
Research Collection

Doctoral Thesis

Big Data Summarization Using Submodular Functions

Author(s):
Mirzasoleiman, Baharan

Publication Date:
2017

Permanent Link:
https://doi.org/10.3929/ethz-b-000217967

Rights / License:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection. For more
information please consult the Terms of use.

ETH Library

https://doi.org/10.3929/ethz-b-000217967
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

DISS. ETH N� 24479

Big Data Summarization
Using Submodular Functions

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by

BAHARAN MIRZASOLEIMAN

M. Sc. in Computer Science, Sharif University of Technology

born on 21.09.1986

citizen of Iran

accepted on the recommendation of

Prof. Dr. Andreas Krause (ETH Zurich), examiner
Prof. Dr. Jeff Bilmes (University of Washington), co-examiner

Prof. Dr. Yaron Singer (Harvard University), co-examiner

2017

To my parents.

i

Abstract

Data summarization, a central challenge in machine learning, is the task of finding a
representative subset of manageable size out of a large dataset. It has found numerous
applications, including image summarization, document and corpus summarization,
recommender systems, and non-parametric learning, to name a few. A general recipe to
obtain a faithful summary is to turn the problem into selecting a subset of data elements
optimizing a utility function that quantifies “representativeness” of the selected set.

Often times, the choice of utility functions used for summarization exhibit submodular-
ity, a natural diminishing returns property. In words, submodularity implies that the
added value of any element from the dataset decreases as we include more data points
to the summary. Thus, the data summarization problem can be naturally reduced to
that of a constrained submodular maximization, or a submodular cover problem.

Although, there are efficient centralized algorithms for the aforementioned problems,
they are highly impractical for massive datasets, as sequentially selecting elements on a
single machine is heavily constrained in terms of speed and memory. Hence, in order
to solve the above submodular optimization problems at scale, we need to make use of
MapReduce-style parallel computation models, or resort to streaming algorithms.

In this Thesis, we develop large scale algorithms for submodular summarization. In
particular, we present a simple, parallel protocol, called GreeD i for distributed (not-
necessarily monotone) submodular maximization subject to cardinality, and other
general types of constraints, including matroid and knapsack constraints. In addition,
we develop a distributed algorithm, D isCover, for the submodular cover problem,
as well as a fast distributed algorithm, FastCover, that enables us to solve the more
general problem of covering multiple submodular functions in one run of the algorithm.

We then consider the streaming setting, where at any point of time, the algorithm

iii

has access only to a small fraction of data stored in primary memory. We present a
single pass streaming procedure, Streaming Local Search, for maximizing a
(not-necessarily monotone) submodular function subject to a collection of independence
systems and d knapsack constraints. Furthermore, we introduce the dynamic deletion-
robust submodular maximization problem, and propose a resilient streaming algorithm,
called Robust -Streaming, that is able to produce concise real-time summaries in
the face of data deletion requested by users.

Lastly, as a natural complementary goal to the aforementioned works, we consider devel-
oping fast centralized algorithms for submodular maximization that can be integrated
into distributed frameworks to provide even more scalable algorithms. In particu-
lar, we first develop a randomized linear-time algorithm, Stochastic -Greedy, for
maximizing a monotone submodular function subject to a cardinality constraint. We
then propose a practical and fast algorithm, Fantom, for maximizing a (not neces-
sarily monotone) submodular function subject to the intersection of a p-system and d
knapsacks constraints, and show how we can use Fantom to produce personalized
summarization.

In addition to providing algorithms and theoretical analyses, we present extensive
empirical evaluation of our approaches on several large-scale and real-world summa-
rization problems. These include, but not limited to, summarizing 80 million Tiny
Images, more than 45 million user visits from the Featured Tab of the Today Module
on Yahoo! Front Page, finding dominating set in Friendster social network with more
than 65 million nodes and 1.8 billion edges, and movie recommendation based on 20
million users’ ratings from 138,493 users of the MovieLens database.

iv

Zusammenfassung

Datenzusammenfassung, eine zentrale Herausforderung im maschinellen Lernen,
besteht darin, eine repräsentative Untermenge von überschaubarer Größe aus einem
großen Datensatz zu finden. Es hat zahlreiche Anwendungen gefunden, darunter
Bildzusammenfassung, Empfehlungsdienste, nicht-parametrisches Lernen und Dokum-
enten- und Korpus-Verdichtung, um nur einige Beispiele zu nennen.

Ein allgemeiner Ansatz, um eine treue Zusammenfassung zu erhalten, besteht darin,
das Problem in das Auswählen einer Teilmenge von Datenelementen zu transformieren,
welches eine Nutzenfunktion optimiert, die die ”Repräsentativität” des ausgewählten
Sets quantifiziert.

Häufig zeigt die Wahl der Nutzenfunktionen, die für die Verdichtung verwendet wer-
den, eine Submodularität, d.h. es treten sinkende Erträge auf. Mit anderen Worten,
Submodularität impliziert, dass der Mehrwert eines beliebigen Elements aus dem
Datensatz abnimmt, je mehr Datenpunkte wir zu der Zusammenfassung hinzufügen.

Somit kann das Datenzusammenfassungsproblem auf das einer beschränkten sub-
modularen Maximierung oder eines submodularen Abdeckungsproblems reduziert
werden.

Obwohl es effiziente zentralisierte Algorithmen für die oben erwähnten Probleme gibt,
sind sie für massive Datensätze sehr unpraktisch, da die sequentielle Auswahl von
Elementen auf einer einzigen Maschine in Bezug auf Geschwindigkeit und Speicher
stark einschränkend ist.

Um die obigen submodularen Optimierungsprobleme im großen Maßstab zu lösen,
müssen wir also die parallelen Berechnungsmodelle des MapReduce-Verfahrens nutzen
oder auf Streaming-Algorithmen zurückgreifen.

v

In dieser Dissertation entwickeln wir Algorithmen für die submodulare Verdichtung
im großem Ausmaß.

Insbesondere präsentieren wir ein einfaches, paralleles Protokoll namens GreeD i

für verteilte (aber nicht notwendigerweise monotone) submodulare Maximierung, die
der Kardinalität unterliegt und anderen allgemeinen Arten von Einschränkungen,
einschließlich Matroid- und Rucksackproblem-beschränkungen.

Außerdem, entwickeln wir einen verteilten Algorithmus, D isCover, für das Problem
der submodularen Abdeckung sowie einen schnellen, verteilten Algorithmus, Fast -
Cover, der es uns ermöglicht, das allgemeinere Problem der Abdeckung mehrerer
submodularer Funktionen in einem Ablauf des Algorithmus zu lösen.

Anschließend betrachten wir den Streaming Fall, wo der Algorithmus zu jedem Zeit-
punkt nur auf einen kleinen Anteil der im Hauptspeicher gespeicherten Daten Zu-
griff hat. Wir präsentieren ein Single-Pass-Streaming-Verfahren, namens Streaming

Local Search, zur Maximierung einer (nicht unbedingt monotonen) submodu-
laren Funktion, die einer Sammlung von Unabhängigkeitssystemen und d Rucksack-
problem Einschränkung unterworfen ist. Darüber hinaus, stellen wir das dynamische
Löschungen-toleriende submodulare Maximierungsproblem vor und schlagen einen
widerstandsfähigen Streaming-Algorithmus namens Robust -Streaming vor, der
eine präzise Echtzeit-Zusammenfassung unter Berücksichtigung von Datenlöschungsan-
fragen der Nutzer erzeugen kann.

Abschließend, als ergänzendes Ziel der oben erwähnten Ansätzen betrachten wir die En-
twicklung schnellere zentralisierteren Algorithmen für die submodulare Maximierung,
die in ein verteiltes Framework integriert werden können, um noch mehr skalierbare
Algorithmen zu liefern.

Insbesondere, entwickeln wir einen randomisierten Linearzeitalgorithmus namens
Stochastic -Greedy zur Maximierung einer monotonen submodularen Funktion,
die einer Kardinalitäsbeschränkung unterliegt. Anschließend schlagen wir einen prak-
tischen und schnellen Algorithmus namens Fantom zur Maximierung einer (nicht
notwendigerweise monotonen) submodularen Funktion vor, die Überschneidungen
eines p-Systems und d Rucksack-Einschränkungen unterworfen ist, und zeigen, wie
man Fantom für eine personalisierte Verdichtung nutzen kann.

Neben der Bereitstellung von Algorithmen und theoretischen Analysen präsentieren wir
eine umfangreiche empirische Evaluierung unserer Ansätze für mehrere großangelegte

vi

und real-world Verdichtungsprobleme. Dazu gehören, unter anderem, zusammenfassen
von: 80 Millionen Tiny Images, mehr als 45 Millionen Nutzer Besuche aus dem Featured
Tab der Today Modul auf Yahoo! Front-Seite, die Suche nach dem dominierenden Set
in Friendster sozialen Netzwerk mit mehr als 65 Millionen Knoten und 1.8 Milliarden
Kanten und Filmempfehlung basierend auf den 20 Millionen Nutzer Bewertungen von
138.493 Benutzern der MovieLens Datenbank.

vii

Acknowledgments

First and foremost, I’d like to thank my advisor, Andreas Krause who continuously
inspired, challenged and supported me. This thesis would have not been possible
without his guidance and encouragement. Andreas, thank you for your trust, patience,
and support. I am truly honored and fortunate to have you as my adviser.

I would also like to thank my thesis committee members—Andreas Krause, Jeff Bilmes,
and Yaron Singer—for providing me valuable feedback and a lot of encouragement.
Their input and comments have been absolutely invaluable.

I am thankful to my collaborators and co-authors– Andreas Krause, Amin Karbasi,
Ashwinkumar Badanidiyuru, Stefanie Jegelka, Yaron Singer, Morteza Zadimoghaddam,
Joachim M. Buhmann, and Rik Sarkar –It is very enjoyable to work with all of you. A
special thanks goes to Amin, for long-lasting collaborations, and career advice. I am
also thankful to Jeff Bilmes for interesting discussions about submodularity.

My thanks also goes to Stefanie and Yaron for hosting my visits to MIT and Harvard,
and thanks to D. Sivakumar, Igor Bilogrevic, and Nina Taft for hosting me twice as an
intern in Google Research.

I am also very grateful to Thorsten Joachims, Jeff Bilmes, Ravi Kumar, David Kempe,
Thomas Hofmann, Yisong Yue, Corinna Cortes, Karl Aberer, Hamed Hassani, Abhi-
manyu Das, Sven Dickinson, Keren Censor-Hillel, and Masashi Sugiyama who kindly
supported me in pursuing my academic endeavor.

Many thanks to our group admin, Rita Klute, for her untiring support, and her kind
and caring personality. I also thank all my friends, and members of the Learning and
Adaptive Systems group in ETH Zurich.

Finally, I am very grateful to my family for their infinite love and support. To my
brilliant and passionate mother who has always been a source of inspiration; to my

ix

patient and ambitious father who makes me be determined, and have big dreams; and
to my talented sister who makes life more exciting and fun. This thesis is dedicated
with love to them, and to the memory of my lovely grandmother.

x

Contents

I Background and Survey 1

1 Introduction 3

1.1 Thesis Statement and Main Contributions 4

1.1.1 Distributed Algorithms for Submodular Summarization 5

1.1.2 Streaming Algorithms for Submodular Summarization 6

1.1.3 Fast Centralized Algorithms for Submodular Summarization . . 8

1.1.4 Applications and Empirical Studies 9

1.2 Summary of Key Contributions . 14

1.3 Organization of this Dissertation . 15

1.4 Publications . 16

2 Background and Related Work 19

2.1 Data Summarization . 19

2.1.1 Geometric Data Summarization 20

2.1.2 Submodular Data Summarization 20

2.2 Data Summarization by Submodular Optimization 21

2.2.1 Constrained Maximization vs. Coverage 22

2.2.2 (Non-monotone) Maximization with General Constraints 23

2.2.3 Deletion-Robust Submodular Maximization 28

xi

Contents

2.3 Large Scale Submodular Maximization 29

2.3.1 Distributed Algorithms . 29

2.3.2 Streaming Algorithms . 32

2.3.3 Fast Centralized Algorithms . 35

3 Applications of Large Scale Submodular Summarization 39

3.1 Nonparametric Learning . 39

3.1.1 Active Set Selection in Sparse Gaussian Processes (GPs). 39

3.1.2 Inference for Determinantal Point Processes. 40

3.2 Exemplar Based Clustering . 41

3.3 Dominating Sets in Social Networks . 42

3.4 Sensor Placement . 43

3.5 Summarizing Image Collections . 43

3.6 Movie Recommendation . 45

3.7 Diversified Image summarization . 46

3.8 Revenue Maximization with Multiple Products 46

3.9 Other Examples . 47

II Distributed Algorithms 49

4 Overview of part II 51

5 Distributed Submodular Maximization 55

5.1 Submodular Maximization . 57

5.1.1 Greedy Submodular Maximization 57

5.1.2 Distributed Submodular Maximization 58

5.1.3 Naive Approaches to Distributed Submodular Maximization . . 59

5.2 The GreeD i Approach for Distributed Submodular Maximization . . 60

5.2.1 An Intractable, yet Communication Efficient Approach 60

xii

Contents

5.2.2 Our GreeD i Approximation . 61

5.2.3 Performance on Datasets with Geometric Structure 62

5.2.4 Performance Guarantees for Very Large Datasets 65

5.2.5 Handling Decomposable Functions 66

5.2.6 Performance of GreeD i on Random Partitions Without Geomet-
ric Structure . 67

5.3 (Non-Monotone) Submodular Functions with General Constraints . . . 68

5.3.1 GreeD i Approximation Guarantee under More General Con-
straints . 68

5.4 Experiments . 71

5.4.1 Exemplar Based Clustering . 72

5.4.2 Active Set Selection . 74

5.4.3 Non-Monotone Submodular Function (Finding Maximum Cuts) 77

5.4.4 Comparision with Greedy Scaling. 78

5.5 Summary . 79

6 Distributed Submodular Cover: Succinctly Summarizing Massive Data 81

6.1 The Distributed Submodular Cover Problem 82

6.1.1 Naive Approaches Towards Distributed Submodular Cover . . . 83

6.2 D isCover Algorithm for Distributed Submodular Cover 84

6.2.1 Estimating Size of the Optimal Solution 84

6.2.2 Handling Approximations for Submodular Maximization 85

6.2.3 Trading Off Communication Cost and Number of Rounds 86

6.2.4 D isCover . 87

6.3 Experiments . 89

6.3.1 Exemplar based Clustering . 89

6.3.2 Active Set Selection . 90

6.3.3 Large Scale Dominating Set with Spark 90

6.4 Summary . 92

xiii

Contents

7 Fast Distributed Submodular Cover: Public-Private Data Summarization 93

7.1 Problem Statement: Public-Private Summarization 95

7.2 Applications of Pubic-Private Data Summarization 96

7.2.1 Personalized Movie Recommendation 96

7.2.2 Personalized Location Recommendation 97

7.3 FastCover for Fast Distributed Submodular Cover 98

7.4 Experiments . 101

7.4.1 Personalized Location Recommendation with Spark 102

7.4.2 Personalized Movie Recommendation with Spark 104

7.4.3 Large Scale Dominating Set with Spark 105

7.5 Summary . 107

III Streaming Algorithms 109

8 Overview of part III 111

9 Constrained Streaming Submodular Maximization 115

9.1 Streaming Submodular Maximization . 117

9.2 Video Summarization with DPPs . 118

9.3 Streaming algorithm for constrained submodular maximization 118

9.3.1 Streaming Local Search for a collection of independence
systems . 119

9.3.2 Streaming Local Search for independence systems and
multiple knapsack constraints . 121

9.4 Experiments . 123

9.5 Related Work . 129

9.5.1 Video Summarization . 129

9.5.2 Local Search . 130

9.6 Summary . 130

xiv

Contents

10 Deletion-Robust Submodular Maximization 131

10.1 Deletion-Robust Model . 133

10.1.1 Dynamic Data: Additions and Deletions 133

10.1.2 Dealing with Limited Time and Memory 134

10.2 Example Applications . 134

10.2.1 Summarizing Click-stream and Geolocation Data 135

10.2.2 Summarizing Image Collections 135

10.3 Robust-Streaming Algorithm . 136

10.3.1 Increasing the Solution Size Does Not Help 136

10.3.2 Building Multiple Solutions . 137

10.3.3 Dealing with Deletions . 138

10.4 Experiments . 142

10.4.1 Image Collection Summarization 143

10.4.2 Summarizing a stream of geolocation data 144

10.4.3 Large scale click through prediction 144

10.5 Summary . 147

IV Fast Centralized Algorithms 149

11 Overview of part IV 151

12 Lazier than Lazy Greedy 155

12.1 Greedy Algorithm . 155

12.1.1 Lazy -Greedy . 156

12.2 Stochastic -Greedy Algorithm . 157

12.2.1 Random Sampling . 157

12.2.2 Random Sampling with Lazy Evaluation 158

12.3 Experimental Results . 159

xv

Contents

12.3.1 Nonparametric Learning . 160

12.3.2 Exemplar-based clustering . 160

12.3.3 Sensor Placement . 163

12.4 Summary . 164

13 Fast Constrained Submodular Maximization: Personalized Summarization 165

13.1 Constrained Submodular Maximization 167

13.2 Applications of Personalized Data Summarization 168

13.3 Our Algorithm: Fantom . 169

13.3.1 Greedy with Density Threshold (GDT) 169

13.3.2 Iterated Greedy with Density Threshold (IGDT) 170

13.3.3 Fantom . 170

13.4 Experiments . 173

13.4.1 Personalized movie recommendation 173

13.4.2 Revenue maximization with multiple products 176

13.4.3 Personalized image summarization 177

13.5 Summary . 179

V Conclusion and Future Research Directions 181

14 Conclusions 183

14.1 Summary . 184

14.1.1 Distributed Algorithms . 184

14.1.2 Streaming Algorithms . 185

14.1.3 Fast Centralized Algorithms . 185

14.1.4 Applications . 186

14.2 Future Research Directions . 188

xvi

Contents

A Proofs 191

A.1 Proofs from Chapter 5 . 192

A.2 Proofs from Chapter 6 . 207

A.3 Proofs from Chapter 7 . 214

A.4 Proofs from Chapter 9 . 217

A.5 Proofs from Chapter 10 . 224

A.6 Proofs from Chapter 12 . 226

A.7 Proofs from Chapter 13 . 227

Bibliography 245

xvii

Part I

Background and Survey

1

1
Introduction

The unprecedented growth in modern datasets – coming from different sources and
modalities such as images, videos, sensor data, social networks, etc. – demands novel
techniques that extract useful information from massive data, while still remaining
computationally tractable. One compelling approach that has gained a lot of interest
in recent years is data summarization: selecting representative subsets of manageable
size out of large datasets. Applications range from exemplar-based clustering [DF07a],
to document [LB11a; DKR13a] and corpus summarization [Sip+12a], to recommender
systems [EA+09; EAG11], just to name a few.

A systematic way for data summarization, used in all the aforementioned applications,
is to turn the problem into selecting a subset of data elements maximizing a utility
function that quantifies“representativeness” of the selected set. Similarly, one can aim
for finding a representative subset, ideally as small as possible, that its corresponding
utility is comparable to that of the whole dataset. Often-times, these objective functions
satisfy submodularity, an intuitive notion of diminishing returns (c.f., [NWF78a]), stating
that selecting any given element earlier helps more than selecting it later. Thus, many
problems in data summarization require optimizing submodular set functions subject
to cardinality, or other feasibility constraints [GK10; KG13], and big data means we
have to solve this problem at scale.

Submodularity is a property of set functions with deep theoretical and practical con-
sequences. The seminal result of Nemhauser et al. [NWF78a], that has been of great

3

Chapter 1. Introduction

importance in data mining, is that a simple greedy algorithm – adding one element at
a time providing maximal benefit considering the elements picked so far – produces
solutions competitive with the optimal (intractable) solution. This greedy algorithm
starts with the empty set, and iteratively locates the element with maximal marginal
benefit (increasing the utility the most over the elements picked so far). In fact, if
assuming nothing but submodularity, no efficient algorithm produces better solutions
in general [NW78; Fei98]. This greedy algorithm (and other standard algorithms for
submodular optimization), however, unfortunately requires random access to the data.
Hence, while it can easily be applied if the data fits in main memory, it is impractical
for data residing on disk, or arriving over time at a fast pace.

In many domains, data volumes are increasing faster than the ability of individual
computers to store them in main memory. In some cases, data may be produced so
rapidly that it cannot even be stored. Thus, the following question becomes of crucial
importance:

Is it possible to scale up submodular summarization techniques?

One possible approach to tackle this problem is to distribute data to several machines,
and seek parallel computation methods. Another natural approach to scale up sub-
modular optimization, is to use streaming algorithms. In fact, in applications where
the data arrives at a pace that does not allow even storing it, streaming algorithms are
the only viable option. Last but not least, techniques such as randomization can be
employed to further speed up the centralized algorithms for submodular maximization.
Such fast methods can be integrated into the distributed frameworks to provide even
more efficient and scalable algorithms.

1.1 Thesis Statement and Main Contributions

In this Thesis, we present distributed, streaming, and fast centralized techniques for
submodular maximization. We claim the following statement:

Sequential, centralized approach for submodular summarization is impractical for truly
large-scale problems. By designing efficient distributed, streaming, and fast centralized methods,
one can scale up submodular optimization techniques, and still achieve near-optimal solutions.

In order to substantiate this claim, we present the following contributions.

4

1.1. Thesis Statement and Main Contributions

Summary

Figure 1.1: Illustration of a distributed framework.

1.1.1 Distributed Algorithms for Submodular Summarization

A recent direction in processing large-scale data is to make use of parallelism. MapRe-
duce [DG08] is arguably one of the most successful programming models for reliable
and efficient parallel computing. It works by distributing the data to independent
machines: map tasks redistribute the data for appropriate parallel processing and the
output then gets sorted and processed in parallel by reduce tasks. To perform sub-
modular optimization in MapReduce, we need to design suitable parallel algorithms.
Figure 1.1 shows an illustration of a distributed framework. In Part II of this Thesis, we
develop distributed algorithms for submodular summarization.

