
xxx∗ − xxxt,xxx

′
t+1 − xxxt

〉
− ⟨xxx∗ − xxxt, ẑzzt⟩ (46)
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In the second inequality we use the definition of our gradient step (before projection) xxx′
t+1 = xxxt + ηtgggt. Next, through some

algebra we get

F (xxx∗)− 2F (xxxt) ≤
1

2ηt
(
∥∥xxxt − xxx′

t+1

∥∥2
2
+ ∥xxxt − xxx∗∥22 −

∥∥xxx′
t+1 − xxx∗∥∥2

2
)− ⟨xxx∗ − xxxt, ẑzzt⟩

≤ 1

2ηt
(
∥∥xxxt − xxx′

t+1

∥∥2
2
+ ∥xxxt − xxx∗∥22 − ∥xxxt+1 − xxx∗∥22)− ⟨xxx

∗ − xxxt, ẑzzt⟩ (47)

By the property of euclidean projections we know ∥xxxt+1 − xxx∗∥ ≤
∥∥xxx′

t+1 − xxx∗
∥∥ which gives us the second line above. Next

we use our gradient step equation and lipschitz-smoothness assumption to get:

F (xxx∗)− 2F (xxxt) ≤
ηt
2
∥gggt∥22 +

1

2ηt
(∥xxxt − xxx∗∥22 − ∥xxxt+1 − xxx∗∥22)− ⟨xxx

∗ − xxxt, ẑzzt⟩

≤ ηt(L+M)2

2
+

1

2ηt
(∥xxxt − xxx∗∥22 − ∥xxxt+1 − xxx∗∥22)− ⟨xxx

∗ − xxxt, ẑzzt⟩ (48)

We let ∆t ≜ ⟨xxxt − xxx∗, ẑzzt⟩, and ηt =
2√
t

to get

F (xxx∗)− 2F (xxxt) ≤
(L+M)2√

t
+

√
t

4
(∥xxxt − xxx∗∥22 − ∥xxxt+1 − xxx∗∥22) + ∆t

≤ (L+M)2√
t

+

√
T

4
(∥xxxt − xxx∗∥22 − ∥xxxt+1 − xxx∗∥22) + ∆t (49)

If combine the inequalities for each xxxt and divide by T we have:

F (xxx∗)− (
2

T
)

T∑
t=1

F (xxxt) ≤
1

T

(
T∑

t=1

1√
t
(L+M)2 +

√
T

4
∥xxx∗ − xxx1∥22 +

T∑
t=1

∆t

)

Using the fact that
∑T

t=1
1√
t
≤ 2
√
T we simplify to

F (xxx∗)− (
2

T
)

T∑
t=1

F (xxxt) ≤
1

T

(
2
√
T (L+M)2 +

√
T

4
∥xxx∗ − xxx1∥22 +

T∑
t=1

∆t

)

=
2(L+M)2√

T
+
∥xxx∗ − xxx1∥22

4
√
T

+
1

T

T∑
t=1

∆t (50)

Rearranging this inequality we see

1

2
OPT − 1

T

T∑
t=1

F (xxxt) ≤
(L+M)2√

T
+
∥xxx∗ − xxx1∥22

8
√
T

+
1

2T

T∑
t=1

∆t (51)

Let ∆′
t ≜

1
2∆t so we can simplify to

1

2
OPT − 1

T

T∑
t=1

F (xxxt) ≤
1√
T

(
8(L+M)2 + ∥xxx∗ − xxx1∥22

8

)
+

1

T

T∑
t=1

∆′
t (52)

Our next step is to use the Azuma-Hoeffding inequality to bound 1
T

∑T
t=1 ∆

′
t. If we can show that {∆′

t}T is a bounded
martingale difference sequence with zero expectation, then we know by Theorem 6 with probability 1− δ:

|
T∑

t=1

∆′
t| ≲

√
T log(1/δ) (53)

Expanding E(∆′
t) we see that because xxxt − xxx∗ is independent of the gradient error ẑzzt we have