Identifying representative elements in massive data. The greedy algorithms or their
accelerated variants [Min78; BV14] that work well for centralized submodular opti-
mization, however, are unfortunately sequential in nature; therefore they are poorly
suited for parallel architectures. The question here is how to distribute the data among
the machines, which algorithm should run on each machine, and how to merge the
resulting solutions. We present a simple, parallel protocol, called GreeDi for distributed
submodular maximization subject to cardinality constraints. It requires minimal com-
munication, and can be easily implemented in MapReduce style parallel computation
models. We show that under some natural conditions, for large datasets the quality
of the obtained solution is provably competitive with the best centralized solution.

5

Chapter 1. Introduction

Data Stream

Sieves

Thresholds

Max

Data Stream

Sieves

Thresholds

Max

Data Stream

Sieves

Thresholds

Max

Summary

Threshold

Figure 1.2: Illustration of an streaming framework.

We discuss extensions of our approach to obtain approximation algorithms for (not-
necessarily monotone) submodular maximization subject to more general types of
constraints, including matroid and knapsack constraints.

Succinctly summarizing massive data. In many cases in practice, we are interested
to find a succinct summary of the data, i.e., a subset, ideally as small as possible, which
achieves a desired (large) fraction of the utility provided by the full dataset. We formalize
this problem as a submodular cover problem, and seek efficient algorithms for solving
it in face of massive data. We develop the first distributed algorithm, D isCover, for
solving the submodular cover problem. It can be easily implemented in MapReduce-
style parallel computation models and provides a solution that is competitive with the
(impractical) centralized solution.

We then propose a fast distributed algorithm, FastCover, that enables us to solve
the more general problem of covering multiple submodular functions in one run of the
algorithm. For both algorithms, we study the trade-off between the communication cost
(for each round of MapReduce) and the number of rounds. The trade-off lets us choose
between a small communication cost between machines while having more rounds to
perform or a large communication cost with the benefit of running fewer rounds.

1.1.2 Streaming Algorithms for Submodular Summarization

In some cases, data may be produced so rapidly that it cannot even be stored. Thus, it
becomes of crucial importance to process the data in a streaming fashion where at any

6

1.1. Thesis Statement and Main Contributions

point of time the algorithm has access only to a small fraction of data stored in primary
memory. This approach not only avoids the need for vast amounts of random-access
memory but also provides predictions in a timely manner based on the data seen so
far, facilitating real-time analytics. Figure 1.2 shows an illustration of an streaming
framework. In Part III of this Thesis, we focus on designing streaming algorithms for
submodular maximization.

Constrained streaming submodular maximization. In a wide range of applications,
such as video summarization, the underlying utility function is non-monotone, and
there are often various constraints imposed on the optimization problem to consider
privacy or personalization. These may range from a simple limit on the size of the
summary to more complex restrictions such as focusing on particular individuals or
objects, or excluding them from the summary. We develop the first efficient single pass
streaming algorithm, Streaming Local Search, with constant factor approxima-
tion guarantee for maximizing a general submodular function under the intersection of
a collection of independence systems and d knapsack constraints. The same framework
can be applied more generally in many settings where we need to extract a small subset
of data from a large stream to train or update a machine learning model.

Deletion-robust data summarization on the fly. An important requirement, which
frequently arises in practice, is the ability to summarize a dynamic data stream when
elements selected for the summary can be deleted at any time. In online services,
the users generating the data may decide to exercise their right to restrict the service
provider from using (part of) their data due to privacy concerns. Examples include
traces of users’ activities on social networks (posts, tweets, etc) or images/videos taken
with wearables such as Google Glass. In such scenarios, the main problem is to find a
representative subset (of practically the same quality) on the fly without having to store
all the received data points and rerunning the summarization algorithm. Motivated by
this challenge, we introduce the dynamic deletion-robust submodular maximization problem.
We develop the first resilient streaming algorithm, called Robust -Streaming, with
a constant factor approximation guarantee to the optimum solution.

7

Chapter 1. Introduction

1.1.3 Fast Centralized Algorithms for Submodular Summarization

A natural complementary goal to the aforementioned methods for scaling up submodu-
lar maximization techniques, is to develop faster centralized algorithms for submodular
maximization. Such methods can be easily integrated into the existing distributed frame-
works to provide even more efficient large-scale algorithmic frameworks. Moreover,
they can be incorporated into the methods that decompose the submodular function
into simpler functions for faster evaluation. In Part IV of this Thesis, we study fast
centralized algorithms for submodular maximization.

Lazy stochastic data summarization. While submodularity can be exploited to im-
plement an accelerated version of the classical greedy algorithm, usually called Lazy -
Greedy [Min78], as the size of the data increases, even for small summaries, running
Lazy -Greedy is infeasible. A natural question to ask is whether it is possible to fur-
ther accelerate Lazy -Greedy by a procedure with a weaker dependency on the size of
the summary k. We propose the first linear time algorithm Stochastic -Greedy with
no dependence on k for cardinality constrained submodular maximization, while simul-
taneously having the same approximation guarantee (in expectation). Stochastic -
Greedy is substantially faster than Lazy -Greedy, while being practically identical
to it in terms of the utility. The properties of Stochastic -Greedy make it very
appealing and necessary for solving very large scale problems.

Fast constrained data summarization. In general, utility functions designed to mea-
sure representativeness of subsets in terms of conciseness as well as diversity are naturally
non-monotone. Furthermore, when summarizing multi-category data in a scalable man-
ner, user preferences is a fundamental constraint. For instance, an individual interested
in showing a summary of her recent trip photos may not intend to include more
than a handful of them from each point of interest (i.e., matroid constraint). Or, a
user interested in watching representative video clips (with different duration) from
a particular category may not wish to spend more than a certain amount of time
(i.e., knapsack constraint). We cast personalized data summarization as an instance of
a general (not necessarily monotone) submodular maximization problem subject to
multiple constraints. We develop the first practical and FAst coNsTrained submOdular
Maximization algorithm, Fantom, with strong theoretical guarantees. Fantom maxi-

8

1.1. Thesis Statement and Main Contributions

Figure 1.3: Cluster exemplars (left column) discovered by our distributed algorithm GreeD i

described in Chapter 5 applied to the Tiny Images dataset [TFF08], and a set of representatives
from each cluster.

mizes a submodular function (not necessarily monotone) subject to the intersection of
a p-system and d knapsacks constrains. In particular, a p-system can model different
aspects of data, such as categories or time stamps, from which the users choose. In
addition, knapsacks encode users’ constraints including budget or time.

1.1.4 Applications and Empirical Studies

An important goal of this work is to verify the effectiveness of the proposed algorithms
through extensive experiments on several large-scale real-world problems.

Large-scale image collection summarization. Given a collection of images, one might
be interested in finding a subset that best summarizes and represents the collection.
One approach for finding such exemplars is solving the k-medoid problem [KR09],
which aims to minimize the sum of pairwise dissimilarities between exemplars and
elements of the dataset. This problem can be transformed to maximizing a monotonic
submodular utility function [KG10]. For medium-scale problems, the standard greedy
algorithms provide good solutions. For massive data however, we need to resort to
our large scale algorithms. We perform extensive experimentation on a large dataset
containing 80,000,000 Tiny Images [TFF08], where each 32 by 32 RGB pixel image
was represented by a 3,072 dimensional vector. Figure 1.3 shows a set of exemplars
discovered by our large scale algorithms. Empirical studies showed that our algorithms
obtained solutions competitive with the best centralized solution, and can scale well to
very large datasets.

9

Chapter 1. Introduction

-4 -2 0 2 4 6 8 10
1st Principal Component

-2

0

2

4

6

8

2n
d

Pr
in

ci
pa

l C
om

po
ne

nt

0
+1
Support Vectors

(a)

u

�({u,v})

v

(b)

Figure 1.4: (a) Example of an active set selected from a subset of the Yahoo! Webscope dataset
[Yah12], and the corresponding decision boundary of the kernelized SVM classifier trained on
the selected subset. For the sake of presentation, the data is projected onto its 2 largest principal
components. (b) Example of a dominating set (marked as red) in a graph. The coverage of u, v is
the set of their neighbors and is shown by $({u, v}).

Large-scale dominating set in social networks. Probably the easiest way to define
the influence of a subset of users on other members of a social network is by the
dominating set problem. We define the coverage size of a set of users by the total
number of their friends in the network. The goal is to find the smallest subset such that
the coverage size is at least some fraction of the total number of users (c.f., Figure 1.4b).
We examine the performance of our algorithms on Friendster social network consists of
65,608,366 nodes and 1,806,067,135 edges [YL15], by obtaining covers for 50%, 40%, 30%,
20% and 10% of the whole graph. Interestingly, our algorithms can obtain a solution
that is smaller than the centralized greedy algorithm. Note that running the centralized
greedy is impractical if the dataset cannot fit into the memory of a single machine.

Large scale click through prediction. Besides extracting representative elements for
sake of explorative data analysis, data summarization is a powerful technique for
speeding up learning algorithms. As a concrete example, consider kernel machines
(such as kernelized SVMs/logistic regression, Gaussian processes, etc.), which are
powerful non-parametric learning techniques. A common approach to scale kernel
methods to large datasets is to perform active set selection ([RW06; See04]), i.e., select a

10

1.1. Thesis Statement and Main Contributions

	

(a)

0 0.2 0.4 0.6 0.8 1
x

0

0.2

0.4

0.6

0.8

1

y

(b)

Figure 1.5: (a) A summary obtained by our Robust -Streaming algorithm described in
Chapter 10 from the geo-location trace of a bike route around Zurich [Fat15], (b) Example sensor
placement obtained by our algorithm Stochastic -Greedy introduced in Chapter 12, in a
realistic water network [Kra+08a].

small, representative subset, and only work with the kernel matrix restricted to this
subset. One prominent procedure that is often used in practice is the Informative
Vector Machine (IVM) which aims to select a subset based on a monotone submodular
function. Again for massive data, we need to use our scalable approaches. Having such
a representative subset, we can aim at predicting users’ behavior for each displayed
article based on historical clicks (c.f., Figure 1.4a).

The same problem can be considered in the streaming setting, where we want to extract
the summary, while data is being received. In light of privacy concerns, it is natural to
consider participatory models that empower users to decide what portion of their data
could be made available, and the algorithm should be able to update the summary to
comply with users’ preferences.

We used our large scale algorithms to summarize the Yahoo! Webscope dataset con-
taining 45,811,883 user click logs for news articles displayed in the Featured Tab of the
Today Module on Yahoo! Front Page during the first ten days in May 2009 [Yah12]. Our
results showed that, the classifier trained on the summary returned by our algorithms
can recover the performance of the classifier trained on the full training data.

11

Chapter 1. Introduction

Summarizing geo-location sensor data. There exists a tremendous opportunity of
harnessing prevalent activity logs and sensing resources. For instance, GPS traces of
mobile phones can be used by road traffic information systems (such as Google traffic,
TrafficSense, Navigon) to monitor travel times and incidents in real time. This can
be done by collecting data generated by active mobile phones along with their GPS
coordinates. Continuously sharing all collected data is problematic for several reasons.
First, memory and communication constraints may limit the amount of data that can be
stored on the mobile devices and transmitted across the network. Second, reasonable
privacy concerns may prohibit continuous tracking of users.

Extracting and communicating the most informative locations (for traffic monitoring
purposes) can significantly reduce the power consumption for end users and the
processing time needed for the base station. At the same time, we want to allow users
to not share or to revoke information about parts of their activity. Therefore, the goal
is to select a small subset of elements with a certain diversity in comply with users’
preferences while data is being produced, and only communicate this subset to the base
station. In order to find such a summary, we apply the algorithms developed in this
Thesis on a geo-location dataset collected during a one hour bike ride around Zurich
[Fat15], shown in Figure 1.5a.

Sensor placement. When monitoring spatial phenomena, we want to deploy a limited
number of sensors in an area in order to quickly detect contaminants. Since the number
of sensors is limited, it is important to place them at the most informative locations in
order to detect the malicious introduction of contaminants. It has been shown that a
large class of important sensor placement objectives satisfy submodularity [Kra+08a],
and for which the greedy algorithm gives us a good solution. But, for large datasets
we need to resort to our scalable algorithms for submodular maximization. In our
experiments, we used the 12,527 node distribution network provided as part of the
Battle of Water Sensor Networks (BWSN) challenge [Ost+08], shown in Figure 1.5b.
Our experiments showed that our algorithms achieve near-maximal utility at much
lower cost compared to the other benchmarks.

Movie recommendation. Consider a movie recommender system, where a user spec-
ifies the genres she is interested in, as well as any other constraints she may have –e.g.
in terms of money, time, or accessibility–, and the recommender system has to provide

12

1.1. Thesis Statement and Main Contributions

s2

s1

u

(a) (b)

Figure 1.6: (a) Revenue maximization with 2 products. The shaded blue and red regions indicate
the influence spread from nodes s1 and s2 to buy product 1, 2 respectively. Here, node u has some
value to buy both of the products. (b) Personalized movies recommendation using our algorithm
Fantom described in Chapter 13 from MovieLens dataset [Mov]. Movies are from 19 genres:
Action(1), Adventure(2), Animation (3), Children (4), Comedy (5), Crime (6), Documentary
(7), Drama (8), Fantasy (9), Film-Noir (10), Horror (11), Musical (12), Mystery (13), Romance
(14), Sci-Fi (15), Thriller (16), War (17), Western (18), IMAX (19). The user is interested in
adventure, animation, and fantasy movies (genres 1,2,9).

a short list of representative movies accordingly. We formulate this problem as a non-
negative and non-monotone submodular maximization problem. In our experiments
we used a set of 10,437 movies from 19 genres, and 20,000,263 users’ ratings from
138,493 users of the MovieLens database [Mov]. Each movie is associated with a 25
dimensional feature vector calculated from user ratings. An example recommendation
is shown in Figure 1.6b. Our experiments showed that our algorithm is able to provide
a good performance in scenarios where other baselines perform arbitrary poorly.

Revenue maximization with multiple products. In this application, we consider
revenue maximization on a social network when multiple products from a basket that
can be offered to each user. The goal is to offer for free or advertise some of the products
to a set of users such that through their influence on others, the revenue increases (c.f.,
Figure 1.6a). At the same time, users in a social network may want to see only a small
number of advertisements, and we have a limited budget for advertisement. Following

13

Chapter 1. Introduction

[HMS08] we model user’s value for a product based on the set of other users that own
the product. The total revenue, that we try to maximize, is a non-monotone submodular
function. We performed our experiment on the top 5000 largest communities of the
YouTube social network consists of 39,841 nodes and 224,235 edges [YL15]. We consider
the settings where we are to advertise up to 100 different types of product across all
communities of the same social network. We noted again that our algorithm significantly
outperforms the other benchmarks.

1.2 Summary of Key Contributions

The following table summarizes the key contributions of this Thesis, and their organi-
zation in the three main parts of this Thesis.

Table 1.1: Summary of key contributions. n is the size of the dataset, m is the number of
muchines, k is the size of the summary, r is the size of the largest feasible solution, Q is the desired
utility, a is the approximation guarantee for streaming monotone submodular maximization
algorithms under a collection of independence systems, d is the number of knapsack constraints,
p is the ratio of the size of the largest vs. smallest independent sets in a p-system.

Part Algorithms Theoretical guarantees Applications

GreeD i

O(1/
p

min(m, k)) Image summarization

rounds: 2 Click prediction

Distributed
D isCover

O(ln(Q)k/
p

min(m, k)) Active-set selection

Algorithms rounds:O
�
ln Q

p
min(m,k)

�
Finding dominating sets

FastCover

ln(Q)/(1� e) Public-private recom-

rounds:O
�
ln(n

km) ln(Q)/e

�
mendation

Streaming - (1�e)/(1+2/
p

a+1/a+2d(1+
p

a)) Video summarization

Streaming Local Search passes: 1 Location summarization

Algorithms Robust - robust to any m deletions Image summarization

Streaming passes: 1 Click prediction

Stochastic - 1� 1/e� e

Image summarization

Centralized Greedy complexity: O(n ln(1/e)) Sensor placement

Algorithms
Fantom

p(1�e)/(p+1)(2p+2d+1) Movie recommendation

complexity: O(nrp ln(n)/e) Revenue maximization

14

1.3. Organization of this Dissertation

1.3 Organization of this Dissertation

In Part I of this Thesis, we will review the concept of submodularity, and introduce
relevant terminology and concepts (Chapter 2). We will then review existing works
on maximizing submodular set functions in distributed and streaming settings. More
specific discussions of related work are presented in the subsequent chapters. In Chapter
3, we discuss concrete applications of large scale submodular maximization with their
corresponding submodular objective functions.

Part II presents novel distributed algorithms for submodular maximization and sub-
modular cover problems. In Chapter 5, we develop GreeD i, a distributed algorithm
for maximizing a submodular function in MapReduce computational framework. In
Chapter 6 and Chapter 7, we consider the problem of submodular cover and propose
D isCover and FastCover, two efficient distributed algorithms for submodular
cover in MapReduce parallel computation model.

Part III presents our results on streaming submoduar maximization, where data ele-
ments are being received at a fast pace, and we need to summarize a massive dataset
“on the fly”. In Chapter 9, we introduce Streaming Local Search, our algorithm
for maximizing a general submodular function under a collection of independence
systems and d knapsack constraints in the streaming setting. In Chapter 10, we propose
Robust -Streaming, a robust streaming algorithm able to update the summary in
real-time, in case of arbitrary deletions.

In part IV we present our results on fast centralized algorithms, including Stochastic -
Greedy, a fast stochastic algorithm for submodular maximization with running time
independent of the size of the summary (Chapter12), and Fantom, a fast algorithm for
maximizing a (not-necessarily) monotone submodular function subject to a p-system
and d knapsack constraints (Chapter13).

Lastly, in Part V we present our conclusions, and discuss interesting open problems for
future work (Chapter 14).

Appendix A presents the proofs of all theoretical results described in this Thesis.

15

Chapter 1. Introduction

1.4 Publications

Publications Covered in this Dissertation

This dissertation covers material primarily from the following publications.

• Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, Andreas Krause, ”Distributed
Submodular Maximization”, Journal of Machine Learning Research, 2016. 17(238):1-44.
[Mir+16]

• Baharan Mirzasoleiman, Stefanie Jegelka, Andreas Krause, ”Streaming Non-mono-
tone Submodular Maximization: Personalized Video Summarization on the Fly,”
In: Proc. Conference on Artificial Intelligence (AAAI). 2018. [MJK18]

• Baharan Mirzasoleiman, Amin Karbasi, Andreas Krause, ”Deletion Robust Sub-
modular Maximization: Data Summarization with the Right to be Forgotten,” In:
Proc. International Conference on Machine Learning (ICML). 2017. [MKK17]

• Baharan Mirzasoleiman, Morteza Zadimoghaddam, Amin Karbasi, ”Fast Dis-
tributed Submodular Cover: Public Private Data Summarization,” In: Proc. Ad-
vances in Neural Information Processing Systems (NIPS). 2016. [MZK16]

• Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, ”Fast Con-
strained Submodular Maximization: Personalized Data Summarization,” In: Proc.
International Conference on Machine Learning (ICML). 2016. [MBK16]

• Baharan Mirzasoleiman, Amin Karbasi, A. Badanidiyuru, Andreas Krause, ”Dis-
tributed Submodular Cover: Succinctly Summarizying Massive Data,” In: Proc.
Advances in Neural Information Processing Systems (NIPS). 2015. [Mir+15a]

• Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrak,
Andreas Krause, “Lazier than Lazy Greedy”, In: Proc. Conference on Artificial
Intelligence (AAAI). 2015. [Mir+15b]

• Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, Andreas Krause, ”Distributed
Submodular Maximization: Identifying Representative Elements in Massive Data,”
In: Proc. Advances in Neural Information Processing Systems (NIPS). 2013. [Mir+13]

16

1.4. Publications

Publications Not Covered in this Dissertation

The following publications are relevant to the topic of this dissertation, but are not
covered in this Thesis.

• Andrew Bian, Baharan Mirzasoleiman, Juachim Buhmann, Andreas Krause, ”Guar-
anteed Non-Convex Optimization: Submodular Maximization over Continuous
Domain”, In: Proc. International Conference on Artificial Intelligence and Statistics
(AISTATS). 2017. [Bia+17]

• Eric Balkanski, Andreas Krause, Baharan Mirzasoleiman, Yaron Singer, ”Learning
Sparse Combinatorial Representations via Two-stage Submodular Maximization,”
In: Proc. International Conference on Machine Learning (ICML). 2016. [Bal+16]

• Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi, Andreas
Krause, “Streaming Submodular Maximization: Massive Data Summarization
on the Fly”, In: Proc. ACM SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD). 2014. [Bad+14]

17

2
Background and Related Work

In this chapter, we provide background on submodular maximization, as well as the
terminology used in this Thesis. We will also review related work that is relevant to
most chapters of this thesis. In the next chapter, we will discuss concrete applications of
large scale submodular maximization with their corresponding submodular objective
functions.

2.1 Data Summarization

The large volume of modern datasets presents new computational challenges as the
diverse, feature-rich, unstructured and usually high-resolution data does not allow for
effective data-intensive inference. In this regard, data summarization is a compelling
(and sometimes the only) approach that aims at both exploiting the richness of large-
scale data and being computationally tractable. Instead of operating on complex and
large data directly, carefully constructed summaries not only enable the execution of
various data analytics tasks but also improve their efficiency and scalability. Geometric
methods and submodular optimization techniques are the two most important classes
of techniques for extracting such informative summaries.

19

Chapter 2. Background and Related Work

2.1.1 Geometric Data Summarization

Originating from computational geometry, geometric summarization techniques try to
compress a large dataset in linear or near-linear time, such that the result of running
a more intricate algorithm on the summariy approximates those of the full dataset.
Coresets and sketches are the two most important classes of geometric data summarization
techniques.

Coreset. A coreset is a weighted subset of the data such that the quality of any cluster-
ing evaluated on the coreset closely approximates the quality on the full dataset. They
have been successfully used to scale up many machine learning problems, including
SVMs, and clustering models such as K-Means and Gaussian mixture models to massive
datasets [HPM04; TKC05; LBK16].

Sketch. A sketch is a compressed mapping of the full dataset onto a data structure
while preserving the structural properties of the original data. They approximate
certain queries on the full dataset, and are easy to update with new or changed data.
In particular, a linear sketch is one where the mapping is a linear function of each data
point, thus making it easy for data to be added, subtracted, or modified [GK04; Aga+13;
BEM16].

Geometric summarization techniques allow for efficient approximate inference with
strong theoretical guarantees. However, the algorithms and the corresponding theory
are usually specific to each specific problem. This limits their applicability to mostly
clustering, and a few other machine learning problems. In this Thesis, we discuss data
summarization by submodular optimization.

2.1.2 Submodular Data Summarization

Over the recent years, submodular optimization has been identified as a powerful tool
for numerous data mining and machine learning applications. Submodular functions
contain a large class of functions that naturally arises in data mining and machine
learning applications, and hence there has been a recent surge of interest in apply-
ing submodular optimization methods to many problems, including viral marketing
[KKT03], network monitoring[Les+07] , sensor placement and information gathering

20

2.2. Data Summarization by Submodular Optimization

[KG11], news article recommendation [EA+09], nonparametric learning [KG10; RG13],
document and corpus summarization [LB11a; Du+13; Sip+12a], crowd teaching [Sin+14],
and MAP inference of Determinental Point Process [GKT12b]. A key reason for such a
wide range of applications is the existence of efficient algorithms (with near-optimal
solutions) for a divers set of constraints.

2.2 Data Summarization by Submodular Optimization

Suppose that we have a large dataset V of size n, and we are interested in finding a
subset of data points that are most representative according to some objective function,
f : 2V ! R+. For each S ✓ V, f (S) quantifies the utility of set S, capturing, e.g., how
well S represents V according to some objective. We will discuss concrete instances
of functions f in Chapter 3. A set function f is naturally associated with a discrete
derivative, also called the marginal gain,

4 f (e|S)
.
= f (S [{e})� f (S), (2.2.1)

which quantifies the increase in utility obtained when adding e 2 V to set S ✓ V.
Submodular functions are set functions which satisfy the following natural diminishing
returns property.

Definition 1 (c.f., Nemhauser, Wolsey, and Fisher [NWF78a]). A set function f : 2V !
R is submodular, if for every A ✓ B ✓ V and e 2 V \ B

f (A [{e})� f (A) � f (B [{e})� f (B).

Equivalently, f is submodular iff for all A ✓ B ✓ V and e 2 V \ B the following condition
holds

4 f (e|A) � 4 f (e|B). (2.2.2)

That means, adding an element e in context of a set A helps at least as much as adding
e in context of a superset B of A. Furthermore, f is called monotone iff for all A ✓ B ✓ V
it holds that f (A)  f (B), and non-monotone otherwise. Throughout this Thesis, we
adopt the common assumption that f is given in terms of a value oracle (a black box)
that computes f (S) for any S ✓ V.

21

Chapter 2. Background and Related Work

2.2.1 Constrained Maximization vs. Coverage

Our general goal in data summarization is to select a small subset A ✓ V out of a large
dataset such that A is the most representative according to the objective function f .

A natural optimization problem here is to find a summary A⇤ of size at most k that
maximizes the utility, i.e.,

A⇤ = arg maxA:|A|k f (A). (2.2.3)

Here, we try to find the most representative subset of data points subject to a cardinality
constraint. We call Problem 2.2.3 a submodular maximization problem.

Similarly, we can aim at finding the smallest set A⇤ such that it achieves a desired utility
Q = (1� e) f (V) for some 0  e  1. More precisely,

A⇤ = arg min
S✓V

|A| s.t. f (A) � Q. (2.2.4)

Problem 2.2.4 is called a submodular cover problem.

Optimization problems 2.2.3 and 2.2.4 are NP-hard for many classes of submodular
functions [Fei98]. However, a simple greedy algorithm that starts with the empty set
and iteratively augments the current solution with an element of maximum incremental
value

Ai = Ai�1 [{arg max
e2V
4 f (e|Ai�1)}. (2.2.5)

is known to be very effective.

Theorem 2 (submodular maximization [NWF78a]). For any non-negative and monotone
submodular function f , the greedy heuristic always produces a solution Ag[k] of size k that
achieves at least a constant factor (1� 1/e) of the optimal solution.

f (Ag[k]) � (1� 1/e) max
|A|k

f (A).

This result can be easily extended to f (Ag[l]) � (1� e�l/k)max|A|k f (A), where l and
k are two positive integers [see, KG13].

Theorem 3 (submodular cover [Wol82]). For any integral submodular function f (i.e.,
f : 2V ! N), the size of the solution returned by the greedy algorithm |Ag| is at most

22

2.2. Data Summarization by Submodular Optimization

H(maxe f (e))|A⇤|, where A⇤ is the optimal solution, and H(z) is the z-th harmonic number
and is bounded by H(z)  1 + ln(z).

|Ag|  (1 + ln(max
e

f (e)))|A⇤|.

For several classes of monotone submodular functions, it is known that the above
approximation guarantees are the best that one can hope for [NW78; Fei98; KG05b].
Moreover, the greedy algorithm can be accelerated using lazy evaluations [Min78;
Les+07]. We will discuss greedy with lazy evaluations later in Chapter 12 (Section
12.1.1).

2.2.2 (Non-monotone) Maximization with General Constraints

Instead of specifying feasibility of observation sets A by requiring that |A|  k (Eq.
2.2.3) or f (A) � Q Eq. (2.2.4), we can consider more general classes of constraints, by
defining a collection of feasible sets A ✓ 2V , and requiring that the chosen sets A satisfy
A 2 z. In this case, we would like to solve

Maximize f (S)

Subject to S 2 z.

Here, we assume that the feasible solutions should be members of the constraint set
z ✓ 2V . The function f (·) is submodular but may not be monotone. Throughout this
section we assume that the constraint set z is hereditary, meaning that if A 2 z then for
any B ✓ A we also require that B 2 z. Cardinality constraints are obviously hereditary,
so are all the examples we mention below.

Independence Systems

An independence system is a pair MI = (V, I) where V is a finite (ground) set, and
I ✓ 2V is a family of independent subsets of V satisfying the following two properties:

• The empty set is independent, i.e., ∆ 2 I , and

• Every subset of an independent set is independent, i.e., for any A✓B✓V, B2I
implies that A 2 I (hereditary property).

23

Chapter 2. Background and Related Work

Matroid: A matroid M = (V, I) is an independence system with the additional
augmentation property or the independent set exchange property:

• If A, B 2 I and |B| > |A|, there is an element e 2 B \ A such that A [{e} 2 I .

A uniform matroid is the family of all subsets of size at most l. In a partition matroid,
we have a collection of disjoint sets Bi and integers 0  li  |Bi| where a set A is
independent if for every index i, we have |A \ Bi|  li. Maximizing a submodular
function subject to matroid constraints has found several applications in machine
learning and data mining, ranging from content aggregation on the web [AMT13] to
viral marketing [NN12] and online advertising [SGK09].

One way to approximately maximize a monotone submodular function f (S) subject to
the constraint that each S is independent, i.e., S 2 I , is to use a generalization of the
greedy algorithm. This algorithm, which starts with an empty set and in each iteration
picks the feasible element with maximum benefit until there is no more element e such
that S [{e} 2 I , is guaranteed to provide a 1

2-approximation of the optimal solution
[FNW78]. Recently, this bound has been improved to (1� 1/e) using the continuous
greedy algorithm [Cal+11]. For non-negative and non-monotone submodular functions
under a cardinality constraint k, a 1/e + 0.004 approximation can be achieved by
iteratively selecting a random element from the top k elements with the highest marginal
gains, until we find a solution of size k [Buc+14]. The best known result for the same
problem under a matroid constraint is a 1/e� e approximation based on continuous
greedy [FNS11a].

Curvature: For a submodular function f , the total curvature of f with respect to a set
S is defined as:

c = 1�min
j2V

f (j|S \ j)
f (j)

.

Intuitively, the notion of curvature determines how far away f is from being modular.
In other words, it measures how much the marginal gain of an element w.r.t. set S can
decrease as a function of S. In general, c 2 [0, 1], and for additive (modular) functions,
c = 0, i.e., the marginal values are independent of S. In this case, the greedy algorithm
returns the optimal solution to max{ f (S) : S 2 I}. In general, the greedy algorithm
gives a 1

1+c -approximation to maximizing a non-decreasing submodular function with

24

2.2. Data Summarization by Submodular Optimization

curvature c subject to a matroid constraint [CC84]. In case of the uniform matroid
I = {S : |S|  k}, the approximation factor is (1� e�c)/c.

Intersection of Matroids: A more general case is when we have p matroids M1 =

(V, I1),M2 = (V, I2), ...,Mp = (V, Ip) on the same ground set V, and we want to
maximize the submodular function f on the intersection of p matroids. That is, I =

T
i Ii

consists of all subsets of V that are independent in all p matroids. This constraint arises,
e.g., when optimizing over rankings (which can be modeled as intersections of two
partition matroids). Another recent application considered is finding the influential set
of users in viral marketing when multiple products need to be advertised and each
user can tolerate only a small number of recommendations [Du+13]. For p matroid
constraints, the 1

p+1-approximation provided by the greedy algorithm [FNW78] has been
improved to a (1

p � e)-approximation for p � 2 by [LSV09]. For the non-monotone case,
a 1/(p + 1 + 1/p + e)-approximation based on local search is also given by [LSV09].

p-matchoid: A p-matchoid generalizes matchings and intersection of matroids. For
q matroids M` = (V`, I`), ` 2 [q], defined over overlapping ground sets V`, and for
V = [q

`=1V`, I = {S ✓ V : S\V` 2 I` 8`}, we have that Mp = (V, I) is a p-matchoid
if every element e 2 V is a member of V` for at most p indices. For monotone submod-
ular functions, the greedy algorithm provides a 1

p+1-approximation guarantee subject
to a p-matchoid constraint [FNW78]. For non-monotons submodular functions, the ran-
domized algorithms of [FNS11a; Cal+11] provide a (1� e)(2� o(1))/ep approximation
guarantee in expectation.

p-systems: p-independence systems generalize constraints given by the intersection
of p matroids. Given an independence family I and a set V0 ✓ V, let S(V0) denote
the set of maximal independent sets of I included in V0, i.e., S(V0) = {A 2 I | 8e 2
V0 \ A : A [{e} /2 I}. Then we call (V, I) a p-system if for all nonempty V0 ✓ V we
have

max
A2S(V0)

|A|  p · min
A2S(V0)

|A|.

Similar to p matroid and p-matchoid constraints, the greedy algorithm provides a
1

p+1-approximation guarantee for maximizing a monotone submodular function subject
to a p-systems constraint [FNW78]. For the non-monotone case, a 2/(3(p + 2 + 1/p))-

25

Chapter 2. Background and Related Work

approximation can be achieved by combining an algorithm of [Gup+10a] with the result
for unconstrained submodular maximization of [Buc+12].

Knapsack Constraints

In many applications, including feature and variable selection in probabilistic models
[KG05b] and document summarization [LB11b], elements e 2 V have non-uniform
costs c(e) > 0, and we wish to find a collection of elements S that maximize f subject to
the constraint that the total cost of elements in S does not exceed a given budget R, i.e.

max
S

f (S) s.t. Â
v2S

c(v)  R.

Since the simple greedy algorithm ignores cost while iteratively adding elements with
maximum marginal gains according to Eq. 2.2.5 until |S|  R, it can perform arbitrary
poorly. However, it has been shown that taking the maximum over the solution returned
by the greedy algorithm that works according to Eq. 2.2.5 and the solution returned by
the modified greedy algorithm that optimizes the cost-benefit ratio

v⇤ = arg max e2V\S
c(v)R�c(S)

f (S [{e})� f (S)
c(v)

,

provides a (1� 1/
p

e)-approximation of the optimal solution [KG05a]. Furthermore, a
more computationally expensive algorithm which starts with all feasible solutions of
cardinality 3 and augments them using the cost-benefit greedy algorithm to find the
set with maximum value of the objective function provides a (1� 1/e)-approximation
[Svi04]. For maximizing non-monotone submodular functions subject to knapsack
constraints, a (1/5� e)-approximation algorithm based on local search was given by
[Lee+09].

Multiple Knapsack Constraints: In some applications such as procurement auctions
[GKP01], video-on-demand systems and e-commerce [KST09], we have a d-dimensional
budget vector R and a set of element e 2 V where each element is associated with a
d-dimensional cost vector. In this setting, we seek a subset of elements S ✓ V with
a total cost of at most R that maximizes a non-decreasing submodular function f .
Kulik, Shachnai, and Tamir [KST09] proposed a two-phase algorithm that provides a

26

2.2. Data Summarization by Submodular Optimization

Table 2.1: Approximation guarantees (t) for monotone and non-monotone submodular maxi-
mization under different constraints.

Constraints
Approximation (t)

monotone non-monotone
submodular functions submodular functions

Cardinality 1� 1/e [FNW78] 1/e + 0.004 [Buc+14]
1 matroid 1� 1/e [Cal+11] 1/e� e [FNS11a]
p matroid 1/p� e [LSV09] 1/(p + 1 + 1/p + e) [LSV09]
1 knapsack 1� 1/e [Svi04] 1/5 - e [Lee+09]
d knapsack 1� 1/e� e [KST09] 1/5 - e [Lee+09]
p-system 1/(p + 1) [FNW78] 2/(3(p + 2 + 1/p)) [Gup+10a]
p-system + 1/(p + 2d + 1) [BV14] (1�e)p/(p+1)(2p+2d+1) [Ch. 13]d knapsacks

(1� 1/e� e)-approximation for the problem by first guessing a constant number of
elements of highest value, and then taking the value residual problem with respect
to the guessed subset. For the non-monotone case, [Lee+09] provided a (1/5� e)-
approximation based on local search.

p-system and d knapsack constraints: A more general type of constraint that has re-
cently found interesting applications in viral marketing [Du+13] can be constructed by
combining a p-system with d knapsack constraints which comprises the intersection of
p matroids or d knapsacks as special cases. Badanidiyuru et al. [BV14] proposed a mod-
ified version of the greedy algorithm that guarantees a 1/(p + 2d + 1)-approximation
for maximizing a monotone submodular function subject to a p-system and d knapsack
constraints.

For general (not-necessarily monotone) submodular functions, we will provide the
first practical algorithm for constrained submodular maximization in Chapter 13. Our
proposed method, Fantom, achieves a (1� e)p/(p + 1)(2p + 2d + 1)-approximation
guarantee for maximizing a general submodular function subject to the intersection of
a p-system and d knapsack constrains.

Table 2.1 summarizes the approximation guarantees for monotone and non-monotone
submodular maximization under different constraints.

27

Chapter 2. Background and Related Work

2.2.3 Deletion-Robust Submodular Maximization

An important requirement, which frequently arises in practice, is robustness. For exam-
ple, when summarizing user activities, some users may decide not to share, or to revoke
information about parts of their activity, resulting in an unrepresentative summary.
In such scenarios, the goal is to find a summary that is still a good representatives of
the data after removal of some of the elements. This problem can be formulated as a
deletion-robust submodular maximization problem. There has been recent efforts to
construct solutions that are robust against deletions in a batch mode way.

Krause et al. [Kra+08b] proposed the problem of robust submodular observation
selection, where there are several submodular objective functions which we want to
simultaneously optimize. The goal is to select observations which are robust against a
worst-case objective function. More formally, for a collection of normalized monotonic
submodular functions F1, · · · , Fm, we want to solve maxA2V mini Fi(A), subject to |A| 
k. Submodular maximization of f robust against m deletions can be cast as an instance
of the above problem: max|A|k min|B|m fB(A), where fB(A) = f (A \ B). However, the
running time will be exponential in m as there are exponentially many functions ` to
consider (one for each set of size m).

Recently, Orlin, Schulz, and Udwani [OSU16] considered the deletion-robust submod-
ular maximization and developed an algorithm with an asymptotic guarantee 0.285
for deleting up to m = o(

p
k) elements. The algorithm uses the greedy solution as

a subroutine m times, where each time it performs m steps of the greedy solution
starting from ∆. It then greedily augments the solution set until it finds k elements.
Better theoretical results can be obtained for only 1 or 2 deletions. In a very recent
work, Bogunovic et al. [Bog+17] proposed a new Partitioned Robust (PRO) submodular
maximization algorithm that achieves the same guarantee for more general m = o(k).
The idea is to arrange the constructed set into partitions consisting of buckets whose
sizes increase exponentially with the partition index. The guarantee is then obtained
based on a recursive relationship between the objective values of buckets appearing in
adjacent partitions.

28

2.3. Large Scale Submodular Maximization

2.3 Large Scale Submodular Maximization

Centralized approaches for constrained submodular maximization require random
access to the data. Once the size of the dataset increases beyond the memory capacity
(typical in many modern datasets) or the data is arriving incrementally over time, these
methods can no longer be used. In such cases, either we seek parallel computation meth-
ods by distributing data to independent machines or we devise streaming algorithms
where at each point in time, only a tiny portion of data is processed. Both approaches
has recently received considerable attentions as prominent foundation for large scale
machine learning and data mining algorithms [Chu+07; EPF08].

2.3.1 Distributed Algorithms

One possible approach to scale up submodular optimization is to distribute the data to
several machines, and seek parallel computation methods.

Distributed Data Analysis and MapReduce Due to the rapid increase in dataset
sizes, and the relatively slow advances in sequential processing capabilities of modern
CPUs, parallel computing paradigms have received much interest. Inhabiting a sweet
spot of resiliency, expressivity and programming ease, the MapReduce style computing
model [DG08] has emerged as prominent foundation for large scale machine learning
and data mining algorithms [Chu+07; EPF08]. A MapReduce job takes the input data
as a set of < key; value > pairs. Each job consists of three stages: the map stage, the
shuffle stage, and the reduce stage. The map stage, partitions the data randomly across
a number of machines by associating each element with a key and produce a set of
< key; value > pairs. Then, in the shuffle stage, the value associated with all of the
elements with the same key gets merged and sent to the same machine. Each reducer
then processes the values associated with the same key and outputs a set of new
< key; value > pairs with the same key. The reducers’ output could be input to another
MapReduce job and a program in MapReduce paradigm can consist of multiple rounds
of map and reduce stages [KSV10].

Distributed submodular maximization. Kumar et al. [Kum+13] gave a distributed
algorithms for maximizing a monotone submodular function. The high level idea is to

29

Chapter 2. Background and Related Work

simulate the e-greedy algorithm [Gup+10a] in a distributed setting, by iteratively sam-
pling a small subset of the elements that fits on a single machine, and runs the e-greedy
algorithm on the sample in order to obtain a candidate solution. This intermediate
solution is then used to prune some of the elements in the dataset and reduce the size
of the ground set. For a cardinality constraint, the number of rounds is a constant but
for more general constraints such as a matroid, or a p-system constraint, the number
of rounds is Q(log(D)) where D is the maximum marginal gain of a single element.
The maximum marginal gain can be even larger than the size of the ground set. This
dependency makes the approach infeasible for massive datasets.

In Chapter 5, we will provide the first efficient two-rounds distributed algorithm
for maximizing a non-negative submodular function with a worst-case 1/ min(m, k)-
approximation guarantee to the centralized solution (m is the number of machines
and k is the cardinality of the desired solution). This algorithm is proposed in parallel
to [Kum+13], and can handle general types of constraints. We will further show that,
under some additional assumptions on the objective function, i.e. Lipschitz continuity,
performance close to the centralized greedy algorithm can be achieved.

Barbosa et al. [Bar+15] improved the worst-case guarantee for the distributed framework
proposed in Chapter 5 to 1/Q(min(

p
k, m)). In Chapter 6, we will show that this bound

can be further improved to 1/Q(min(
p

k,
p

m)). Barbosa et al. [Bar+15] further used a
randomized analysis to provide a 0.31 approximation guarantees in expectation for the
above distributed framework.

In parallel, Mirrokni and Zadimoghaddam [MZ15] showed that a 0.27-approximation
in expectation can be achieved under cardinality constraint, using notion of randomized
composable core-sets. They further observed that one cannot achieve a better than the
1/2 factor to the centralized solution via core-sets of size k (cardinality constraint) using
greedy or any algorithm in a family of local search algorithms. Table 2.2 summarizes
the approximation guarantees and the number of rounds required by each of the
aforementioned distributed algorithms.

Distributed submodular cover. Despite it’s importance, there has been relatively little
study of how to find covers efficiently until quite recently, where distributed solutions
for some special cases of the submodular cover problem have been proposed.

In particular, for the set cover problem (i.e., find the smallest subcollection of sets

30

2.3. Large Scale Submodular Maximization

Table 2.2: Approximation guarantees for distributed monotone and non-monotone submodular
maximization under different constraints. r[z] is the maximum size of the desired solution, and
bounds for randomized algorithms that hold in expectation are marked (R).

Constraints
monotone non-monotone

submodular functions submodular functions
Approximation # rounds Approximation # rounds

Cardinality

O
� 0.63p

min(m,k)

�
2 O

� 0.37p
min(m,k)

�
2 [Ch. 5, 6]

0.316 (R) 2 0.12 (R) 2 [Bar+15]
0.27 (R) 2 0.14 (R) 2 [MZ15]
1
2 � e

O(1
d

) – – [Kum+13]d knapsack W(1
d)

p-system
1

p+1d
1
d

e�1

1
p+1+e

O(1
ed

log(D))

1
2(p+1) (R) 2

1
2+4(p+1) (R) 2 [Bar+15]

p-system + –
d knapsacks O

� 1/(p+2d+1)p
min(m,r[z])

�
2 O

�(p�e)/(p+1)(2p+2d+1)p
min(m,r[z])

�
2 [Ch. 5, 6]

that covers all the data points), Berger et al. [BRS89] provided the first distributed
solution with an approximation guarantee similar to that of the greedy procedure.
Their proposed method closely approximate the greedy algorithm by bucketing utility
values by factors of (1+ e), and employing randomized techniques to select appropriate
subsets in each bucket in parallel. It requires O(log5 M) rounds of MapReduce, where
M � n is the sum of the sizes of the sets. Blelloch et al. [BPT11] improved their result
in terms of the number of rounds required by a MapReduce-based implementation to
O(log3 M), by utilizing the same bucketing idea, and then selecting maximal nearly
independent collection of sets in each bucket.