E(∆′
t) = E

(
1

2
⟨xxxt − xxx∗, ẑzzt⟩

)
=

1

2
⟨E(xxxt − xxx∗),E(ẑzzt)⟩ = 0 (54)
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Similarly, we can use triangle inequalities and our assumptions to bound ∥∆′
t∥ by a constant

∥∆′
t∥ ≤

1

2
∥xxxt − xxx∗∥ ∥ẑzzt∥ ≤

DM

2
(55)

Recall D is the maximum distance between any two points in our set C. Therefore we have

P
(
|X − E(X)| ≤ DM

√
T log(1/δ)/2

)
≥ 1− δ (56)

Therefore we have a martingale difference sequence which implies with probability 1− δ

1

2
OPT − 1

T

T∑
t=1

F (xxxt) ≤
1√
T

(
8(L+M)2 +D2

8

)
+

√
log( 1δ )

2T
DM

= O(
1√
T
) (57)

A.3 Proof of Theorem 2

In this section, we demonstrate how to adapt the PGA bound in theorem 1 to the Boosted PGA setting. For the proof we use
the slightly more general form of the non-oblivious function in [30] which also works for weakly submodular functions with
parameter γ:

F ′(xxx) :=

∫ 1

0

eγ(s−1)

s
F (s ∗ xxx)ds (58)

∇F ′(xxx) :=

∫ 1

0

eγ(s−1)F (s ∗ xxx)ds (59)

The noisy gradient estimate of this auxiliary function is now:

∇F̃ ′(xxxt) :=
1− e−γ

γ
∇F̃ (st ∗ xxxt). (60)

Here st is independently sampled from a distribution with cdf: P(SSS ≤ s) =
∫ s

0
γγ(u−1)

1−e−γ 1(u ∈ [0, 1])du, where 1 is the
indicator function.
We now begin with a slightly stricter version of proposition 1 from [30].

Lemma 3 (Proposition 1, Zhang et al. 2022). If zt is sampled according to the distribution in Eq. (60), then given
Assumptions 1,2,3 are satisfied (i.e. Lipschitz-smooth function along with bounded domain and gradient noise), we have

E
(
1− e−γ

γ
∇F̃ (st ∗ xxxt)

)
= ∇F ′(xxx) (61)∥∥∥∇F ′(xxx)−∇F̃ ′(xxx)
∥∥∥2 ≤M2

γ (62)

where Mγ := (M + 2LD)
(

1−e−γ

γ

)
.

The first equality statement is unchanged from the original proposition, while the second inequality is modified to bound the
squared norm error instead of the variance. We provide a short proof of the second inequality below:

Proof. ∥∥∥∇F ′(xxx)−∇F̃ ′(xxx)
∥∥∥ ≤ ∥∥∥∥1− e−γ

γ
(∇F̃ (z ∗ xxx)−∇F (z ∗ xxx))

∥∥∥∥+ ∥∥∥∥1− e−γ

γ
∇F (z ∗ xxx)−∇F ′(x)

∥∥∥∥
≤
(
1− e−γ

γ

)
M +

∥∥∥∥1− e−γ

γ
∇F (z ∗ xxx)−∇F ′(x)

∥∥∥∥ (63)
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We use the definition of∇F̃ ′(xxx), as well as the triangle inequality in the first step. In the second step, we use the assumption
that the noise of our gradient oracle is bounded by M . Finally to bound the second term:∥∥∥∥1− e−γ

γ
∇F (z ∗ xxx)−∇F ′(x))

∥∥∥∥ =

∥∥∥∥∫ 1

0

eγ(u−1)(∇F (z ∗ xxx)−∇F (u ∗ xxx)du
∥∥∥∥

≤
(∫ 1

0

eγ(u−1)|z − u|L ∥xxx∥ |
)

≤ 2LD

(∫ 1

0

eγ(u−1)du

)
= 2LD

(
1− e−γ

γ

)
(64)

We use the Lipschitz smoothness constraint and Cauchy-Schwarz in the first inequality, and |z − u| < 2 in the second.