Very recently, Stergiou et al. [ST15] introduced an efficient distributed algorithm for
set cover instances of massive size in O(log D) rounds of MapReduce, where D is the
cardinality of the largest set. They adopted a variation of the bucketing approach in
order to split the input into chunks. In each bucket, the sets containing a specific number
of undiscovered elements are filtered in parallel on each machine. This elements are
then merged on the central machine, and the solution is augmented sequentially from
the filtered elements with considerable marginal gain.

31

Chapter 2. Background and Related Work

Another variant of the set cover problem that has received some attention is maximum
k-cover (i.e., cover as many elements as possible from the ground set by choosing at
most k subsets) for which Chierichetti et al. [CKT10] introduced a distributed solution
with a (1� 1/e � e) approximation guarantee in O(poly(e) log3 mn). Here m is the
number of sets, and n is the size of the ground set. They use similar bucketing idea of
[BRS89], but benefit from a randomized method for selection of sets in each bucket.
However, the required number of passes over the data makes it impractical for large
datasets.

In Chapter 6 of this thesis, we will present the first efficient algorithms to address the
general distributed submodular cover problem and propose an algorithm D isCover

for approximately solving it. Subsequently, in Chapter 7, we will propose a fast dis-
tributed algorithm, FastCover, that truly scales to massive data and produces a
solution that is competitive with that of the greedy algorithm.

2.3.2 Streaming Algorithms

Another natural approach to scale up submodular optimization, is to use streaming
algorithms. In fact, in applications where data arrives at a pace that does not allow
even storing it, this is the only viable option. This approach not only avoids the need
for vast amounts of random-access memory but also provides predictions in a timely
manner based on the data seen so far, facilitating real-time analytics.

Streaming submodular maximization. The first algorithm, Stream -Greedy, for
submodular maximization on data streams is presented by Gomes and Krause [GK10].
Their multi-pass algorithm provides a 1/2� e approximation guarantee with O(k)
memory under strong assumptions on the way the data is generated. However, their
approach makes strong assumptions about the way the data stream is generated, and
unless their assumptions are met, it is fairly easy to construct examples where the
performance of their algorithm degrades quickly when compared to the optimum
solution. Furthermore, the update time (computational cost to process one data point)
of their approach is W(k), which is prohibitive for large k.

The work of Kumar et al. [Kum+13] claims a multi-pass and a single-pass streaming
algorithm. The claimed guarantees for the single pass algorithm depend on the maxi-

32

2.3. Large Scale Submodular Maximization

mum increase in the objective any element can offer (Thm. 27, [Kum+13]), while the
multi-pass algorithm has a memory requirement depending on the data size n.

Badanidiyuru et al. [Bad+14] proposed the first efficient streaming algorithm with
constant factor 1/2� e approximation guarantee to the optimum solution, requiring
only a single pass through the data, and memory k log(k)/e independent of data size.
The idea is to update the estimation of the optimal solution while receiving new
elements, and construct multiple solutions in parallel. New elements are added to each
solution if they marginal value is above the corresponding threshold for that solution.

Chakrabarti el al. [CK14] developed a single pass algorithm, still for maximizing a
monotone submodular function, with 1/4p approximation guarantee for handling more
general constraints such as intersections of p matroids. To deal with the constraints,
they consider deleting elements with smaller marginal gains from the solution when
adding a new element is infeasible. The required memory is unbounded and increases
polylogarithmically with the size of the data. They further provided a better approx-
imation guarantee, namely, 1/(p + 1 + e), at the cost of O(e�3 log p) passes over the
stream.

Finally, Chekuri et al. [CGQ15] presented deterministic and randomized algorithms for
maximizing monotone and non-monotone submodular functions subject to a broader
range of constraints, namely p-matchoids. They combine the idea of estimating the
value of the optimal solution on the fly [Bad+14], and switching the new element with
a candidate set of elements in the solution by comparing their marginal gain, when
adding a new element is infeasible [CK14]. For maximizing a monotone submodular
function, their proposed method gives a 1/4p approximation using O(k log k/e

2) mem-
ory (k is the size of the largest feasible solution). For non-monotone functions, they
provide a deterministic 1/(9p + 1) approximation using the 1/(p + 1) offline approxi-
mation of [NWF78b] under a p-matchoid constraint. Their randomized algorithm uses
O(k log k/e

2) memory and O(pk2 log k/e

2) update time, and provides a 1/(4p + 1/tp)

approximation in expectation, where tp = (1 � e)(2 � o(1))/(ep) [FNS11a] is the
approximation guarantee for maximizing a non-negative submodular function in the of-
fline setting. Table 2.3 summarizes the approximation guarantees, memory and update
time of the single pass streaming algorithms.

Very recently, submodular optimization over sliding window model –where we are
interested in a solution that considers only the last W items– has been studies. In
particular, for monotone submodular maximization under cardinality constraint, Epasto

33

Chapter 2. Background and Related Work

Table 2.3: Approximation guarantees, memory and update time for single-pass monotone and
non-monotone streaming submodular maximization under different constraints. Bounds for
randomized algorithms that hold in expectation are marked (R). a, M, T is the approximation
guarantee, memory, and update time of the streaming monotone submodular maximization
under a collection of independent systems and d knapsack constraints.

Constraint Approximation Memory Update time

M
on

ot
on

e Cardinality 1/2� e k/e log(nd) ? [Kum+13]
1/2� e O(k log(k)/e) O(log(k)/e)) [Bad+14]

p matroid 1/4p O((n log(n)) W(np) [CK14]
p matchoid 1/4p O(k log(k)

e

2) O(pk log(k)
e

2)

[CGQ15]

N
on

-n
eg

at
iv

e

cardinality (1�e)
(2+e) (R)

O(k log(k)
e

2) O(pk2 log(k)
e

2)1 matroid (1�e)
(4+e) (R)

p matroid (1�e)(p�1)
5p2�4p+e

(R)

p matchoid (1�e)(2�o(1))
(8+e)p (R)

Independence
systems +
d knapsack

(1�e)
1+ 2p

a

+ 1
a

+2d(1+
p

a) O(M log(k)
e

p
a

) O(T log(k)
e

p
a

) [Ch. 9]

et al. [Epa+16] proposed a 1/3� e approximation algorithm with O(k log2(kF)/e

2)

memory, where F is the ratio between maximum and minimum values of the submod-
ular function. In parallel, [CNZ16] proposed a 1/(4p + (1 + e)16p2)-approximation
algorithm using O(k/e log M) space for monotone submodular maximization subject
to p-matroid constraints, where M is an upperbound on the value of the optimum
solution.

In Chapter 9, we will develop the first single pass streaming algorithm, Streaming

Local Search, for maximizing a general submodular function subject to intersection
of a collection of independence systems and d knapsack constrains. Subsequently, in
Chapter 10, we will introduce the dynamic deletion-robust streaming submodular
maximization problem, when elements selected for the summary can be deleted at
any time. We will then develop the first resilient streaming algorithm, called Robust -
Streaming, with a constant factor approximation guarantee for this problem. Unlike
the centralized deletion-robust approaches introduced in Section 2.2.3 that aim to con-
struct solutions that are still good representatives after deletions, Robust -Streaming

34

2.3. Large Scale Submodular Maximization

is able to update the summary immediately after each deletion in the streaming setting.

Submodular secretary. There is further related work on the submodular secretary prob-
lem [Gup+10a; BHZ10]. While also processing elements in a stream, these approaches
are different in two important ways: (i) they work in the stronger model where they
must either commit to or permanently discard newly arriving elements; (ii) they require
random arrival of elements, and have a worse approximation ratio ( 0.1 vs. 1/2� e).
If elements arrive in arbitrary order, performance can degrade arbitrarily. Some ap-
proaches also require large (i.e., O(n)) memory [Gup+10a].

2.3.3 Fast Centralized Algorithms

Previously, we have seen that centralized algorithms for submodular maximization are
computationally intractable for very large datasets. Moreover, even smaller sized data
can be prohibitive, particularly when evaluating the function itself is computationally
costly [LB11a; Wei+13]. Hence, developing fast centralized algorithms for submodular
maximization has attracted increasing attention.

Constrained monotone submodular maximization. Motivated by extremely large-
scale machine learning problems, there have been recent efforts to further accelerate
monotone submodular maximization algorithms.

In particular, Wei et al. [WIB14] proposed a multistage algorithm, Multi-Greedy,
that tries to decrease the running time of Lazy -Greedy by approximating the un-
derlying submodular function with a set of (sub)modular functions that can be poten-
tially evaluated less expensively. This approach is effective only for those submodular
functions that can be easily decomposed and approximated. Badanidiyuru and Von-
drak [BV14] proposed a variant of the continuous greedy algorithm, that provides an
O(n2/e

4 log2(n/e))-time (1� 1/e� e)-approximation for a matroid constraint, and a
O(n2(1/e log n)poly(1/e))-time (1� 1/e� e)-approximation for a knapsack constraint.
Previous variants and alternative techniques were known to use at least Õ(n4) oracle
calls.

In Chapter 12, we will provide a linear-time algorithm for maximizing a general
monotone submodular function subject to a cardinality constraint. We show that our

35

Chapter 2. Background and Related Work

Table 2.4: Comparison of running times and approximation ratios for non-monotone submodular
maximization under different constraints.

Constraint Previous new [Ch. 13]
Approximation Complexity Approximation Complexity

p-system + - -

(1+e)(p+1)(2p+2d+1)
p O(nrp log(n)

e

)

d knapsacks
1-matroid + e+small const.+e

poly(n)·exp(d, e)d knapsacks [Buc+; CVZ]
p-matroid + p/0.19 + e

poly(n)·exp(p, d, e)d knapsacks [CVZ]

p-system (p + 1)(3p + 3)/p
O(nrp)

(p+1)(2p+1)
p O(nrp)

[Gup+10b]

p-matroid p+1+ 1
(p�1)+e

poly(n)·exp(p, e)
[LSV10]

randomized algorithm, Stochastic -Greedy, can achieve a (1� 1/e� e) approxi-
mation guarantee, in expectation, to the optimum solution in time linear in the size of
the data and independent of the cardinality constraint. Stochastic -Greedy can be
easily integrated into existing distributed methods, e.g. for solving the sub-problems
in each stage of Multi-Greedy to develop a faster multistage method, or in our
distributed framework that will be described in Chapter 5. In general, any (distributed)
algorithm that uses Lazy -Greedy as a sub-routine, can directly benefit from our
method and provide even more efficient large-scale algorithmic frameworks.

Constrained non-monotone submodular maximization. While maximizing mono-
tone submodular functions has been applied to many machine learning applications,
the problem of maximizing non-monotone submodular functions has not found as
many applications. Part of the reason is that the existing algorithms for handling
generic constraints such as both matroid and knapsack constraints are very slow. A
body of work [FNS11b; CVZ; Gup+10b; LSV10; FMV11; Buc+15] has found algorithms
with good approximation ratios, albeit with running times of very high polynomial.
A comparison can be found in Table 2.4. In particular, for 1-matroid and d knapsack
constraints, a (e + e)-approximation follows from applying results from [FNS11b] to
contention resolution techniques from [CVZ]. Feldman, Naor, and Schwartz [FNS11b]
don’t formalize this as a theorem but state it in the introduction. Gupta et al. [Gup+10b]
and Gupta, Nagarajan, and Ravi [GNR15] further showed a O(p) approximation for p-

36

2.3. Large Scale Submodular Maximization

matroid and d knapsack constraints. This result is summarized in Table 1 of [CVZ] as a
(p/0.19+ e)-approximation. For a p-system constraint without any knapsack constraint,
the approximation ratio of (p + 1)(3p + 3)/p can be obtained by substituting a = 1/2
approximation for unconstrained maximization into Theorem 3.3 of [Gup+10b]. Finally,
p-matroid approximation ratio of p + 1 + 1/(p� 1) + e is provided by Theorem 4 of
[LSV10].

It is worth mentioning that in addition to the above results, recently Chekuri et al.
[CJV15] developed a continuous-time framework that provides a (1� 1/e� e) approxi-
mation for maximizing a submodular function under packing constraints. Although
their algorithm gives a O(n2) runtime for the fractional solution to the multi-linear ex-
tension, converting the fractional solution to an intergral solution requires enumerating
sets of size poly(1/e). This results in a run time of npoly(1/e), which is impractical for
most real-world scenarios. In Chapter 13, we will develop the first practical algorithm,
Fantom, for maximizing non-monotone submodular functions with very generic
p-system and d knapsack constraints.

37

3
Applications of Large Scale

Submodular Summarization

In this chapter, we discuss concrete problem instances, with their corresponding sub-
modular objective functions f , where the size of the datasets often requires a large-scale
solution for the underlying submodular maximization.

3.1 Nonparametric Learning

Nonparametric learning (i.e., learning of models whose complexity may depend on
the dataset size n) is notoriously hard to scale to large datasets. A concrete instance of
this problem arises from training Gaussian processes or performing MAP inference in
Determinantal Point Processes, as considered below. Similar challenges arise in many
related learning methods, such as training kernel machines, when attempting to scale
them to large datasets.

3.1.1 Active Set Selection in Sparse Gaussian Processes (GPs).

Formally a GP is a joint probability distribution over a (possibly infinite) set of ran-
dom variables XV , indexed by the ground set V, such that every (finite) subset XS for

39

Chapter 3. Applications of Large Scale Submodular Summarization

S = {e1, . . . , es} is distributed according to a multivariate normal distribution. More
precisely, we have

P(XS = xS) = N (XS; µS, SS,S),

where µ = (µe1 , . . . , µes) and SS,S = [Kei,ej] are prior mean and covariance matrix,
respectively. The covariance matrix is parametrized via a positive definite kernel K(·, ·).
As a concrete example, when elements of the ground set V are embedded in a Euclidean
space, a commonly used kernel in practice is the squared exponential kernel defined as
follows:

K(ei, ej) = exp(�||ei � ej||22/h2).

Gaussian processes are commonly used as priors for nonparametric regression. In GP
regression, each data point e 2 V is considered a random variable. Upon observations
yA = xA + nA (where nA is a vector of independent Gaussian noise with variance
s

2), the predictive distribution of a new data point e 2 V is a normal distribution
P(Xe | yA) = N (µe|A, S2

e|A), where mean µe|A and variance s

2
e|A are given by

µe|A = µe + Se,A(SA,A + s

2I)�1(xA � µA), (3.1.1)

s

2
e|A = s

2
e � Se,A(SA,A + s

2I)�1SA,e. (3.1.2)

Evaluating (3.1.1) and (3.1.2) is computationally expensive as it requires solving a linear
system of |A| variables. Instead, most efficient approaches for making predictions in
GPs rely on choosing a small–so called active–set of data points. For instance, in the
Informative Vector Machine (IVM) one seeks a set S such that the information gain,
defined as

f (S) = I(YS; XV) = H(XV)� H(XV |YS) =
1
2

log det(I + s

�2SS,S) (3.1.3)

is maximized. It can be shown that this choice of f is monotone submodular [KG05b].

3.1.2 Inference for Determinantal Point Processes.

Determinantal Point Processes (DPPs) [Mac75] are distributions over subsets with a
preference for diversity, i.e., there is a higher probability associated with sets containing
dissimilar elements. They have been successfully applied to video summarization

40

3.2. Exemplar Based Clustering

[Gon+14], as well as problems like document summarization [KT+12] and information
retrieval [GKT12a].

Formally, a point process P on a set of items V = {1, 2, ..., N} is a probability measure
on 2V (the set of all subsets of V). P is called determinantal point process if for every
S ✓ V we have:

P(S) µ det(LS), (3.1.4)

where L is a positive semidefinite kernel matrix, and LS ⌘ [Lij]i,j2S, is the restriction of L
to the entries indexed by elements of S (we adopt that det(L∆) = 1). The normalization
constant can be computed explicitly from the following equation

Â
S

det(LS) = det(I + L), (3.1.5)

where I is the N ⇥ N identity matrix. Intuitively, the kernel matrix determines which
items are similar and therefore less likely to appear together.

To find the most diverse and informative subset, we need to find arg maxS2I det(LS),
where I ⇢ 2V is a given family of feasible solutions. This problem is NP-hard, as the
total number of possible subsets is exponential [KLQ95]. However, the objective function
is log-submodular, i.e. f (S) = log det(LS) is a (non-monotone) submodular function
[KT+12]. Hence, MAP inference in large DPPs is another application of submodular
maximization.

3.2 Exemplar Based Clustering

Suppose we wish to select a set of exemplars, that best represent a massive dataset.
One approach for finding such exemplars is solving the k-medoid problem [KR09],
which aims to minimize the sum of pairwise dissimilarities between exemplars and
elements of the dataset. More precisely, let us assume that for the dataset V we are
given a nonnegative function l : V ⇥V ! R (not necessarily assumed symmetric, nor
obeying the triangle inequality) such that l(·, ·) encodes dissimilarity between elements
of the underlying set V. Then, the cost function for the k-medoid problem is:

L(S) =
1
|V| Â

v2V
min
e2S

l(e, u). (3.2.1)

41

Chapter 3. Applications of Large Scale Submodular Summarization

Finding the subset
S⇤ = arg min

S2I
L(S)

that minimizes the cost function (3.2.1) is NP-hard. However, by introducing an auxiliary
element e0, a.k.a. phantom exemplar, we can turn L into a monotone submodular
function [KG10]

f (S) = L({e0})� L(S [{e0}). (3.2.2)

In words, f measures the decrease in the loss associated with the set S versus the loss
associated with just the auxiliary element. We begin with a phantom exemplar and try
to find the active set that together with the phantom exemplar reduces the value of
our loss function more than any other set. Technically, any point e0 that satisfies the
following condition can be used as a phantom exemplar:

max
v02V

l(v, v0)  l(v, e0), 8v 2 V \ S.

This condition ensures that once the distance between any v 2 V \ S and e0 is greater
than the maximum distance between elements in the dataset, then L(S [{e0}) =

L(S). As a result, maximizing f (a monotone submodular function) is equivalent to
minimizing the cost function L.

3.3 Dominating Sets in Social Networks

Probably the easiest way to define the influence of a subset of users on other members
of a social network is by the dominating set problem. Here, we assume that there is a
graph G = (V, E) where V and E indicate the set of nodes and edges, respectively. Let
N (S) denote the neighbors of S. Then, we define the coverage size of S by

f (S) = |N (S) [S|, (3.3.1)

It is easy to see that f is a monotone submodular function. The dominating set is the
problem of choosing a small subset of nodes S such that it covers a desired fraction of
|V| [Lat+11].

42

3.4. Sensor Placement

3.4 Sensor Placement

When monitoring spatial phenomena, we want to deploy a limited number of sensors
in an area in order to quickly detect contaminants. Thus, the problem would be to select
a subset of all possible locations S ✓ V to place sensors. Consider a set of intrusion
scenarios I where each scenario i 2 I defines the introduction of a contaminant at a
specified point in time. For each sensor s 2 S and scenario i, the detection time, T(s, i),
is defined as the time it takes for s to detect i. If s never detects i, we set T(s, i) = •.
For a set of sensors S, detection time for scenario i could be defined as

T(S, i) = min
s2S

T(s, i). (3.4.1)

Depending on the time of detection, we incur penalty pi(t) for detecting scenario i at
time t. Let pi(•) be the maximum penalty incurred if the scenario i is not detected at
all. Then, the penalty reduction for scenario i can be defined as

R(S, i) = pi(•)� pi(T(S, i)). (3.4.2)

Having a probability distribution over possible scenarios, we can calculate the expected
penalty reduction for a sensor placement S as

f (S) = Â
i2I

P(i)R(S, i). (3.4.3)

This function is montone submodular [Kra+08a].

3.5 Summarizing Image Collections

Given a collection of images, one might be interested in finding a subset that best
summarizes and represents various aspects of the collections with minimal redundancy.
This problem has recently been addressed via submodular maximization. Fidelity and
diversity are two general properties that characterize good image collection summarizes,
and can be naturally characterized by submodularity. Tschiatschek et al. [Tsc+14] de-
signed several submodular objectives F1, . . . , Fl, which quantify different characteristics
that good summaries should have. These functions include:

43

Chapter 3. Applications of Large Scale Submodular Summarization

Facility Location that quantifies the coverage of a subset of elements S ✓ V by the sum
of similarities s(., .) between elements of the dataset i 2 V and their closest element in
the summary j 2 S.

F(S) = Â
i2V

max
j2S

s(i, j). (3.5.1)

Sum Coverage that finds a representative subset that is most similar to the whole data,
by maximizing the sum between pairwise similarities s(., .) between all elements of the
summary and the data elements.

F(S) = Â
i2V

Â
j2S

s(i, j). (3.5.2)

Thresholded Sum Coverage that thresholds the inner sum to keep any element from
being overly covered by S

F(S) = Â
i2V

min
✓

Â
j2S

s(i, j), a Â
i2V

s(i, j)
◆

. (3.5.3)

Feature Functions that use the notion of visual words to measure the coverage of visual
features by the images in summary S:

F(S) = Â
w2W

g(Â
i2V

bi,w), (3.5.4)

where bi,w is a bag-of-words representation of image i indexed by the set of visual words
W, and g(·) is a monotone non-decreasing concave function. A visual bag-of-words
vocabulary can be constructed based on e.g. SIFT descriptors [Low99], color descriptors
[WDJ11], and raw image patches [FPZ03].

Clustered Diversity that rewards selecting a diverse summary from different clusters
P1, P2, · · · , Pk obtained by some clustering algorithm.

F(S) = Â
j2k

g(S \ Pi), (3.5.5)

where g(.) is a monotone submodular function.

Penalty based diversity that penalizes the sum of similarities between elements of the

44

3.6. Movie Recommendation

summary S.
F(S) = �Â

i2S
Â

j2S,j�i
s(i, j). (3.5.6)

Then, they optimize a weighted combination of such functions

f (S) =
l

Â
i=1

wiFi(S), (3.5.7)

where weights are non-negative, i.e., wi � 0, and learned via a large-margin struc-
tured prediction. Here, computing the weighted combination of such large number of
functions makes the function evaluation considerably expensive.

3.6 Movie Recommendation

Consider a movie recommender system that has to provide a short list of representative
movies according to the users’ interests. To this end, we represent each movie by a
vector consist of users’ ratings. Such a representation can be easily obtained by using
existing low-rank matrix completion techniques [CR12] that provide a complete rating
matrix Mk⇥n based on few ratings of k users for n movies in the ground set V. By
forming M, we can measure the similarity si,j between movies i and j through the inner
product between the corresponding columns. Note that a movie can be a member of
different categories (e.g., a movie can be both drama and comedy). We denote by G(i)
the genres of movie i 2 V . We also let Vg denote the set of movies from genre g. Clearly,
two genres g, g0 may overlap, i.e., Vg \Vg0 6= ∆. A sensible submodular utility function
that we can use in order to score the quality of the selected movies is

f (S) = Â
i2V

Â
j2S

si,j � l Â
i2S

Â
j2S

si,j, (3.6.1)

for some 0  l  1. Note that for l = 1 the above function is the cut-function. This
utility function is non-negative and non-monotone. The first term is the sum-coverage
function (to capture coverage) and the second term penalizes similarity within S (to
capture diversity). Such functions have been previously used in document [LB11b] and
scene summarization [SSS07]. Another possible way to compute the similarity between
a movie i and the dataset V is to consider only movies which have a common genre

45

Chapter 3. Applications of Large Scale Submodular Summarization

with i as follows

f (S) = Â
j2S

Â
g2G(j)

Â
i2Vg

si,j � l Â
j2S

Â
g2G(j)

Â
i2Vg\S

si,j, (3.6.2)

which is again a non-negative and non-monotone submodular function.

3.7 Diversified Image summarization

Here, we have a collection of images V, and we want to find a concise and diverse
summary of all the images. For the utility function, we can use

f (S) = Â
i2V

max
j2S

di,j �
1
|V| Â

i2S
Â
j2S

di,j, (3.7.1)

where di,j determines the similarity of image i to image j. There are many ways to
determine the similarity between images such as cosine similarity or a distance metric.
The first term is the facility location objective function (for coverage) and the second
term is a dispersion function (for diversity). Facility location (see Eq. 3.5.1) has been
extensively used for image summarization [DF07b; GK10]. The above submodular
function is non-negative and non-monotone.

3.8 Revenue Maximization with Multiple Products

In this application, we consider the revenue maximization on a social network G =

(V, W) when multiple products from a basket Q that can be offered to each user i 2 V.
Here, we assume that W = [wij] represents the weight of edges. The goal is to offer
for free or advertise some of the products to a set of users S ✓ V such that through
their influence on others the revenue increases. Following [HMS08] model, a user’s
value vq

i for a product q is determined by the set of other users that own the product,
i.e., vq

i : 2V ! R+. The function vq
i (S) usually takes a concave graph model [HMS08;

Bab+13], i.e., for all i 2 V and S ✓ V \ {i}, we have

vq
i (S) = gq

i (Â
j2S[{i}

wij) (3.8.1)

46

3.9. Other Examples

where gq
i : R+ ! R+ is a concave function (depending on the product q 2 Q) and wij

are chosen independently from a distribution µ. The revenue of a set S for a product
q 2 Q is defined as

f q(S) = Â
i2V\S

vq
i (S) = Â

i2V\S
gq

i (Â
j2S[{i}

wij). (3.8.2)

Note that f q is a non-monotone submodular function. Each product q 2 Q can be
advertised to a potentially different subset Sq ✓ V. The total revenue, that we try to
maximize, is Âq2Q f q(Sq) which is again a non monotone submodular function.

3.9 Other Examples

Numerous other real world problems in machine learning can be modeled as maximiz-
ing a monotone submodular function subject to appropriate constraints (e.g., cardinality,
matroid, knapsack). To name a few, specific applications that have been considered
range from efficient content discovery for web crawlers and multi topic blog-watch
[CKT10], over document summarization [LB11b] and speech data subset selection
[Wei+13], to outbreak detection in social networks [Les+07], online advertising and
network routing [DVV03], and inferring network of influence [GRLK10]. In all such
examples, the size of the dataset (e.g., number of webpages, size of the corpus, number
of blogs in the blogosphere, number of nodes in social networks) is massive, thus our
developed methods offers a scalable approach, in contrast to the standard centralized
algorithms, for such problems.

47

Chapter 3. Applications of Large Scale Submodular Summarization

48

Part II

Distributed Algorithms

49

4
Overview of part II

In Part II of this Thesis, we consider distributed methods for submodular summa-
rization. We start by discussing distributed submodular maximization for identifying
representative elements in large datasets, and then we turn our attention to the problem
of distributed submodular cover for succinctly summarizing massive data.

Distributed submodular maximization. In section 5, we consider the problem of
submodular function maximization in a distributed fashion. We develop a simple,
two-stage protocol GreeD i, that is easily implemented using MapReduce style com-
putations. We theoretically analyze our approach, and show that under certain natural
conditions, performance close to the centralized approach can be achieved. We begin
with monotone submodular maximization subject to a cardinality constraint, and then
extend this approach to obtain approximation guarantees for (not necessarily monotone)
submodular maximization subject to more general constraints including matroid or
knapsack constraints. In our extensive experiments, we demonstrate the effectiveness
of our approach on several applications, including sparse Gaussian process inference
and exemplar based clustering on tens of millions of examples using Hadoop.

Distributed submodular cover. So far, we have considered the problem of identifying
representative elements from large datasets. However, in many applications we need to
find a subset, ideally as small as possible, that well represents a massive dataset. I.e.,

51

Chapter 4. Overview of part II

its corresponding utility, measured according to a suitable utility function, should be
comparable to that of the whole dataset. In Chapter 6, we formalize this challenge as a
submodular cover problem, and develop the first distributed algorithm – D isCover –
for submodular set cover that is easily implementable using MapReduce-style compu-
tations. We theoretically analyze our approach, and present approximation guarantees
for the solutions returned by D isCover. We also study a natural trade-off between the
communication cost and the number of rounds required to obtain such a solution. In
our extensive experiments, we demonstrate the effectiveness of our approach on several
applications, including active set selection, exemplar based clustering, and vertex cover
on tens of millions of data points using Spark.

Fast distributed submodular cover for public-private summarization. In chapter 7,
we introduce the public-private framework of data summarization motivated by privacy
concerns in personalized recommender systems and online social services. Such systems
have usually access to massive data generated by a large pool of users. A major fraction
of the data is public and is visible to (and can be used for) all users. However, each
user can also contribute some private data that should not be shared with other users
to ensure her privacy. The goal is to provide a succinct summary of massive dataset,
ideally as small as possible, from which customized summaries can be built for each
user, i.e. it can contain elements from the public data (for diversity) and users’ private
data (for personalization).

To formalize the above challenge, we model the data summarization targeted to each
user as an instance of a submodular cover problem. However, for a large pool of users,
it is too time consuming to find such summaries separately. Instead, we develop a
fast distributed algorithm for submodular cover, FastCover, that provides a suc-
cinct summary in one shot and for all users. We show that the solution provided by
FastCover is competitive with that of the centralized algorithm with the number of
rounds that is exponentially smaller than state of the art results. Moreover, we have
implemented FastCover with Spark to demonstrate its practical performance on
a number of concrete applications, including personalized location recommendation,
personalized movie recommendation, and dominating set on tens of millions of data
points and varying number of users.

Summary of contributions. The key contributions of this part of the Thesis are:

52

1. We consider submodular summarization in a distributed setting, where the size
of the data doesn’t allow for centralized solution. We develop novel, efficient
approximation algorithms:

• GreeD i, a two-stage distributed submodular maximization framework for
identifying representative elements from massive data,

• D isCover, a distributed submodular cover algorithm for succinctly sum-
marizing massive data, and

• FastCover, a faster distributed submodular cover algorithm for public-
private data summarization.

2. We theoretically analyze our approaches, and provide approximation guarantees
for the quality of the distributed solutions.

3. For distributed submodular cover algorithms, we also study the natural trade-off
between the communication cost and the number of rounds required to provide
the theoretical guarantees.

4. We implement our distributed algorithms with Hadoop and Spark, and demon-
strate the performance of our algorithms on several real-world problems, including

• summarizing 80,000,000 Tiny Images,

• summarizing 45,811,883 user visits from the Featured Tab of the Today
Module on Yahoo! Front Page,

• finding dominating set in Friendster social network with 65,608,366 nodes
and 1,806,067,135 edges, and

• movie recommendation based on 20,000,263 users’ ratings from 138,493 users
of the MovieLens database,

and show that performance close to the centralized approach can be achieved.

53

5
Distributed Submodular

Maximization

As we discussed in Part I, the simple greedy algorithm produces solutions competi-
tive with the optimal (intractable) solution [NWF78a], for maximizing a submodular
function. However, such greedy algorithms or their accelerated variants [e.g., lazy eval-
uations; Min78; Les+07, and stochastic methods; Chapter 12] do not scale well when
the dataset is massive. As data volumes in modern applications increase faster than the
ability of individual computers to process them, we need to look at ways to adapt our
computations using parallelism.

MapReduce [DG08] is arguably one of the most successful programming models for
reliable and efficient parallel computing. It works by distributing the data to indepen-
dent machines: map tasks redistribute the data for appropriate parallel processing and
the output then gets sorted and processed in parallel by reduce tasks.

To perform submodular optimization in MapReduce, we need to design suitable parallel
algorithms. The greedy algorithms that work well for centralized submodular optimiza-
tion do not translate easily to parallel environments. The algorithms are inherently
sequential in nature, since the marginal gain from adding each element is dependent
on the elements picked in previous iterations. This mismatch makes it inefficient to
apply classical algorithms directly to parallel setups.

55

Chapter 5. Distributed Submodular Maximization

In this chapter, we develop a distributed procedure for maximizing submodular func-
tions, that can be easily implemented in MapReduce. Our strategy is to partition the
data (e.g., randomly) and process it in parallel. In particular:

• We present a simple, parallel protocol, called GreeD i for distributed submodular
maximization subject to cardinality constraints. It requires minimal communica-
tion, and can be easily implemented in MapReduce style parallel computation
models.

• We show that under some natural conditions, for large datasets the quality of the
obtained solution is provably competitive with the best centralized solution.

• We discuss extensions of our approach to obtain approximation algorithms for
(not-necessarily monotone) submodular maximization subject to more general
types of constraints, including matroid and knapsack constraints.

• We implement our approach for exemplar based clustering and active set selection
in Hadoop, and show how our approach allows to scale exemplar based clustering
and sparse Gaussian process inference to datasets containing tens of millions of
points.

• We extensively evaluate our algorithm on several machine learning problems,
including exemplar based clustering, active set selection and finding cuts in
graphs, and show that our approach leads to parallel solutions that are very
competitive with those obtained via centralized methods (98% in exemplar based
clustering, 97% in active set selection, 90% in finding cuts).

This chapter is organized as follows. In Section 5.1, we formalize the distributed sub-
modular maximization problem under cardinality constraints, and introduce naive
approaches toward solving the problem. We subsequently present our GreeD i al-
gorithm in Section 5.2, and prove its approximation guarantees. We then consider
maximizing a submodular function subject to more general constraints in Section 5.3.
We also present computational experiments on very large datasets in Section 5.4, show-
ing that in addition to its provable approximation guarantees, our algorithm provides
results close to the centralized greedy algorithm. We conclude in Section 5.5.

56

5.1. Submodular Maximization

Figure 5.1: Cluster exemplars (left column) discovered by our distributed algorithm GreeDi
described in Section 5.2 applied to the Tiny Images dataset [TFF08], and a set of representatives
from each cluster.

5.1 Submodular Maximization

In this section, we first review how to greedily maximize submodular functions. We
then describe the distributed submodular maximization problem, the focus of this chapter.
Finally, we discuss two naive approaches towards solving this problem.

5.1.1 Greedy Submodular Maximization

Suppose that we have a large dataset of images, e.g. the set of all images on the Web
or an online image hosting website such as Flickr, and we wish to retrieve a subset
of images that best represents the visual appearance of the dataset. Collectively, these
images can be considered as exemplars that summarize the visual categories of the dataset
as shown in Figure 5.1.

One way to approach this problem is to formalize it as the k-medoid problem. Given a
set V = {e1, e2, . . . , en} of images (called ground set) associated with a (not necessarily
symmetric) dissimilarity function, we seek to select a subset S ✓ V of at most k
exemplars or cluster centers, and then assign each image in the dataset to its least
dissimilar exemplar. If an element e 2 V is assigned to exemplar v 2 S, then the cost
associated with e is the dissimilarity between e and v. The goal of the k-medoid problem
is to choose exemplars that minimize the sum of dissimilarities between every data
point e 2 V and its assigned cluster center.

Solving the k-medoid problem optimally is NP-hard, however we can transform this
problem, and many other summarization tasks, to the problem of maximizing a mono-

57

Chapter 5. Distributed Submodular Maximization

tone submodular function subject to a cardinality constraint (c.f. Section 3)

max
S✓V

f (S) s.t. |S|  k. (5.1.1)

For any non-negative and monotone submodular function f , the greedy heuristic that
iteratively augments the current solution with an element of maximum incremental
value

v⇤ = arg max
v2V\A

f (A [{v}), (5.1.2)

always produces a solution Agc[k] of size k that achieves at least a constant factor
(1� 1/e) of the optimal solution.

f (Agc[k]) � (1� 1/e) max
|A|k

f (A).

This result can be easily extended to f (Agc[l]) � (1� e�l/k)max|A|k f (A), where l
and k are two positive integers [see, KG13].

5.1.2 Distributed Submodular Maximization

In many today’s applications where the size of the ground set |V| = n is very large
and cannot be stored on a single computer, running the standard greedy algorithm
or its variants [e.g., lazy evaluations, Min78; Les+07, and stochastic methods, Chapter
12] in a centralized manner is infeasible. Hence, we seek a solution that is suitable
for large-scale parallel computation. The greedy method described above is in general
difficult to parallelize, since it is inherently sequential: at each step, only the object
with the highest marginal gain is chosen and every subsequent step depends on the
preceding ones.

Concretely, we consider the setting where the ground set V is very large and cannot
be handled on a single machine, thus must be distributed among a set of m machines.
While there are several approaches towards parallel computation, in this chapter we
consider the following model that can be naturally implemented in MapReduce. The
computation proceeds in a sequence of rounds. In each round, the dataset is distributed
to m machines. Each machine i carries out computations independently in parallel
on its local data. After all machines finish, they synchronize by exchanging a limited

58

5.1. Submodular Maximization

amount of data (of size polynomial in k and m, but independent of n). Hence, any
distributed algorithm in this model must specify: 1) how to distribute V among the m
machines, 2) which algorithm should run on each machine, and 3) how to communicate
and merge the resulting solutions.

In particular, the distributed submodular maximization problem requires the specifica-
tion of the above steps in order to implement an approach for submodular maximization.
More precisely, given a monotone submodular function f , a cardinality constraint k,
and a number of machines m, we wish to produce a solution Ad[m, k] of size k such
that f (Ad[m, k]) is competitive with the optimal centralized solution max|A|k,A✓V f (A).

While in principle multiple rounds of computation can be realized, in practice, expensive
synchronization is required after each round. Hence, we are interested in distributed
algorithms that require few rounds of computation.

5.1.3 Naive Approaches to Distributed Submodular Maximization

One way to solve problem 5.1.1 in a distributed fashion is as follows. The dataset is
first partitioned (randomly, or using some other strategy) onto the m machines, with
Vi representing the data allocated to machine i. We then proceed in k rounds. In each
round, all machines–in parallel–compute the marginal gains of all elements in their sets
Vi. Next, they communicate their candidate to a central processor, who identifies the
globally best element, which is in turn communicated to the m machines. This element
is then taken into account for computing the marginal gains and selecting the next
elements. This algorithm (up to decisions on how break ties) implements exactly the
centralized greedy algorithm, and hence provides the same approximation guarantees
on the quality of the solution. Unfortunately, this approach requires synchronization
after each of the k rounds. In many applications, k is quite large (e.g., tens of thousands),
rendering this approach impractical for MapReduce style computations.

An alternative approach for large k would be to greedily select k/m elements indepen-
dently on each machine (without synchronization), and then merge them to obtain
a solution of size k. This approach that requires only two rounds (as opposed to k),
is much more communication efficient, and can be easily implemented using a sin-
gle MapReduce stage. Unfortunately, many machines may select redundant elements,
and thus the merged solution may suffer from diminishing returns. It is not hard to

59

Chapter 5. Distributed Submodular Maximization

construct examples for which this approach produces solutions that are a factor W(m)

worse than the centralized solution.

In Section 5.2, we introduce an alternative protocol GreeD i, which requires little com-
munication, while at the same time yielding a solution competitive with the centralized
one, under certain natural additional assumptions.

5.2 The GreeD i Approach for Distributed Submodular
Maximization

In this section we present our main results. We first provide our distributed solution
GreeD i for maximizing submodular functions under cardinality constraints. We then
show how we can make use of the geometry of data inherent in many practical settings
in order to obtain strong data-dependent bounds on the performance of our distributed
algorithm.

5.2.1 An Intractable, yet Communication Efficient Approach

Before we introduce GreeD i, we first consider an intractable, but communication–
efficient two-round parallel protocol to illustrate the ideas. This approach, shown in
Algorithm 1, first distributes the ground set V to m machines. Each machine then finds
the optimal solution, i.e., a set of cardinality at most k, that maximizes the value of f in
each partition. These solutions are then merged, and the optimal subset of cardinality k
is found in the combined set. We denote this distributed solution by f (Ad[m, k]).

As the optimum centralized solution Ac[k] achieves the maximum value of the submod-
ular function, it is clear that f (Ac[k]) � f (Ad[m, k]). For the special case of selecting
a single element k = 1, we have f (Ac[1]) = f (Ad[m, 1]). Furthermore, for modular
functions f (i.e., those for which f and � f are both submodular), it is easy to see
that the distributed scheme in fact returns the optimal centralized solution as well.
In general, however, there can be a gap between the distributed and the centralized
solution. Nonetheless, as the following theorem shows, this gap cannot be more than
1/ min(m, k). Furthermore, this result is tight.

60

5.2. The GreeD i Approach for Distributed Submodular Maximization

Algorithm 1: Inefficient Distributed Submodular Maximization

Input: Set V, #of partitions m, constraints k.
Output: Set Ad[m, k].

1: Partition V into m sets V1, V2, . . . , Vm.
2: In each partition Vi find the optimum set Ac

i [k] of cardinality k.
3: Merge the resulting sets: B = [m

i=1Ac
i [k].

4: Find the optimum set of cardinality k in B. Output this solution Ad[m, k].

Theorem 4. Let f be a monotone submodular function and let k > 0. Then, f (Ad[m, k])) �
1

min(m,k) f (Ac[k]). In contrast, for any value of m and k, there is a monotone submodular function
f and a particular partitioning such that f (Ac[k]) = min(m, k) · f (Ad[m, k]).

The proofs of all the theorems in this chapter can be found in Appendix A.1. The
above theorem fully characterizes the performance of Algorithm 1 in terms of the best
centralized solution. In practice, we cannot run Algorithm 1, since there is no efficient
way to identify the optimum subset Ac

i [k] in set Vi, unless P=NP. In the following, we
introduce an efficient distributed approximation – GreeD i. We will further show, that
under some additional assumptions, much stronger guarantees can be obtained.

5.2.2 Our GreeD i Approximation

Our efficient distributed method GreeD i is shown in Algorithm 2. It parallels the
intractable Algorithm 1, but replaces the selection of optimal subsets, i.e., Ac

i [k], by
greedy solutions Agc

i [k]. Due to the approximate nature of the greedy algorithm, we
allow it to pick sets slightly larger than k. More precisely, GreeD i is a two-round
algorithm that takes the ground set V, the number of partitions m, and the cardinality
constraint k. It first distributes the ground set over m machines. Then each machine
separately runs the standard greedy algorithm by sequentially finding an element e 2 Vi

that maximizes the discrete derivative (5.1.2). Each machine i–in parallel–continues
adding elements to the set Agc

i [·] until it reaches k elements. We define Agc
max[k] to be

the set with the maximum value among {Agc
1 [k], Agc

2 [k], . . . , Agc
m [k]}. Then the solutions

are merged, i.e., B = [m
i=1Agc

i [k], and another round of greedy selection is performed
over B until k elements are selected. We denote this solution by Agc

B [k]. The final
distributed solution with parameters m and k, denoted by Agd[m, k], is the set with a

61

Chapter 5. Distributed Submodular Maximization

Algorithm 2: Greedy Distributed Submodular Maximization (GreeD i)
Input: Set V, #of partitions m, constraints k.
Output: Set Agd[m, k].

1: Partition V into m sets V1, V2, . . . , Vm (arbitrarily or at random).
2: Run the standard greedy algorithm on each set Vi to find a solution Agc

i [k].
3: Find Agc

max[k] = arg maxA{F(A) : A 2 {Agc
1 [k], . . . , Agc

m [k]}}
4: Merge the resulting sets: B = [m

i=1Agc
i [k].

5: Run the standard greedy algorithm on B to find a solution Agc
B [k].

6: Return Agd[m, k] = arg maxA{F(A) : A 2 {Agc
max[k], Agc

B [k]}}.

higher value between Agc
max[k] and Agc

B [k] (c.f., Figure 5.2 shows GreeD i schematically).
The following result parallels Theorem 4.

Theorem 5. Let f be a monotone submodular function and k � k. Then

f (Agd[m, k]) � (1� e�k/k)
min(m, k)

f (Ac[k]).

For the special case of k = k the result of Theorem 5 simplifies to f (Agd[m, k]) �
(1�1/e)
min(m,k) f (Ac[k]). Moreover, it is straightforward to generalize GreeD i to multiple
rounds (i.e., more than two) for very large datasets.