Now equipped with Lemma 3, we can proceed using the same proof structure as in Theorem 1:

Proof. Starting from ⟨yyy − xxx,∇F ′(xxx)⟩ ≥ (1− e−γ)F (yyy)− F (xxx) evaluated at yyy = xxx∗, we can show using steps analogous
to eqs. (46) to (48) the following inequality:

(1− e−γ)F (yyy)− F (xxx) ≤ ηt
2

∥∥∥∇F̃ ′(xxxt)
∥∥∥2 + 1

2ηt

(
∥xxxt − xxx∗∥2 − ∥xxxt+1 − xxx∗∥2

)
− ⟨xxx∗ − xxxt,∇F̃ ′(xxxt)−∇F ′(xxxt)⟩

≤ ηt
2
(LγD +Mγ)

2 +
1

2ηt

(
∥xxxt − xxx∗∥2 − ∥xxxt+1 − xxx∗∥2

)
− ⟨xxx∗ − xxxt,∇F̃ ′(xxxt)−∇F ′(xxxt)⟩

(65)

From [30] we know that F ′ is Lγ-smooth with Lγ = Lγ+e−γ−1
γ2 , giving us the second inequality above. Using ηt = 1/

√
t

and applying the bound iteratively produces the parallel equation to eq. (51):

(1− e−γ)OPT − 1

T
F (xxxt) ≤

1√
T
(LγD +Mγ)

2 +
∥xxx∗ − xxx1∥2

8
√
T

+
1

2T

T∑
t=1

⟨xxx∗ − xxxt,∇F̃ ′(xxxt)−∇F ′(xxxt)⟩ (66)

From Lemma 3 we can treat the summation of ⟨xxx∗ − xxxt,∇F̃ ′(xxxt) − ∇F ′(xxxt)⟩ terms as a c-lipschitz Martingale with
constant:

|⟨xxx∗ − xxxt,∇F̃ ′(xxxt)−∇F ′(xxxt)⟩| ≤ ∥xxx∗ − xxxt∥
∥∥∥∇F̃ ′(xxxt)−∇F ′(xxxt)

∥∥∥ ≤ DMγ =: c (67)

Therefore, the analogous bound to theorem 1 for non-oblivious PGA is:

(1− e−γ)OPT − 1

T
F (xxxt) ≤

1√
T

(
8(LγD +Mγ)

2 +D2

8

)
+

√
log( 1δ )

2T
DMγ (68)

With probability p > 1− δ. By substituting γ = 1, we recover the bound for the fully submodular setting.

A.4 Proof of Theorem 3

We first make use the following lemma from Mokhtari et al. which bounds the variance in momentum error:

Lemma 4. (Mokhtari et al. 2018, Lemma 2) Given a momentum parameter pt = 4
(t+8)2/3

, the gradient estimates ḡggt have
the following property:

E
[
∥∇F (xxxt)− ḡggt∥

2
]
≤ Q

(t+ 9)2/3

We note that as a corollary to this lemma, the Chebyshev inequality gives us the following high probability bound:

P

(
∥∇F (xxxt)− ḡggt∥ ≥ δ

√
Q

(t+ 9)2/3

)
≤ 1

δ2
(69)
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Squaring both terms inside the condition:

P
(
∥∇F (xxxt)− ḡggt∥

2 ≥ δ2
Q

(t+ 9)2/3

)
≤ 1

δ2
(70)

Now we are ready to begin the proof of theorem 3.

Proof. Starting with the following inequality derived in [20] (Mokhtari et al. 2018, eq. 20) we have:

F (xxxt+1)− F (xxxt) ≥
1

T
(F (xxx∗)− F (xxxt))−

LD2

2T 2
− 1

2T
(4βtD

2 +
∥∇F (xxxt)− ḡggt∥

2

βt
)

Instead of taking the expectations of both sides as in [20], we immediately apply the inequality recursively from t =
0, 1, . . . , T − 1 to get

F (xxx∗)− F (xxxT ) ≤ (1− 1

T
)T (F (xxx∗)− F (xxx0)) +

T−1∑
t=0

1

2T

[
4βtD

2 +
∥∇F (xxxt)− ḡggt∥

2

βt

]
+

LD2

2T 2

Looking at the term
∑T−1

t=0 ∥∇F (xxxt)− ḡggt∥
2, we can use the union bound as follows:

P(
T−1∑
t=0

∥∇F (xxxt)− ḡggt∥
2 ≥ δ2

T−1∑
t=0

Q

(t+ 9)2/3
) ≤

∑
t

1

δ2
=

T

δ2

Therefore we know that with probability at least 1− T
δ2 that the inequality in the opposite direction is true.