In light of Theorem 4, one can expect that in general it is impossible to eliminate the
dependency of the distributed solution on min(k, m) 1. However, as we show in the rest
of this section, in many practical settings, the ground set V exhibits rich geometrical
structure that can be used to obtain stronger guarantees.

5.2.3 Performance on Datasets with Geometric Structure

In practice, we can hope to do much better than the worst case bounds shown pre-
viously by exploiting underlying structure often presents in real data and important
set functions. In this part, we assume that a metric d : V ⇥V ! R exists on the data
elements, and analyze performance of the algorithm on functions that vary slowly with
changes in the input. We refer to these as Lipschitz functions:

Definition 6. Let l > 0. A set function f : 2V ! R is l-Lipschitz w.r.t. metric d
on V, if for any integer k, any equal sized sets S = {e1, e2, . . . , ek} ✓ V and S0 =

1We’ll show in Chapter 6 that the tightest dependency is Q(
p

min(m, k)).

62

5.2. The GreeD i Approach for Distributed Submodular Maximization

10/21/2014 Preview

1/1

...

V

A1
gc[k] = greedy(V1, k, FV1)

ABgc[k] = greedy(B, k, FU)

...

VmViV1 V2

A2
gc[k] = greedy(V2, k, FV2) Ai

gc[k] = greedy(Vi, k, FVi) Am
gc[k] = greedy(Vm, k, FVm)

B = A1gc[k] U A2gc[k] U ... U Amgc[k]

Amaxgc[k] = argmax{FU(A1gc[k]), ... , FU(Amgc[k])}

Max

...

V

A1
gc[k] = greedy(V1, k)

...

VmViV1 V2

A2
gc[k] = greedy(V2, k) Ai

gc[k] = greedy(Vi, k) Am
gc[k] = greedy(Vm, k)

B = A1gc[k] U A2gc[k] U ... U Amgc[k]

AB
gc[k] = greedy(B, k) Amaxgc[k] = argmax{f(A1gc[k]), ... , f(Amgc[k])}

Max

Figure 5.2: Illustration of our two-round algorithm GreeD i

{e01, e02, . . . , e0k} ✓ V and any matching of elements: M = {(e1, e01), (e2, e02) . . . , (ek, e0k)},
the difference between f (S) and f (S0) is bounded by:

�� f (S)� f (S0)
��  l Â

i
d(ei, e0i). (5.2.1)

We can show that the objective functions from both applications considered in this
chapter, namely, exemplar-based clustering (c.f. Section 3.2), and active set selection (c.f.
Section 3.1.1) are l-Lipschitz for suitable kernels/distance functions:

Proposition 7. Suppose that the covariance matrix of a Gaussian process is parametrized
via a positive definite kernel K : V ⇥ V ! R which is Lipschitz continuous with respect
to metric d : V ⇥ V ! R with constant L, i.e., for any triple of points x1, x2, x3 2 V,
we have |K(x1, x3)�K(x2, x3)|  Ld(x1, x2). Then, the mutual information I(YS; XV) =
1
2 log det(I + KS) for the Gaussian process is l-Lipschitz with l = Lk3, where k is the number
of elements in the selected subset S.

Proposition 8. Let d : V ⇥V ! R be a metric on the elements of the dataset. Furthermore,
let l : V ⇥ V ! R encode the dissimilarity between elements of the underlying set V. Then

63

Chapter 5. Distributed Submodular Maximization

for l = da, a � 1 the loss function L(S) = 1
|V| Âv2V mine2S l(e, u) (and hence also the

corresponding submodular utility function f) is l-Lipschitz with l = aRa�1, where R is the
diameter of the ball encompassing elements of the dataset in the metric space. In particular, for
the k-medoid problem, which minimizes the loss function over all clusters with respect to l = d,
we have l = 1, and for the k-means problem, which minimizes the loss function over all clusters
with respect to l = d2, we have l = 2R.

Beyond Lipschitz-continuity, many practical instances of submodular maximization can
be expected to satisfy a natural density condition. Concretely, whenever we consider a
representative set (i.e., optimal solution to the submodular maximization problem), we
expect that any of its constituent elements has potential candidates for replacement in
the ground set. For example, in our exemplar-based clustering application, we expect
that cluster centers are not isolated points, but have many almost equally representative
points close by. Formally, for any element v 2 V, we define its a-neighborhood as the set
of elements in V within distance a from v (i.e., a-close to v):

N
a

(v) = {w : d(v, w)  a}.

By l-Lipschitz-continuity, it must hold that if we replace element v in set S by an
a-close element v0 (i.e., v0 2 N

a

(v)) to get a new set S0 of equal size, it must hold that
| f (S)� f (S0)|  al.

As described earlier, our algorithm GreeD i partitions V into sets V1, V2, . . . Vm for
parallel processing. If in addition we assume that elements are assigned uniformly
at random to different machines, a-neighborhoods are sufficiently dense, and the
submodular function is Lipschitz continuous, then GreeD i is guaranteed to produce
a solution close to the centralized one. More formally, we have the following theorem.

Theorem 9. Under the conditions that 1) elements are assigned uniformly at random to m
machines, 2) for each ei 2 Ac[k] we have |N

a

(ei)| � km log(k/d

1/m), and 3) f is l-Lipschitz
continuous, then with probability at least (1� d) the following holds:

f (Agd[m, k]) � (1� e�k/k)(f (Ac[k])� lak).

Note that once the above conditions are satisfied for small values of a (meaning that
there is a high density of data points within a small distance from each element
of the optimal solution) then the distributed solution will be close to the optimal

64

5.2. The GreeD i Approach for Distributed Submodular Maximization

centralized one. In particular if we let a! 0, the distributed solution is guaranteed to
be within a 1� ek/k factor from the optimal centralized solution. This situation naturally
corresponds to very large datasets. In the following, we discuss more thoroughly this
important scenario.

5.2.4 Performance Guarantees for Very Large Datasets

Suppose that our dataset is a finite sample V drawn i.i.d. from an underlying infinite
set V , according to some (unknown) probability distribution. Let Ac[k] be an optimal
solution in the infinite set, i.e., Ac[k] = arg maxS✓V f (S), such that around each ei 2
Ac[k], there is a neighborhood of radius at least a

⇤ where the probability density is at
least b at all points (for some constants a

⇤ and b). This implies that the solution consists
of elements coming from reasonably dense and therefore representative regions of the
dataset.

Let us suppose g : R ! R is the growth function of the metric: g(a) is defined to be
the volume of a ball of radius a centered at a point in the metric space. This means,
for ei 2 Ac[k] the probability of a random element being in N

a

(ei) is at least bg(a)
and the expected number of a neighbors of ei is at least E[|N

a

(ei)|] = nbg(a). As a
concrete example, Euclidean metrics of dimension D have g(a) = O(aD). Note that for
simplicity we are assuming the metric to be homogeneous, so that the growth function
is the same at every point. For heterogeneous spaces, we require g to have a uniform
lower bound on the growth function at every point.

In these circumstances, the following theorem guarantees that if the dataset V is
sufficiently large and f is l-Lipschitz, then GreeD i produces a solution close to the
centralized one.

Theorem 10. For n � 8km log(k/d

1/m)
bg(#

lk)
, where #

lk  a

⇤, if the algorithm GreeD i assigns

elements uniformly at random to m processors , then with probability at least (1� d),

f (Agd[m, k]) � (1� e�k/k)(f (Ac[k])� #).

The above theorem shows that for very large datasets, GreeD i provides a solution that
is within a 1� ek/k factor of the optimal centralized solution. This result is based on the
fact that for sufficiently large datasets, there is a suitably dense neighborhood around

65

Chapter 5. Distributed Submodular Maximization

each member of the optimal solution. Thus, if the elements of the dataset are partitioned
uniformly at random to m processors, at least one partition contains a set Ac

i [k] such
that its elements are very close to the elements of the optimal centralized solution and
provides a constant factor approximation of the optimal centralized solution.

5.2.5 Handling Decomposable Functions

So far, we have assumed that the objective function f is given to us as a black box, which
we can evaluate for any given set S independently of the dataset V. In many settings,
however, the objective f depends itself on the entire dataset. In such a setting, we
cannot use GreeD i as presented above, since we cannot evaluate f on the individual
machines without access to the full set V. Fortunately, many such functions have a
simple structure which we call decomposable. More precisely, we call a submodular
function f decomposable if it can be written as a sum of submodular functions as follows
[KG10]:

f (S) =
1
|V| Â

i2V
fi(S)

In other words, there is separate submodular function associated with every data point
i 2 V. We require that each fi can be evaluated without access to the full set V. Note
that the exemplar based clustering application we discussed in Section 3.2 is an instance
of this framework, among many others. Let us define the evaluation of f restricted to
D ✓ V as follows:

fD(S) =
1
|D| Â

i2D
fi(S)

In the remaining of this section, we show that assigning each element of the dataset
randomly to a machine and running GreeD i will provide a solution that is with
high probability close to the optimum solution. For this, let us assume that fi’s are
bounded, and without loss of generality 0  fi(S)  1 for 1  i  |V|, S ✓ V. Similar
to Section 5.2.3 we assume that GreeD i performs the partition by assigning elements
uniformly at random to the machines. These machines then each greedily optimize
fVi . The second stage of GreeD i optimizes fU, where U ✓ V is chosen uniformly at
random with size dn/me.

Then, we can show the following result. First, for any fixed e, m, k, let us define n0 to be
the smallest integer such that for n � n0 we have ln(n)/n  e

2/(mk).

66

5.2. The GreeD i Approach for Distributed Submodular Maximization
10/21/2014 Preview

1/1

...

V

A1
gc[k] = greedy(V1, k, FV1)

ABgc[k] = greedy(B, k, FU)

...

VmViV1 V2

A2
gc[k] = greedy(V2, k, FV2) Ai

gc[k] = greedy(Vi, k, FVi) Am
gc[k] = greedy(Vm, k, FVm)

B = A1gc[k] U A2gc[k] U ... U Amgc[k]

Amaxgc[k] = argmax{FU(A1gc[k]), ... , FU(Amgc[k])}

Max

...

V

A1
gc[k] = greedy(V1, k)

...

VmViV1 V2

A2
gc[k] = greedy(V2, k) Ai

gc[k] = greedy(Vi, k) Am
gc[k] = greedy(Vm, k)

B = A1gc[k] U A2gc[k] U ... U Amgc[k]

AB
gc[k] = greedy(B, k) Amaxgc[k] = argmax{f(A1gc[k]), ... , f(Amgc[k])}

Max

Figure 5.3: Illustration of our two-round algorithm GreeD i for decomposable functions

Theorem 11. For n � max(n0, m log(d/4m)/e

2), e < 1/4, and under the assumptions of
Theorem 10, we have, with probability at least 1� d,

f (Agd[m, k]) � (1� e�k/k)(f (Ac[k])� 2#).

The above result demonstrates why GreeD i performs well on decomposable sub-
modular functions with massive data even when they are evaluated locally on each
machine. We will report our experimental results on exemplar-based clustering in the
next section.

5.2.6 Performance of GreeD i on Random Partitions Without Geo-
metric Structure

Very recently, a constant (1� e�1)/2-approximation guarantee was proven for GreeD i

for the case of random partitioning of the data among the m machines.

Theorem 12 (Barbosa et al. [Bar+15] and Mirrokni and Zadimoghaddam [MZ15]). If
elements are assigned uniformly at random to the machines, and k = k, GreeD i gives a

67

Chapter 5. Distributed Submodular Maximization

(1� 1/e)/2 approximation guarantee (in the average case) to the optimum centralized solution.

E[f (Agd[m, k])] � 1� 1/e
2

f (Ac[k]).

These results show that random partitioning of the data is sufficient to guarantee that
GreeD i provides a constant factor approximation, irrespective of m and k, and without
the requirement of any geometric structure. On the other hand, if geometric structure
is present, the bounds from the previous sections can provide sharper approximation
guarantees.

5.3 (Non-Monotone) Submodular Functions with General
Constraints

In this section we show how GreeD i can be extended to handle 1) more general
constraints, and 2) non-monotone submodular functions. More precisely, we consider
the following optimization setting

Maximize f (S)

Subject to S 2 z.

Here, we assume that the feasible solutions should be members of the constraint set
z ✓ 2V . The function f (·) is submodular but may not be monotone. By overloading the
notation we denote the set that achieves the above constrained optimization problem
by Ac[z]. Throughout this section we assume that the constraint set z is hereditary,
meaning that if A 2 z then for any B ✓ A we also require that B 2 z. Cardinality
constraints are obviously hereditary, so are all the examples we mention below.

5.3.1 GreeD i Approximation Guarantee under More General Con-
straints

Assume that we have a set of constraints z ✓ 2V that is hereditary. Further assume we
have access to a ”black box” algorithm X that gives us a constant factor approximation

68

5.3. (Non-Monotone) Submodular Functions with General Constraints

guarantee for maximizing a non-negative (but not necessarily monotone) submodular
function f subject to z, i.e.

X : (f , z) 7! AX[z] 2 z s.t. f (AX[z]) � t max
A2z

f (A). (5.3.1)

We can modify GreeD i to use any such approximation algorithm as a black box, and
provide theoretical guarantees about the solution. In order to process a large dataset,
it first distributes the ground set over m machines. Then instead of greedily selecting
elements, each machine i–in parallel–separately runs the black box algorithm X on
its local data in order to produce a feasible set AX

i [z] meeting the constraints z. We
denote by Agc

max[z] the set with maximum value among AX
i [z]. Next, the solutions are

merged: B = [m
i=1AX

i [z], and the black box algorithm is applied one more time to set
B to produce a solution Agc

B [z]. Then, the distributed solution for parameter m and
constraints z, AXd[m, z], is the best among Agc

max[z] and Agc
B [z]. This procedure is given

in more detail in Algorithm 3.

Algorithm 3: GreeD i under General Constraints
Input: Set V, #of partitions m, constraints z, submodular function f .
Output: Set AXd[m, z].

1: Partition V into m sets V1, V2, . . . , Vm.
2: In parallel:

Run the approximation algorithm X on each set Vi to find a solution AX
i [z].

3: Find Agc
max[z] = arg maxA{F(A)|A 2 {AX

1 [z], . . . , AX
m[z]}}.

4: Merge the resulting sets: B = [m
i=1AX

i [z].
5: Run the approximation algorithm X on B to find a solution Agc

B [z].
6: Return AXd[m, z] = arg max{Agc

max[z], Agc
B [z]}.

The following result generalizes Theorem 5 for maximizing a submodular function
subject to more general constraints.

Theorem 13. Let f be a non-negative submodular function and X be a black box algorithm
that provides a t-approximation guarantee for submodular maximization subject to a set of
hereditary constraints z. Then

f (AXd[m, z])) � t

min
�
m, r([z])

� f (Ac[z]),

where f (Ac[z]) is the optimum centralized solution, and r([z]) = maxA2z

|A|.

69

Chapter 5. Distributed Submodular Maximization

Specifically, for submodular maximization subject to the matroid constraint M, we have
r([A 2 I]) = rM where rM is the rank of the matroid (i.e., the maximum size of any
independent set in the system). For submodular maximization subject to the knapsack
constraint R, we can bound r([c(A)  R]) by dR/ minv c(v)e (i.e. the capacity of the
knapsack divided by the smallest weight of any element).

Performance on Datasets with Geometric Structure. When the submodular function
f (·) and the constraint set z have more structure, then we can provide much better
approximation guarantees. Assuming the elements of V are embedded in metric space
with distance d : V ⇥V ! R+, we say that z is locally replaceable with respect to a set
S ✓ V with parameter a > 0 if

8S0 ✓ V s.t. |S0| = |S| and d•(S, S0)  a) S0 2 z.

Here, we define the distance d• between two sets S and S0 of the same size k as follows.
Let M be the set of all possible matchings between S and S0, i.e.,

M = {((e1, e01), . . . , (ek, e0k)) s.t ei 2 S and e0i 2 S0 for 1  i  k}.

Then d•(S, S0) = minM maxi d(ei, e0i). We require locality only with respect to Ac[z]

to ensure that the optimum solution can be well approximated. What the locally
replaceable property requires is that as elements of Ac[z] get replaced by nearby
elements, the resulting set is also a feasible solution. Combining this property with
l-Lipschitzness will provide us with the following theorem.

Theorem 14. Under the conditions that 1) elements are assigned uniformly at random to m
machines, 2) for each ei 2 Ac[z] we have |N

a

(ei)| � r([z])m log(r([z])/d

1/m), 3) f (·) is
l-Lipschitz, and 4) z is locally replaceable with respect to Ac[z] with parameter a, then with
probability at least (1� d),

f (AXd[m, z])) � t(f (Ac[z])� lar([z])).

The above result generalizes Theorem 9 for maximizing non-negative submodular
functions subject to different constraints.

70

5.4. Experiments

Performance Guarantee for Very Large datasets. Similarly, we can generalize Theo-
rem 10 for maximizing non-negative submodular functions subject to more general
constraints. Suppose that our dataset is a finite sample V drawn i.i.d. from an underly-
ing infinite set V , according to some (unknown) probability distribution. Let Ac[z] be
an optimal solution in the infinite set, i.e., Ac[z] = arg maxS✓V f (S), such that around
each ei 2 Ac[z], there is a neighborhood of radius at least a

⇤ where the probability
density is at least b at all points (for some constants a

⇤ and b). Recall that g : R ! R is
the growth function where g(a) measures the volume of a ball of radius a centered at a
point in the metric space.

Theorem 15. For n � 8r([z])m log(r([z])/d

1/m)
bg(#

lr([z]))
, where #

lr([z])  a

⇤, if GreeD i assigns

elements uniformly at random to m processors and under the conditions that f is l-Lipschitz,
and z is locally replaceable with respect to Ac[z] with parameter a

⇤, then with probability at
least (1� d), we have

f (AXd[m, z])) � t(f (Ac[z])� #).

Performance Guarantee for Decomposable Functions. For the case of decomposable
functions described in Section 5.2.5, the following generalization of Theorem 11 holds
for maximizing a non-negative submodular function subject to more general constraints.
Let us define n0 to be the smallest integer such that for n � n0 we have ln(n)/n 
e

2/(m · r([z])).

Theorem 16. For n � max(n0, m log(d/4m)/e

2), e < 1/4, and under the assumptions of
Theorem 15, we have, with probability at least 1� d,

f (AXd[m, z])) � t(f (Ac[z])� 2#).

5.4 Experiments

In our experimental evaluation we wish to address the following questions: 1) how well
does GreeD i perform compared to the centralized solution, 2) how good is the per-
formance of GreeD i when using decomposable objective functions (see Section 5.2.5),
and finally 3) how well does GreeD i scale in the context of massive datasets. To this
end, we run GreeD i on three scenarios: exemplar based clustering, active set selection
in GPs and finding the maximum cuts in graphs.

71

Chapter 5. Distributed Submodular Maximization

We compare the performance of our GreeD i method to the following naive ap-
proaches:

• random/random: in the first round each machine simply outputs k randomly chosen
elements from its local data points and in the second round k out of the merged
mk elements, are again randomly chosen as the final output.

• random/greedy: each machine outputs k randomly chosen elements from its local
data points, then the standard greedy algorithm is run over mk elements to find a
solution of size k.

• greedy/merge: in the first round k/m elements are chosen greedily from each
machine and in the second round they are merged to output a solution of size k.

• greedy/max: in the first round each machine greedily finds a solution of size k and
in the second round the solution with the maximum value is reported.

For GreeD i, we let each of the m machines select a set of size ak, and select a final
solution of size k among the union of the m solutions (i.e., among akm elements). We
present the performance of GreeD i for different parameters a > 0. For datasets where
we are able to find the centralized solution, we report the ratio of f (Adist[k])/ f (Agc[k]),
where Adist[k] is the distributed solution (in particular Agd[m, ak, k] = Adist[k] for
GreeD i).

5.4.1 Exemplar Based Clustering

Our exemplar based clustering experiment involves GreeD i applied to the clustering
utility f (S) (see Sec. 3.2) with d(x, x0) = kx� x0k2. We performed our experiments on
a set of 10,000 Tiny Images [TFF08]. Each 32 by 32 RGB pixel image was represented by
a 3,072 dimensional vector. We subtracted from each vector the mean value, normalized
it to unit norm, and used the origin as the auxiliary exemplar. Figure 5.4a compares
the performance of our approach to the benchmarks with the number of exemplars
set to k = 50, and varying number of partitions m. It can be seen that GreeD i

significantly outperforms the benchmarks and provides a solution that is very close to
the centralized one. Interestingly, even for very small a = k/k < 1, GreeD i performs
very well. Since the exemplar based clustering utility function is decomposable, we

72

5.4. Experiments

repeated the experiment for the more realistic case where the function evaluation in
each machine was restricted to the local elements of the dataset in that particular
machine (rather than the entire dataset). Figure 5.4b shows similar qualitative behavior
for decomposable objective functions.

2 4 6 8 10
0.8

0.85

0.9

0.95

1

m

D
is

tri
bu

te
d/

C
en

tra
liz

ed

Greedy/
Max

Greedy/
Merge

Random/
RandomRandom/

Greedy

α=2/m

GreeDI (α=1)α=4/m

(a) Global objective function

2 4 6 8 10
0.8

0.85

0.9

0.95

1

m

D
is

tri
bu

te
d/

C
en

tra
liz

ed

GreeDI (α=1) α=4/m

Greedy/
Merge

Greedy/
Max α=2/m

Random/
RandomRandom/

Greedy

(b) Local objective function

20 40 60 80 100

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

k

D
is

tri
bu

te
d/

C
en

tra
liz

ed

α=4/m α=2/m

Random/
Greedy

Greedy/
Max

GreeDI (α=1)

Random/
Random

Greedy/
Merge

(c) Global objective function

20 40 60 80 100

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

k

D
is

tri
bu

te
d/

C
en

tra
liz

ed

α=4/m α=2/m

Random/
Greedy

Greedy/
Max

GreeDI (α=1)

Random/
Random

(d) Local objective function

Figure 5.4: Performance of GreeD i compared to the other benchmarks. a) and b) show the
mean and standard deviation of the ratio of distributed vs. centralized solution for global and
local objective functions with budget k = 50 and varying the number m of partitions. c) and d)
show the same ratio for global and local objective functions for m = 5 partitions and varying
budget k, for a set of 10,000 Tiny Images.

73

Chapter 5. Distributed Submodular Maximization

Large scale experiments with Hadoop. As our first large scale experiment, we applied
GreeD i to the whole dataset of 80,000,000 Tiny Images [TFF08] in order to select a
set of 64 exemplars. Our experimental infrastructure was a cluster of 10 quad-core
machines running Hadoop with the number of reducers set to m = 8000. Hereby, each
machine carried out a set of reduce tasks in sequence. We first partitioned the images
uniformly at random to reducers. Each reducer separately performed the lazy greedy
algorithm on its own set of 10,000 images (⇡123MB) to extract 64 images with the
highest marginal gains w.r.t. the local elements of the dataset in that particular partition.
We then merged the results and performed another round of lazy greedy selection on
the merged results to extract the final 64 exemplars. Function evaluation in the second
stage was performed w.r.t a randomly selected subset of 10,000 images from the entire
dataset. The maximum running time per reduce task was 2.5 hours. As Figure 5.5a
shows, GreeD i highly outperforms the other distributed benchmarks and can scale
well to very large datasets. Figure 5.5b shows a set of cluster exemplars discovered by
GreeD i where Figure 5.5c and Figure 5.5d show 100 nearest images to exemplars 26
and 63 (shown with red borders) in Figure 5.5b.

5.4.2 Active Set Selection

Our active set selection experiment involves GreeD i applied to the information gain
f (S) (see Sec. 3.1.1) with Gaussian kernel, h = 0.75 and s = 1. We used the Parkinsons
Telemonitoring dataset [Tsa+10] consisting of 5,875 bio-medical voice measurements
with 22 attributes from people with early-stage Parkinson’s disease. We normalized the
vectors to zero mean and unit norm. Figure 5.6b compares the performance GreeD i

to the benchmarks with fixed k = 50 and varying number of partitions m. Similarly,
Figure 5.6a shows the results for fixed m = 10 and varying k. We find that GreeD i

significantly outperforms the benchmarks.

Large scale experiments with Hadoop. Our second large scale experiment consists of
45,811,883 user visits from the Featured Tab of the Today Module on Yahoo! Front Page
[Yah12]. For each visit, both the user and each of the candidate articles are associated
with a feature vector of dimension 6. Here, we used the normalized user features. Our
experimental setup was a cluster of 8 quad-core machines running Spark [Zah+10]
with the number of reducers set to m = 32. Each reducer performed the lazy greedy
algorithm on its own set of ⇡1,431,621 vectors (⇡34MB) in order to extract 256 elements

74

5.4. Experiments

10 20 30 40 50 601.75

1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2 x 104

k

D

is
tri

bu
te

d Random/
Greedy

α=4/m
α=2/m

Greedy/
Max

Greedy/
Merge

Random/
random

GreeDI (α=1)

(a) Tiny Images 80M (b)

(c) (d)

Figure 5.5: Performance of GreeD i compared to the other benchmarks. a) shows the dis-
tributed solution with m = 8000 and varying k for local objective functions on the whole dataset
of 80,000,000 Tiny Images. b) shows a set of cluster exemplars discovered by GreeD i, and
each column in c) shows 100 images nearest to exemplars 26 and d) shows 100 images nearest
to exemplars 63 in b).

with the highest marginal gains w.r.t the local elements of the dataset in that particular
partition. We then merged the results and performed another round of lazy greedy
selection on the merged results to extract the final active set of size 256. The maximum
running time per reduce task was 12 minutes for selecting 128 elements and 48 minutes
for selecting 256 elements. Figure 5.7 shows the performance of GreeD i compared

75

Chapter 5. Distributed Submodular Maximization

1 2 3 4 5 6 7 8 9 100.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

m

D
is

tri
bu

te
d/

C
en

tra
liz

ed

α=4/m α=2/m GreeDI (α=1)

Greedy/
Merge

Random/
Greedy

Random/
Random

Greedy/
Max

(a) Parkinsons Telemonitoring

20 40 60 80 100
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

k
D
is
tri
bu
te
d/
C
en
tra
liz
ed

GreeDI (α=1)α=4/m

α=2/m Greedy/
Merge

Random/
Greedy Greedy/

Max

Random/
Random

(b) Parkinsons Telemonitoring

Figure 5.6: Performance of GreeD i compared to the other benchmarks. a) shows the ratio of
distributed vs. centralized solution with k = 50 and varying m for Parkinsons Telemonitoring.
b) shows the same ratio with m = 10 and varying k on the same dataset.

to the benchmarks. We note again that GreeD i significantly outperforms the other
distributed benchmarks and can scale well to very large datasets.

k
0 50 100 150 200 250

D
is
tri
bu
te
d/
C
en
tra
liz
ed

0.5

0.6

0.7

0.8

0.9

1

1.1
GreeDI (,=1) Greedy/

Max

,=4/m ,=2/m

Random/
Greedy

Random/
Random

Greedy/
Merge

Figure 5.7: Performance of GreeD i with m = 32 and varying budget k compared to the
other benchmarks on Yahoo! Webscope data.

Performance Comparison. Figure 5.8 shows the speedup of GreeD i compared to the
centralized greedy benchmark for different values of k and varying number of partitions

76

5.4. Experiments

m. As Figure 5.8a shows, for small values of m, the speedup is almost linear in the
number of machines. However, for large values of m the running time of the second
stage of GreeD i increases and ultimately dominates the whole running time. Hence,
we do not observe a linear speedup anymore. This effect can be observed in Figure 5.8b.
For larger values of k, the speedup is higher on fewer machines, but decreases more
quickly by increasing m, as the second stage takes longer to complete.

m
5 10 15 20 25 30

S
pe

ed
up

5

10

15

20

25

30

35
k = 256
k = 128
k = 64

(a) Yahoo! front page
m

100 200 300 400 500

S
pe

ed
up

50

100

150

200

250

300

350

400

450
k = 256
k = 128
k = 64

(b) Yahoo! front page

Figure 5.8: Running time of GreeD i compared to the centralized greedy algorithm. a) shows
the ratio of centralized vs. distributed solution with k = 64, 128, 256 and up to m = 32
machines for Yahoo Webscope data. b) shows the same ratio with k = 64, 128, 256 and up to
m = 512 machines on the same dataset. Both experiments are performed on a cluster of 8 quad
core machines.

5.4.3 Non-Monotone Submodular Function (Finding Maximum Cuts)

We also applied GreeD i to the problem of finding maximum cuts in graphs. In our
setting we used a Facebook-like social network [OP09]. This dataset includes the users that
have sent or received at least one message in an online student community at University
of California, Irvine and consists of 1,899 users and 20,296 directed ties. Figures 5.9a
and 5.9b show the performance of GreeD i applied to the cut function on graphs. We
evaluated the objective function locally on each partition. Thus, the links between the
partitions are disconnected. Since the problem of finding the maximum cut in a graph

77

Chapter 5. Distributed Submodular Maximization

5 10 15 200

0.2

0.4

0.6

0.8

1

m

D
is

tri
bu

te
d/

C
en

tra
liz

ed

Random/
Greedy

Random/
Random

Greedy/
Max

Greedy/
Merge

α=2/m α=4/m
GreeDI (α=1)

(a) Facebook-like social network

20 40 60 80 1000

0.2

0.4

0.6

0.8

1

1.2

k

D
is

tri
bu

te
d/

C
en

tra
liz

ed

Random/
Random

α=2/m α=4/mGreeDI (α=1)

Random/
Greedy

Greedy/
Max

Greedy/
Merge

(b) Facebook-like social network

Figure 5.9: Performance of GreeD i compared to the other benchmarks. a) shows the mean
and standard deviation of the ratio of distributed to centralized solution for budget k = 20 with
varying number of machines m and b) shows the same ratio for varying budget k with m = 10
on Facebook-like social network.

is non-monotone submodular, we applied the RandomGreedy algorithm proposed by
[Buc+14] to find the near optimal solution in each partition.

Although the cut function does not decompose additively over individual data points,
perhaps surprisingly, GreeD i still performs very well, and significantly outperforms
the benchmarks. This suggests that our approach is quite robust, and may be more
generally applicable.

5.4.4 Comparision with Greedy Scaling.

[Kum+13] recently proposed an alternative approach–GreedyScaling–for parallel
maximization of submodular functions. GreedyScaling is a randomized algorithm
that carries out a number (typically less than k) rounds of MapReduce computations.
We applied GreeD i to the submodular coverage problem in which given a collection
V of sets, we would like to pick at most k sets from V in order to maximize the
size of their union. We compared the performance of our GreeD i algorithm to the
reported performance of GreedyScaling on the same datasets, namely Accidents
[Geu+03] and Kosarak [Bod12]. As Figures 5.10a and 5.10b show, GreeD i outperforms

78

5.5. Summary

0 20 40 60 80 100
0.94

0.95

0.96

0.97

0.98

0.99

1

k

D
is

tri
bu

te
d/

C
en

tra
liz

ed

GreeDi
Greedy Scaling

(a) Accidents

0 100 200 300 400 5000.9997

0.9998

0.9999

1

1.0001

1.0002

1.0003

k

D
is

tri
bu

te
d/

C
en

tra
liz

ed

GreeDi
Greedy Scaling

(b) Kosarak

Figure 5.10: Performance of GreeD i compared to the GreedyScaling algorithm of [Kum+13]
(as reported in their paper). a) shows the ratio of distributed to centralized solution on Accidents
dataset with 340,183 elements and b) shows the same ratio for Kosarak dataset with 990,002
elements. The results are reported for varying budget k and varying number of machines
m = n/µ where µ = O(knd log n) and n is the size of the dataset. The results are reported for
d = 1/2. Note that the results presented by [Kum+13] indicate that GreedyScaling generally
requires a substantially larger number of MapReduce rounds compared to GreeD i.

GreedyScaling on the Accidents dataset and its performance is comparable to that
of GreedyScaling in the Kosarak dataset.

5.5 Summary

We have developed an efficient distributed protocol GreeD i, for constrained submod-
ular function maximization. We have theoretically analyzed the performance of our
method and showed that under certain natural conditions it performs very close to the
centralized (albeit impractical in massive datasets) solution. We have also demonstrated
the effectiveness of our approach through extensive experiments, including active set
selection in GPs on a dataset of 45 million examples, and exemplar based summariza-
tion of a collection of 80 million images using Hadoop. We believe our results provide
an important step towards solving submodular optimization problems in very large
scale, real applications.

79

6
Distributed Submodular Cover:

Succinctly Summarizing Massive

Data

In Chpater 5, we studied distributed methods for selecting a small subset of data points
such that they maximize a particular quality criterion. However, in many applications
we don’t know the size of the smallest subset that well represents a massive dataset. For
example, in the variable selection problem [DK11], one is interested in selecting enough
features from a set of observations such that the resulting linear predictor achieves
a certain accuracy; in the sensor placement problem [Kra+08a], the main objective is
to install a small number of sensors such that they (approximately) cover the whole
monitoring area; similarly, in viral marketing [KKT03], the goal is to identify a small
set of individuals in a social network, such that by sending advertisement to those the
message spreads to a substantial portion of the network.

Our focus in this chapter is to find a succinct summary of the data, i.e., a subset,
ideally as small as possible, which achieves a desired (large) fraction of the utility
provided by the full dataset. Hereby, utility is measured according to an appropriate
submodular function. We formalize this problem as a submodular cover problem, and
seek efficient algorithms for solving it in face of massive data. As discussed in Chapter

81

Chapter 6. Distributed Submodular Cover: Succinctly Summarizing Massive Data

2, the celebrated result of Wolsey [Wol82] shows that a greedy approach that selects
elements sequentially in order to maximize the gain over the items selected so far,
yields a logarithmic factor approximation. It is also known that improving upon this
approximation ratio is hard under natural complexity theoretic assumptions [Fei98].
Even though such a greedy algorithm produces near-optimal solutions, it is impractical
for massive datasets, as sequential procedures that require centralized access to the full
data are highly constrained in terms of speed and memory.

In this chapter, we develop the first distributed algorithm – D isCover – for solving
the submodular cover problem. It can be easily implemented in MapReduce-style
parallel computation models [DG08] and provides a solution that is competitive with
the (impractical) centralized solution. We also study a natural trade-off between the
communication cost (for each round of MapReduce) and the number of rounds. The
trade-off lets us choose between a small communication cost between machines while
having more rounds to perform or a large communication cost with the benefit of
running fewer rounds. Our experimental results demonstrate the effectiveness of our
approach on a variety of submodular cover instances: dominating set, exemplar-based
clustering, and active set selection in non-parametric learning. We also implemented
D isCover on Spark [Zah+10] and approximately solved dominating set on a social
graph containing more than 65 million nodes and 1.8 billion edges.

6.1 The Distributed Submodular Cover Problem

The focus of this chapter is on the submodular cover problem, i.e., finding the smallest
set Ac such that it achieves a certain quality. More precisely, we have a large dataset
indexed by V (called the ground set) and we wish to select a small subset A ✓ V such
that A achieves a utility Q = (1� e) f (V) for some 0  e  1. I.e., we are interested in
the following optimization problem:

Ac = arg min
A✓V

|A|, such that f (A) � Q. (6.1.1)

We call Ac the optimum centralized solution with size k = |Ac|. Throughout this chapter
we assume that the utility function f : 2V ! R+ that measures the representativeness of
any subset A ✓ V, according to some objective, is monotone submodular. In Section 3
we discussed concrete instances of functions f that we consider in our experiments.

82

6.1. The Distributed Submodular Cover Problem

Unfortunately, finding Ac is NP-hard, for many classes of submodular functions [Fei98].
However, as discussed in Section 2.2.1, the greedy algorithm that iteratively selects
elements with maximum marginal utility 4(e|Ai�1)

.
= f (Ai�1 [{e}) � f (Ai�1), is

known to be very effective. Let us denote this (centralized) greedy solution by Ag.
When f is integral (i.e., f : 2V ! N) it is known that the size of the solution returned
by the greedy algorithm |Ag| is at most H(maxe f ({e}))|Ac|, where H(z) is the z-th
harmonic number and is bounded by H(z)  1 + ln z [Wol82]. Thus, we have

|Ag|  (1 + ln(max
e

f ({e})))|Ac|,

and obtaining a better solution is hard under natural complexity theoretic assumptions
[Fei98]. As it is standard practice, for our theoretical analysis to hold, we assume that f
is an integral, monotone submodular function.

In many data summarization applications where the ground set V is large, the sequential
greedy algorithm is impractical: either the data cannot be stored on a single computer
or the centralized solution is too expensive in terms of computation time. Hence, we
seek an algorithm for solving the submodular cover problem in a distributed manner.

6.1.1 Naive Approaches Towards Distributed Submodular Cover

The two naive approaches for distributed submodular maximization, introduced in
Section 5.1.3, can be also applied to solve the distributed submodular cover problem:
1) we start with an empty solution. In each round, all machines – in parallel – find
and communicate their best local candidate (condition on the current solution) to a
central processor, who then identifies the globally best element, and communicates it
back to all the m machines. 2) each machine i selects greedily enough elements from its
partition Vi until it reaches at least Q/m utility. Then, all machines merge their solution.

However, as we discussed, the first approach requires exactly |Ag| many rounds of
communication, and therefore is impractical for large k and hence |Ag|. In the second
approach, many machines may select redundant elements, and the merged solution
may suffer from diminishing returns and never reach Q. Instead of aiming for Q/m,
one could aim for a larger fraction, but it is not clear how to select this target value.

In Section 6.2, we introduce our solution D isCover, which requires few rounds
of communication, while at the same time yielding a solution competitive with the

83

Chapter 6. Distributed Submodular Cover: Succinctly Summarizing Massive Data

centralized one.

6.2 DisCover Algorithm for Distributed Submodular Cover

On a high level, our main approach is to reduce the submodular cover to a sequence of
cardinality constrained submodular maximization problems1, a problem for which good
distributed algorithms (e.g., GreeD i introduced in Chapter 5, and further analyzed in
[Bar+15; MZ15]) are known. Concretely, our reduction is based on a combination of the
following three ideas.

To get an intuition, we will first assume that we have access to an optimum algorithm
which can solve cardinality constrained submodular maximization exactly, i.e., solve,
for some specified `,

Ac[`] = arg max
|S|`

f (S). (6.2.1)

We will then consider how to solve the problem when, instead of Ac[`], we only have
access to an approximation algorithm for cardinality constrained maximization. Lastly,
we will illustrate how we can parametrize our algorithm to trade-off the number of
rounds of the distributed algorithm versus communication cost per round.

6.2.1 Estimating Size of the Optimal Solution

Momentarily, assume that we have access to an optimum algorithm OptCard(V, `)
for computing Ac[`] on the ground set V. Then one simple way to solve the submodular
cover problem would be to incrementally check for each ` = {1, 2, 3, . . .} if f (Ac[`]) � Q.
But this is very inefficient since it will take k = |Ac| rounds of running the distributed
algorithm for computing Ac[`]. A simple fix that we will follow is to instead start
with ` = 1 and double it until we find an ` such that f (Ac[`]) � Q. This way we are
guaranteed to find a solution of size at most 2k in at most dlog2(k)e rounds of running
Ac[`]. The pseudocode is given in Algorithm 4. However, in practice, we cannot run
Algorithm 4. In particular, there is no efficient way to identify the optimum subset
Ac[`] in set V, unless P=NP. Hence, we need to rely on approximation algorithms.

1Note that while reduction from submodular coverage to submodular maximization has been used
(e.g., [IB13]), the straightforward application to the distributed setting incurs large communication cost.

84

6.2. DisCover Algorithm for Distributed Submodular Cover

Algorithm 4: Approximate Submodular Cover
Input: Set V, constraint Q.
Output: Set A.

1: ` = 1.
2: Ac[`] = OptCard(V, `).
3: while f (Ac[`]) < Q do
4: ` = `⇥ 2.
5: Ac[l] = OptCard(V, `).
6: end while
7: A = Ac[`].
8: Return A.

Algorithm 5: Approximate OptCard

Input: Set V, #of partitions m, constraint Q, `.
Output: Set Adc[m].

1: r = 0, Agd[m, `] = ∆, Adc[m] = ∆.
2: while f (Adc[m]) < Q do
3: A = Agd[m, `].
4: r = r + 1.
5: Agd[m, `] = D isCard(V, m, `, A).
6: if f ({Agd[m, `] [A})� f (A) � l(Q� f (A)) then
7: Adc[m] = {Agd[m, `] [A}.
8: else
9: break

10: end if
11: end while
12: Return Adc[m].

6.2.2 Handling Approximations for Submodular Maximization

Assume that there is a distributed algorithm D isCard(V, m, `), for cardinality con-
strained submodular maximization, that runs on the dataset V with m machines and
provides a set Agd[m, `] with l-approximation guarantee to the optimal solution Ac[`],
i.e., f (Agd[m, `]) � l f (Ac[`]). Let us assume that we could run D isCard with the
unknown value ` = k. Then the solution we get satisfies f (Agd[m, k]) � lQ, and we
are not guaranteed to achieve Q any longer. Now, what we can do (still under the
assumption that we know k) is to repeatedly run D isCard in order to augment
our solution set until we get the desired value Q. Note that for each invocation of

85

Chapter 6. Distributed Submodular Cover: Succinctly Summarizing Massive Data

D isCard, to find a set of size ` = k, we have to take into account the solutions A
that we have accumulated so far. So, by overloading the notation, D isCard(V, m, `, A)

returns a set of size ` given that A has already been selected in previous rounds (i.e.,
D isCard optimizes the conditional submodular function f (·|A) : 2V\A ! R+ with
f (S|A) = f (S \ A)� f (A)). Note that at every invocation –thanks to submodularity–
D isCard increases the value of the solution by at least l(Q� f (A)). Therefore, by
running D isCard at most dlog(Q)/le times we get Q.

Unfortunately, we do not know the optimum value k. So, we can feed an estimate ` of
the size of the optimum solution k to D isCard. Now, again thanks to submodularity,
D isCard can check whether this ` is good enough or not: if the improvement in the
value of the solution is not at least l(Q� f (A)) during the augmentation process, we
can infer that ` is a too small estimate of k and we cannot get the desired value Q by
using ` – so we apply the doubling strategy again.

Theorem 17. Let D isCard be a distributed algorithm for cardinality-constrained submodular
maximization with l approximation guarantee. Then, Algorithm 4 (where OptCard is
replaced with Approximate OptCard, Algorithm 5) runs in at most dlog(k) + log(Q)/l +

1e rounds and produces a solution of size at most d2k + 2 log(Q)k/le.

The proofs of all the theorems in this Chapter can be found in Appendix A.2.

6.2.3 Trading Off Communication Cost and Number of Rounds

While Algorithm 4 successfully finds a distributed solution Adc[m] with f (Adc[m]) � Q,
(c.f., Theorem 17), the intermediate problem instances (i.e., invocations of D isCard)
are required to select sets of size up to twice the size of the optimal solution k, and these
solutions are communicated between all machines. Oftentimes, k is quite large and
we do not want to have such a large communication cost per round. Now, instead of
finding an ` � k what we can do is to find a smaller ` � ak, for 0 < a  1 and augment
these smaller sets in each round of Algorithm 5. This way, the communication cost
reduces to an a fraction (per round), while the improvement in the value of the solution
is at least al(Q� f (Agd[m, `])). Consequently, we can trade-off the communication
cost per round with the total number of rounds. As a positive side effect, for a < 1,
since in each invocation of D isCard it returns smaller sets, the final solution set size
can potentially get closer to the optimum solution size k. For instance, for the extreme

86

6.2. DisCover Algorithm for Distributed Submodular Cover

case of a = 1/k we recover the solution of the sequential greedy algorithm (up to
O(1/l)). We see this effect in our experimental results.