Then choosing βt =
δ
√
Q

2D(t+9)1/3
, we get the upper bound:

F (xxx∗)− F (xxxT ) ≤
1

e
(F (xxx∗)− F (xxx0)) +

T−1∑
t=0

δ
2Q1/2D

(t+ 9)1/3T
+

LD2

2T 2
(71)

Therefore with probability greater than 1− T
δ2 we have the following bound:

F (xxx∗)− F (xxxT ) ≤
1

e
(F (xxx∗)− F (xxx0)) + δ

2Q1/2D

T 1/3
+

LD2

2T 2
(72)

Some more manipulation, and we have with probability greater than 1− T
δ2

F (xxxT ) ≥ (1− 1

e
)F (xxx∗)− δ

2Q1/2D

T 1/3
− LD2

2T 2
(73)

A.5 Proof of Theorem 4 (Stronger SCG Bound)

Before verifying theorem 4, we first provide the following lemma, which gives a high probability bound for the sum of
momentum errors:

Lemma 5. Given i.i.d. errors ∥∇F (xxxt)− gggt∥ that are each sub-Guassian with parameter σ, and momentum ḡggt =
(1− ρt)ḡggt−1 + ρt∇F̃ (xxxt, zzzt) with parameter of the form ρt =

1
tα and α ∈ (0, 1), then with probability greater than 1− δ

T∑
t=1

∥∇F (xxxt)− ḡggt∥ ≤
√
2K2σ2T log(1/δ) + LDK (74)

Where K := 1
1−αΓ(

1
1−α )
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The cumulative error bound in lemma 5 is to our knowledge the first such result for adaptive momentum optimization
methods (i.e. the momentum can change over time). Notably, it is general enough to be used even in the context of other
smooth function classes. Recently, [26] showed adaptive momentum enjoys some superior convergence and generalization
properties, and hence our lemma is of independent interest. See appendix A.6 for the proof of this lemma.

Next, we show a tighter high probability bound on the final iterate of the SCG algorithm in theorem 4.

Proof. Using the smoothness of F and boundedness of x ∈ C, Hassani et al. 2017 showed that

F (xxxt+1)− F (xxxt) ≥
1

T
(F (xxx∗)− F (xxxt))−

LD2

2T 2
+

1

T
⟨vvvt − xxx∗,∇F (xxxt)− ḡggt⟩ (75)

The Cauchy-Schwarz inequality allows us to bound the last term by

1

T
⟨vvvt − xxx∗,∇F (xxxt)− ḡggt⟩ ≥ −

1

T
∥vvvt − xxx∗∥ ∥∇F (xxxt)− ḡggt∥ ≥ −

2D

T
∥∇F (xxxt)− ḡggt∥ (76)

Substituting this bound and rearranging terms we have

F (xxx∗)− F (xxxt+1) ≤ (1− 1

T
)(F (xxx∗)− F (xxxt)) +

2D

T
∥∇F (xxxt)− ḡggt∥+

LD2

2T 2
(77)

Applying this inequality recursively for t = 0, . . . , T − 1 we have

F (xxx∗)− F (xxxT ) ≤ (1− 1

T
)T (F (xxx∗)− F (xxx0)) +

2D

T

T−1∑
t=0

∥∇F (xxxt)− ḡggt∥+
LD2

2T
(78)

Using a momentum term of ρt = 1
t1/2

for lemma 5 means that α = 0.5 and hence K = 2. Directly substituting this
inequality into eq. (78) gives us

F (xxx∗)− F (xxxT ) ≤ (1− 1

T
)T (F (xxx∗)− F (xxx0)) +

2D

T

[√
2K2σ2T log(1/δ) + LDK

]
+

LD2

2T

≤ 1

e
(F (xxx∗)− F (xxx0)) +

2D
√
2K2σ2 log(1/δ)√

T
+ (

4K + 1

2
)
LD2

T
(79)

Dropping F (x0) and rearranging we have

F (xxxT ) ≥ (1− 1

e
)F (xxx∗)−

2DKσ
√

log(1/δ)

T 1/2
− (

4K + 1

2
)
LD2

T
(80)

A.6 Proof of Lemma 5

Our first goal is to bound the term ∥∇F (xxxt)− ḡggt∥. Substituting ḡggt = (1− ρt)ḡggt−1 + ρt∇F̃ (xxxt, zzzt) we have

∥∇F (xxxt)− ḡggt∥ =
∥∥∥∇F (xxxt)− (1− ρt)ḡggt−1 − ρt∇F̃ (xxxt, zzzt)

∥∥∥ (81)

Adding and subtracting (1− ρt)∇F (xxxt−1) on the right hand side and applying the triangle inequality gives us

∥∇F (xxxt)− ḡggt∥ =
∥∥∥ρt(∇F (xxxt)−∇F̃ (xxxt, zzzt))− (1− ρt)(∇F (xxxt)−∇F (xxxt−1)) + (1− ρt)(∇F (xxxt−1)− ḡggt−1)

∥∥∥
≤ ρt

∥∥∥∇F (xxxt)−∇F̃ (xxxt, zzzt)
∥∥∥+ (1− ρt) ∥∇F (xxxt)−∇F (xxxt−1)∥+ (1− ρt)

∥∥∇F (xxxt−1)− ḡggt−1

∥∥
(82)

Now using our assumptions on the smoothness of F and boundedness of our domain, we know that
∥∇F (xxxt)−∇F (xxxt−1)∥ ≤ L ∥xxxt − xxxt−1∥ = L

∥∥vvvt

T

∥∥ ≤ LD
T and hence

∥∇F (xxxt)− ḡggt∥ ≤ ρt

∥∥∥∇F (xxxt)−∇F̃ (xxxt, zzzt)
∥∥∥+ (1− ρt)

LD

T
+ (1− ρt)

∥∥∇F (xxxt−1)− ḡggt−1

∥∥ (83)
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Define ai :=
∥∥∥∇F (xxxi)−∇F̃ (xxxi, zzzi)

∥∥∥ as a random variable and recursively apply the inequality in eq. (83) to get

∥∇F (xxxt)− ḡggt∥ ≤
t∑

i=1

ρi

 t∏
j=i+1

(1− ρj)

 ai +
LD

T

t∑
i=1

t∏
j=i

(1− ρj) (84)

Given any sequence of momentum terms ρj that is monotonic non-increasing we have the upper bound ρj ≤ ρ1 and
(1− ρj) ≤ (1− ρt) and therefore

∥∇F (xxxt)− ḡggt∥ ≤ ρ1

t∑
i=1

(1− ρt)
t−iai +

t∑
i=1

(1− ρt)
t−i+1LD

T
(85)

We now bound ST :=
∑T

t=1 ∥∇F (xxxt)− ḡggt∥ as

ST ≤
T∑

t=1

ρ1

t∑
i=1

(1− ρt)
t−iai +

LD

T

T∑
t=1

t∑
i=1

(1− ρt)
t+1−i (86)

Using the following lemma from [16], we can bound the first term on the right hand side

Lemma 6. (Li and Orabona 2020 [16], Lemma 4) ∀T ≥ 1, it holds that

T∑
t=1

at

t∑
i=1

bi =

T∑
t=1

bt

T∑
i=t

ai (87)

Applying lemma 6 (step a) to the first term on the r.h.s. we have

T∑
t=1

ρ1

t∑
i=1

(1− ρt)
t−iai ≤ ρ1

T∑
t=1

(1− ρt)
t

t∑
i=1

(1− ρt)
−iai

(a)
= ρ1

T∑
t=1

(1− ρt)
−tat

T∑
i=t

(1− ρt)
i

= ρ1

T∑
t=1

at

T∑
i=t

(1− ρt)
i−t (88)

To get a simple upper bound on this quantity, one could again use the fact that ρt is monotonic non-increasing to bound
1− ρt ≤ 1− ρT . Using the properties of geometric series this would lead to an upper bound of

ρ1

T∑
t=1

at

T∑
i=t

(1− ρt)
i−t ≤ ρ1

T∑
t=1

at

T∑
i=t

(1− ρT )
i−t ≤ ρ1

ρT

T∑
t=1

at (89)

If ρ1 = ρT = ρ is a constant, then ρ1

ρT
= 1 and we are just left with a sum of error terms. However, if our momentum term

is of the form ρt =
1
tα , then we have a coefficient ρ1

ρT
= O(tα) in this bound. In order to achieve a tighter constant bound in

the general case of ρt we need the following technical lemma:

Lemma 7. For α ∈ (0, 1) non-inclusive, we have

∞∑
t=1

(1− 1

tα
)t ≤ 1

1− α
Γ

(
1

1− α

)
(90)

Where Γ(z) :=
∫∞
0

tz−1e−tdt is the Gamma function

Proof. (Lemma 7) Using the well known inequality (1− 1
n )

n ≤ 1
e and substituting n = tα we get

(1− 1

tα
)t

α

≤ e−1 =⇒ (1− 1

tα
)t ≤ e−t1−α

(91)
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Where the second inequality can be found by raising both sides to the t1−α power. Since each term in our sequence is
positive and decreasing we know that we can bound our series by

∞∑
t=1

(1− 1

tα
)t ≤

∞∑
t=1

e−t1−α

<

∫ ∞

0

e−t1−α

dt (92)

Lastly we use a change of variables u = t1−α, du = (1− α)t−αdt to get the integral into the following form

∞∑
t=1

(1− 1

tα
)t <

1

1− α

∫ ∞

0

e−uu
α

1−α du =
1

1− α
Γ(

1

1− α
) (93)

Using lemma 7 and denoting K := 1
1−αΓ(

1
1−α ) as a constant, we can bound the summation in eq. (88) by

ρ1

T∑
t=1

at

T∑
i=t

(1− ρt)
i−t ≤ ρ1K

T∑
t=1

at (94)

Again using lemma 6 and lemma 7 we also have an upper bound on the second term in eq. (86):

LD

T

T∑
t=1

t∑
i=1

(1− ρt)
t+1−i ≤ LDK (95)

Therefore our bound on ST simplifies to

ST ≤ ρ1K

T∑
t=1

at + LDK (96)

We know by our original assumption that ai is a zero-mean sub-gaussian random variable, therefore the weighted sum will
also be sub-gaussian with variance proxy

σ̄2 = ρ21K
2

T∑
i=1

σ2
i ≤ K2σ2T (97)

This means by Hoeffding’s inequality

P

(
ρ1K

T∑
t=1

at ≥ λ

)
≤ exp

{
−λ2

2K2σ2T

}
(98)

Rearranging we also find the equivalent statement is true

P

(
T∑

t=1

at ≤
√
2K2σ2T ln(1/δ)

)
≥ 1− δ (99)

Therefore we know that with probability greater than 1− δ

ST ≤
√
2K2σ2T log(1/δ) + LDK (100)

A.7 Proof of Theorem 5

Similarly to the proof of theorem 3, we first utilize a bound on the variance of the gradient approximation:

Lemma 8. (Hassani et al. 2020, Lemma 2) Given the gradient approximations gt as calculated in line 4, target error ϵ, and
batch size |M| = 1/ϵ, we have

E
[
∥∇F (xxxt)− ĝggt∥

2
]
≤ (1 + ϵt)L2D2ϵ2
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Larger batch sizes mean more queries of our stochastic oracle, but have the benefit of reducing the target error ϵ. If we
choose ϵ = 1/t we get the bound:

E
[
∥∇F (xxxt)− ĝggt∥

2
]
≤ 2L2D2

t2

Notice that the residuals between the true gradient and these new estimates decay much more rapidly. Using the Chebyshev
inequality we have

P
(
∥∇F (xxxt)− ĝggt∥

2 ≥ δ2
2L2D2

t2

)
≤ 1

δ2
(101)

The union bound is likewise

P

(
T−1∑
t=0

∥∇F (xxxt)− ĝggt∥
2 ≥ δ2

T−1∑
t=0

2L2D2

t2

)
≤ T

δ2
(102)

Now we will begin the proof of theorem 5.

Proof. We intervene at the following inequality found in the original SCG++ expectation bound proof (Hassani et al. 2020,
eq. 33):

F (xxx∗)− F (xxxT ) ≤ (1− 1

T
)T (F (xxx∗)− F (xxx0)) +

T−1∑
t=0

1

2T

[
βtD

2 +
∥∇F (xxxt)− ĝggt∥

2

βt

]
+

LD2

2T 2

This time setting βt =
√
2δL
t we know with probability at least 1− T

δ2

F (xxx∗)− F (xxxT ) ≤
1

e
(F (xxx∗)− F (xxx0)) +

T−1∑
t=0

δ

√
2LD2

tT
+

LD2

2T 2
(103)

With some rearrangement and simplification

F (xxxT ) ≥ (1− 1

e
)F (xxx∗)− δ

LD2

T
− LD2

2T 2
(104)

B CONTINUOUS SUBMODULAR MAXIMIZATION ALGORITHMS

Algorithm 1: Projected Gradient Ascent
initialization: convex constraint set C with step lengths ηt
initialization: xxx0 ∈ C

for t=1....T do
gggt ← ∇F (xxxt, zzzt), where zzzt ∼ P
yyyt+1 ← xxxt + ηgggt
xxxt+1 ← argminxxx∈C ||yyyt+1 − xxx||2

end
return xxxT

Algorithm 2: Boosted Projected Gradient Ascent
initialization: convex constraint set C with step lengths ηt
initialization: xxx0 ∈ C

for t=1....T do
Sample st from SSS where P(SSS ≤ s) =

∫ s

0
γγ(u−1)

1−e−γ 1(u ∈ [0, 1])du

Compute ∇F̃ ′(xxxt) :=
1−e−γ

γ ∇F̃ (st ∗ xxxt)

yyyt+1 ← xxxt + η∇F̃ ′(xxxt)
xxxt+1 ← argminxxx∈C ||yyyt+1 − xxx||2

end
return xxxT
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Algorithm 3: Stochastic Continuous Greedy
initialization: Stepsizes ρt > 0.
initialization: ḡgg0 = xxx0 = 0

for t=1....T do
ḡggt ← (1− ρt)ḡggt−1 + ρt∇F̃ (xt, zt)
vvvt ← argmaxvvv∈C{ḡggTt vvv}
xxxt+1 ← xxxt+1 +

1
T vvvt

end
return xxxT

Algorithm 4: Stochastic Continuous Greedy++
input: minibatch sizes |M0| and |M|
initialization: xxx0 = 0

for t=1....T do
if t=1 then

M0 ∼ p(zzz;xxx0) and find ĝgg0 = ∇F̃ (x0,M0)
else

a ∼ Unif [0, 1]
xxx(a) = a · xxxt + (1− a) · xxxt−1

M∼ p(zzz;xxx(a))

∇̃2
t = 1

|M|
∑

(a,zzz(a))∈M ∇̃2F (xxx(a);zzz(a))

∆̃t = ∇̃2
t (xxx

t − xxxt−1)

ĝggt ← ĝggt−1 + ∆̃t

vvvt ← argmaxvvv∈C{ĝggTt vvv}
xxxt+1 ← xxxt+1 +

1
T vvvt

end
return xxxT

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 Distance Between Expectation and Bad Solutions

In this section, we present more results on how far away the worst-case PGA solutions can be from the expectation. In
Figure 3 we show the distribution of variance in returned solution utility for each run of the algorithm. Figure 4 shows the
distribution of minimum and maximum normalized utilities and the expectations for PGA on each dataset. We observe that
there is a large gap between the minimum solutions and the expectation, and in the extreme case a bad run can have 30%
less value than the expectation. This observation demonstrates the need for providing a lower bound on the performance of
the existing stochastic continuous submodular maximization methods.

Figure 3: Variance of PGA Utility Distribution. NQP (Left) Yahoo! (Right).
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Figure 4: Normalized Utility Distribution of PGA. Histograms of normalized minimum and maximum utility of each
individual run, and the expected utility, across 500 runs for NQP & Yahoo!.
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