6.2.4 DisCover

The D isCover algorithm is shown in Algorithm 6. The algorithm proceeds in rounds,
with communication between machines taking place only between successive rounds.
In particular, D isCover takes the ground set V, the number of partitions m, and the
trade-off parameter a. It starts with ` = 1, and Adc[m] = ∆. It then augments the set
Adc[m] with set Agd[m, `] of at most ` new elements using an arbitrary distributed
algorithm for submodular maximization under cardinality constraint, D isCard. If the
gain from adding Agd[m, `] to Adc[m] is at least al(Q� f (Agd[m, `])), then we continue
augmenting Agd[m, `] with another set of at most ` elements. Otherwise, we double `

and restart the process with 2`. We repeat this process until we get Q.

Algorithm 6: D isCover

Input: Set V, #of partitions m, constraint Q, trade off parameter a.
Output: Set Adc[m].

1: Adc[m] = ∆, r = 0.
2: while f (Adc[m]) < Q do
3: r = r + 1.
4: Agd[m, `] = D isCard(V, m, `, Adc[m]).
5: if f (Adc[m] [Agd[m, `])� f (Adc[m]) � al(Q� f (Adc[m])) then
6: Adc[m] = {Adc[m] [Agd[m, `]}.
7: else
8: ` = `⇥ 2.
9: end if

10: end while
11: Return Adc[m].

Theorem 18. Let D isCard be a distributed algorithm for cardinality-constrained submodular
maximization with l approximation guarantee. Then, D isCover runs in at most dlog(ak) +
log(Q)/(la) + 1e rounds and produces a solution of size d2ak + log(Q)2k/le.

GreeDi as Subroutine: So far, we have assumed that a distributed algorithm D is -
Card that runs on m machines is given to us as a black box, which can be used to
find sets of cardinality ` and obtain a l-factor of the optimal solution. More concretely,

87

Chapter 6. Distributed Submodular Cover: Succinctly Summarizing Massive Data

we can use GreeD i, the distributed algorithm for maximizing submodular functions
under a cardinality constraint that we introduced in Chapter 5 (outlined in Algorithm 2).
Remember that GreeD i first distributes the ground set V to m machines. Then each
machine i separately runs the standard greedy algorithm to produce a set Agc

i [`] of
size `. Finally, the solutions are merged, and another round of greedy selection is per-
formed (over the merged results) in order to return the solution Agd[m, `] of size `. In
Chapter 5 (c.f. Theorem 5), we proved that GreeD i provides a (1� e�1)2/ min(m, `)-
approximation to the optimal solution. Here, we prove a (tight) improved bound on
the performance of GreeD i. More formally, we have the following theorem.

Theorem 19. Let f be a monotone submodular function and let ` > 0. Then, GreeD i

produces a solution Agd[m, `] where f (Agd[m, `]) � 1
36
p

min(m,`)
f (Ac[`]).

We illustrate the resulting algorithm D isCover using GreeD i as subroutine in
Figure 6.1. By combining Theorems 18 and 19, we will have the following.

Corollary 20. By using GreeD i, we get that D isCover produces a solution of size d2ak +
72 log(Q)k

p
min(m, ak))e and runs in at most dlog(ak) + 36

p
min(m, ak) log(Q)/a + 1e

rounds.

Note that for a constant number of machines m, a = 1 and a large solution size
ak � m, the above result simply implies that in at most O(log(kQ)) rounds, D isCover

produces a solution of size O(k log Q). In contrast, the greedy solution with O(k log Q)

rounds (which is much larger than O(log(kQ))) produces a solution of the same quality.

Very recently, a (1� e�1)/2-approximation guarantee was proven for the randomized
version of GreeD i [MZ15; Bar+15]. This suggests that, if it is possible to reshuffle (i.e.,
randomly re-distribute V among the m machines) the ground set each time that we
revoke GreeD i, we can benefit from these stronger approximation guarantees (which
are independent of m and k). Furthermore, stochastic version of the greedy algorithm
that we will introduce in Chapter 12 can be incorporated into GreeD i to provide faster
distributed frameworks for submodular cover. Note that Theorem 18 does not directly
apply here, since it requires a deterministic subroutine for constrained submodular
maximization.

As a final technical remark, for our theoretical results to hold we have assumed that
the utility function f is integral. In some applications (like active set selection) this

88

6.3. Experiments

Data Cluster Nodes

C
ov

er

GreeDi

r = 1 r = 2

GreeDi

………

Figure 6.1: Illustration of our multi-round algorithm D isCover , assuming it terminates in
two rounds (without doubling search for `).

assumption may not hold. In these cases, either we can appropriately discretize and
rescale the function, or instead of achieving the utility Q, try to reach (1� e)Q, for
some 0 < e < 1. In the latter case, we can simply replace Q with Q/e in Theorem 18.

6.3 Experiments

In our experiments we wish to address the following questions: 1) How well does
D isCover perform compare to the centralized greedy solution; 2) How is the trade-off
between the solution size and the number of rounds affected by parameter a; and 3)
How well does D isCover scale to massive datasets. To this end, we run D isCover on
three scenarios: exemplar based clustering, active set selection in GPs, and dominating
set problem. For dominating set, we report experiments on a large social graph with
more than 65.6 million vertices and 1.8 billion edges. Since the constant in Theorem 19
is not optimized, we used l = 1/

p
min(m, k) in all the experiments.

6.3.1 Exemplar based Clustering

Our exemplar based clustering experiments involve D isCover applied to the clus-
tering utility f (S) described in Section 3.2, with d(x, x0) = kx� x0k2. We perform our
experiments on a set of 10,000 Tiny Images [TFF08]. Each 32 by 32 RGB pixel image
is represented as a 3,072 dimentional vectors. We subtract from each vector the mean
value, then normalize it to have unit norm. We use the origin as the auxiliary exemplar
for this experiment. Figure 6.2a compares the performance of our approach to the cen-
tralized benchmark with the number of machines set to m = 10 and varying coverage
percentage Q = (1� e) f (V). Here, we have b = (1� e). It can be seen that D isCover

89

Chapter 6. Distributed Submodular Cover: Succinctly Summarizing Massive Data

provides a solution which is very close to the centralized solution, with a number of
rounds much smaller than the solution size. Varying a results in a tradeoff between
solution size and number of rounds.

6.3.2 Active Set Selection

Our active set selection experiments involve D isCover applied to the log-determinant
function f (S) described in Section 3.1.1, using an exponential kernel K(ei, ej) = exp(�|ei�
ej|2/0.75). We use the Parkinsons Telemonitoring dataset [Tsa+10] comprised of 5,875
biomedical voice measurements with 22 attributes from people in early-stage Parkin-
son’s disease. Figure 6.2b compares the performance of our approach to the bench-
mark with the number of machines set to m = 6 and varying coverage percentage
Q = (1� e) f (V). Again, D isCover performs close to the centralized greedy solution,
even with very few rounds. Again we see a tradeoff by varying a.

6.3.3 Large Scale Dominating Set with Spark

As our large scale experiment, we applied D isCover to the Friendster network consists
of 65,608,366 nodes and 1,806,067,135 edges [YL15]. The average out-degree is 55.056
while the maximum out-degree is 5,214. The disk footprint of the graph is 30.7GB,
stored in 246 part files on HDFS. Our experimental infrastructure was a cluster of 8
quad-core machines with 32GB of memory each, running Spark [Zah+10]. We set the
number of reducers to m = 64.

Each machine carried out a set of map/reduce tasks in sequence, where each MapRe-
duce stage corresponds to running GreeD i with a specific values of ` on the whole
dataset. We first distributed the data uniformly at random to the machines, where
each machine received ⇡1,025,130 vertices (⇡12.5GB RAM). Then we start with ` = 1,
perform a MapReduce task to extract one element. We then communicate back the
results to each machine and based on the improvement in the value of the solution, we
perform another round of map/reduce calculation with either the the same value for `
or 2⇥ `. We continue performing map/reduce tasks until we get the desired value Q.

We examine the performance of D isCover by obtaining covers for 50%, 30%, 20%
and 10% of the whole graph (c.f. Section 3.3). The total running time of the algorithm
for the above coverage percentages with a = 1 was about 5.5, 1.5, 0.6 and 0.1 hours

90

6.3. Experiments

Number of Rounds
20 40 60 80 100

So
lu

tio
n

Se
t S

iz
e

500

1000

1500

2000

2500

3000
DisCover 0 = 0.20
 Greedy 0 = 0.20
DisCover 0 = 0.23
 Greedy 0 = 0.23
DisCover 0 = 0.24
 Greedy 0 = 0.24
DisCover 0 = 0.25
 Greedy 0 = 0.25

, = 0.1

, = 1
, = 0.4

, = 0.2

, = 1

, = 1

, = 1

, = 0.6 , = 0.2 , = 0.1

, = 0.2 , = 0.1

(a) Images 10K
Number of Rounds

0 50 100 150 200

So
lu

tio
n

Se
t S

iz
e

0

500

1000

1500

2000

2500 DisCover 0 = 0.20
 Greedy 0 = 0.20
DisCover 0 = 0.35
 Greedy 0 = 0.35
DisCover 0 = 0.55
 Greedy 0 = 0.55
DisCover 0 = 0.65
 Greedy 0 = 0.65

, = 0.1 , = 0.05 , = 0.01

, = 0.05

, = 1 , = 0.1

, = 0.05

, = 1

, = 1

, = 1 , = 0.4 , = 0.1

, = 0.1, = 0.05, = 0.4

(b) Parkinsons Telemonitoring

0 50 100 150 200

#105

3
3.2
3.4
3.6
3.8

4 DisCover 0 = 0.5
 Greedy 0 = 0.5

0 100 200 300 400

#104

4.7

4.75

4.8

4.85

4.9

4.95 DisCover 0 = 0.7
 Greedy 0 = 0.7

Number of Rounds
0 100 200 300 400

So
lu

tio
n

Se
t S

iz
e

#104

1.5

1.6

1.7

1.8

1.9

2 DisCover 0 = 0.8
 Greedy 0 = 0.8

0 20 40 60 80 100
3700

3800

3900

4000

4100 DisCover 0 = 0.9
 Greedy 0 = 0.9

, = 0.4

, = 0.1

, = 0.2

, = 0.1

, = 0.4

, = 0.2

, = 0.1 , = 0.05

, = 0.2

, = 1 , = 0.4

, = 1

, = 0.1

, = 1

, = 0.01

, = 0.2

, = 1, 0.4

(c) Friendster

Figure 6.2: Performance of D isCover compared to the centralized solution. a, b) show
the solution set size vs. the number of rounds for various a, for a set of 10,000 Tiny Images
and Parkinsons Telemonitoring. c) shows the same quantities for the Friendster network with
65,608,366 vertices.

respectively. For comparison, we ran the centralized greedy on a computer of 24 cores
and 256GB memory. Note that, loading the entire dataset into memory requires 200GB

91

Chapter 6. Distributed Submodular Cover: Succinctly Summarizing Massive Data

of RAM, and running the centralized greedy algorithm for 50% cover requires at least
another 15GB of RAM. This highlights the challenges in applying the centralized greedy
algorithm to larger scale datasets. Figure 6.2c shows the solution set size versus the
number of rounds for various a and different coverage constraints. We find that by
decreasing a, D isCover’s solutions quickly converge (in size) to those obtained by
the centralized solution.

6.4 Summary

We have developed the first efficient distributed algorithm –D isCover – for the
submodular cover problem. We have theoretically analyzed its performance and showed
that it can perform arbitrary close to the centralized (albeit impractical in context of large
datasets) greedy solution. We also study a natural trade-off between the communication
cost and the number of rounds required to obtain such a solution. We also demonstrated
the effectiveness of our approach through extensive experiments, including dominating
set on a graph with 65.6 million vertices using Spark. D isCover uses D isCard as a
subroutine. More efficient distributed algorithms, e.g. GreeD i with Stream -Greedy

[Chapter 12], or Fantom [Chapter 13] can be integrated into D isCover to improve
its efficiency, and provide guarantees under more general constraints.

92

7
Fast Distributed Submodular Cover:

Public-Private Data Summarization

In Chapter 6, we studies distributed algorithms for the submodular cover problem. In
this chapter, we propose a fast distributed algorithm, FastCover, that enables us to
solve the more general problem of covering multiple submodular functions in one run
of the algorithm. It relies one three important ingredients:

1. a reduction from multiple submodular cover problems into a single instance of a
submodular cover problem [Kra+08b; IB13],

2. randomized filtration mechanism to select elements with high utility, and

3. a set of carefully chosen threshold functions used for the filteration mechanism.

FastCover also provides a natural tarde-off between the number of MapReduce
rounds and the size of the returned summary. It effectively lets us choose between
compact summaries (i.e., smaller solution size) while running more MapReduce rounds
or larger summaries while running fewer MapReduce rounds.

This setting is motivated by privacy concerns in many modern applications, including
personalized recommender systems, online social services, and the data collected by
apps on mobile platforms [Chi+15]. In such applications, users have some control over

93

Chapter 7. Fast Distributed Submodular Cover: Public-Private Data Summarization

their own data and can mark some part of it private (in a slightly more general case, we
can assume that users can make part of their data private to specific groups and public
to others). As a result, the dataset consists of public data, shared among all users, and
disjoint sets of private data accessible to the owners only.

We call this more general framework for data summarization, public-private data
summarization, where the private data of one user should not be included in another
user’s summary (see also [Chi+15]). This model naturally reduces to solving one
instance of the submodular cover problem for each user, as their view of the dataset
and the specific utility function specifying users’ preferences differ across users. When
the number of users is small, one can solve the public-private data summarization
separately for each user, using the greedy algorithm (for datasets of small size) or the
distributed algorithm D isCover introduced in Chapter 6 (for datasets of moderate
size). However, when there are many users or the dataset is massive, none of the prior
work truly scales.

We report performance of FastCover using Spark [Zah+10] on concrete applications
of the public-private data summarization, including personalized movie recommen-
dation on a dataset containing 2 million ratings by more than 100K users for 1000
movies, personalized location recommendation based on 20 users and their collected
GPS locations, and finding the dominating set on a social network containing more
than 65 million nodes and 1.8 billion edges. For small to moderate sized datasets,
we compare our results with previous work, namely, classical greedy algorithm and
D isCover. For truly large-scale experiments, where the data is big and/or there are
many users involved (e.g., movie recommendation), we cannot run D isCover as the
number of MapReduce rounds in addition to their communication costs is prohibitive.
In our experiments, we constantly observe that FastCover provides solutions of
size similar to the greedy algorithm (and very often even smaller) with the number of
rounds that are orders of magnitude smaller than D isCover. This makes FastCover

the first distributed algorithm that solves the public-private data summarization fast
and at scale.

94

7.1. Problem Statement: Public-Private Summarization

7.1 Problem Statement: Public-Private Summarization

In this section, we formally define the public-private model of data summarization1.
Here, we consider a potentially large dataset (sometimes called universe of items) V

of size n and a set of users U. The dataset consists of public data VP and subsets of
private data Vu for each user u 2 U.

The public-private aspect of data summarization realizes in two dimensions.

• First, each user u 2 U has her own utility function fu(S) according to which
she scores the value of a subset S ✓ V. Throughout this chapter we assume that
fu(·) is integer-valued2, non-negative, and monotone submodular. D fu(e|A)

.
=

fu(A [{e}) � fu(A) is the marginal gain (or added value) of e to the set A.
Whenever it is clear from the context we drop fu from D fu(e|A). Without loss
of generality, we normalize all users’ functions so that they achieve the same
maximum value, i.e., fu(V) = fv(V) for all u, v 2 U.

• Second, and in contrast to public data that is shared among all users, the private
data of a user cannot be shared with others. Thus, a user u 2 U can only evaluate
the public and her own private part of a summary S, i.e., S \ (VP [Vu). In other
words, if the summary S contains private data of a user v 6= u, the user u cannot
have access or evaluate v’s private part of S, i.e., S \Vv.

In public-private data summarization, we would like to find the smallest subset S ✓ V

such that all users reach a desired utility Q  fu(V) = fu(VP [Vu) simultaneously,
i.e.,

OPT = arg min
S✓V

|S|, such that fu(S \ (VP [Vu)) � Q 8u 2 U. (7.1.1)

A naive way to solve the above problem is to find a separate summary for each user
and then return the union of all summaries as S. A more clever way is to realize that

1All the results are applicable to submodular cover as a special case where there is only public data.
2For the submodular cover problem it is a standard assumption that the function is integer-values

for the theoretical results to hold. In applications where this assumption is not satisfied, either we can
appropriately discretize and rescale the function, or instead of achieving the desired utility Q, try to
reach (1� d)Q, for some 0 < d < 1. In the latter case, we can simply replace Q with Q/d in the theorems
to get the correct bounds.

95

Chapter 7. Fast Distributed Submodular Cover: Public-Private Data Summarization

problem (7.1.1) is in fact equivalent to the following problem [Kra+08b; IB13]

OPT = arg min
S✓V

|S|, such that f (S) .
= Â

u2U

min{ fu(S \ (VP [Vu)), Q} � Q⇥ |U|.

(7.1.2)
Note that the surrogate function f (·) is also monotone submodular as a thresholded
submodular function remains submodular. Thus, finding a set S that provides each user
with utility Q is equivalent of finding a set S with f (S) � L .

= Q⇥ |U|. This reduction
lets us focus on developing a fast distributed solution for solving a single submodular
cover problem. Our method FastCover is explained in detail in Section 7.3.

7.2 Applications of Pubic-Private Data Summarization

In this section, we discuss 3 concrete applications where parts of data are private and
the remaining parts are public. All objective functions are non-negative, monotone, and
submodular.

7.2.1 Personalized Movie Recommendation

Consider a movie recommender system that allows users to anonymously and privately
rate movies. The system can use this information to recognize users’ preferences using
existing matrix completion techniques [CR09]. A good set of recommended movies
should meet two criteria: 1) be correlated with user’s preferences, and 2) be diverse and
contains globally popular movies. To this end, we define the following sum-coverage
function to score the quality of the selected movies S for a user u:

fu(S) = au Â
i2S,j2Vu

si,j + (1� au) Â
i2S,j2VP\S

si,j, (7.2.1)

where Vu is the list of highly ranked movies by user u (i.e., private information),
VP is the set of all movies in the database3, and si,j measures the similarity between
movie i and j. The similarity can be easily calculated using the inner product between
the corresponding feature vectors of any two movies i and j. The term Âi2S,j2Vu si,j

3Two private lists may point to similar movies, but for now we treat the items on each list as unique
entities.

96

7.2. Applications of Pubic-Private Data Summarization

measures the similarity between the recommended set S and the user’s preferences.
The second term Âi2S,j2VP\S si,j measures the similarity between the recommended
set S and the popular movies in the public data. Finally, the parameter 0  au  1
provides the user the freedom to specify how much she cares about personalization
versus diversity, i.e., au = 1 indicates that all the recommended movies should be very
similar to the movies she highly ranked and au = 0 means that she prefers to receive a
set of globally popular movies among all users, irrespective of her own private ratings.

Note that in this application, the universe of items (i.e., movies) is public. What is private
is the users’ ratings through which we identify the set of highly ranked movies by each
user Vu. The effect of private data is expressed in users’ utility functions. The objective
is to find the smallest set S of movies V, from which we can build recommendations
for all users in a way that all reach a certain utility.

7.2.2 Personalized Location Recommendation

Nowadays, many mobile apps collect geolocation data of their users. To comply with
privacy concerns, some let their customers have control over their data, i.e., users can
mark some part of their data private and disallow the app to share it with other users.
In the personalized location recommendation, a user is interested in identifying a set of
locations that are correlated with the places she visited and popular places everyone
else visited.

Note that as close by locations are likely to be similar it is very typical to define a kernel
matrix K capturing the similarity between data points. A commonly used kernel in
practice is the squared exponential kernel K(ei, ej) = exp(�||ei� ej||22/h2). To define the
information gain of a set of locations indexed by S, it is natural to use f (S) = log det(I +
sKS,S) (c.f. Section 3.1.1). The information gain objective captures the diversity and
is used in many ML applications, e.g., active set selection for nonparametric learning
[Section 3.1.1], sensor placement [Kra+08b], determinantal point processes [Section
3.1.2], among many others. Then, the personalized location recommendation can be
modeled by

fu(S) = au f (S \Vu) + (1� au) f (S \VP), (7.2.2)

where Vu is the set of locations that user u does not want to share with others and
VP is the collection of all publicly disclosed locations. Again, the parameter au lets the
user indicate to what extent she is willing to receive recommendations based on her

97

Chapter 7. Fast Distributed Submodular Cover: Public-Private Data Summarization

private information. The objective is to find the smallest set of locations from which we
can build recommendations for all users such that each reaches a desired threshold.
Note that private data is usually small and private functions are fast to compute. Thus,
the function evaluation is mainly affected by the amount of public data. Moreover, for
many objectives, e.g., information gain, each machine can evaluate fu(S) by using its
own portion of the private data.

7.3 FastCover for Fast Distributed Submodular Cover

In this section, we explain in detail our fast distributed Algorithm FastCover shown
in Alg. 7. It receives a universe of items V and an integer-valued, non-negative, mono-
tone submodular function f : 2V ! R+. Similar to the previous chapter, the objective
is to find the smallest set S that achieves a value f (S) � L (c.f. Eq. 6.1.1).

FastCover starts with S = ∆, and keeps adding those items x 2 V to S whose
marginal values D(e|S) are at least some threshold t. In the beginning, t is set to a
conservative initial value M .

= maxx2V f (x). When there are no more items with a
marginal value t, FastCover lowers t by a factor of (1� e), and iterates anew through
the elements. Thus, t ranges over t0 = M, t1 = (1� e)M, · · · , t` = (1� e)`M, · · · .
FastCover terminates when f (S) � L. The parameter e determines the size of the
final solution. When e is small, we expect to find better solutions (i.e., smaller in size)
while having to spend more number of rounds.

One of the key ideas behind FastCover is that finding elements with marginal values
t = t` can be done in a distributed manner. Effectively, FastCover partitions V into m
sets T1, . . . , Tm, one for each cluster node/machine. A naive distributed implementation
is the following. For a given set S (whose elements are communicated to all machines)
each machine i finds all of its items x 2 Ti whose marginal values D(x|S) are larger
than t and send them all to a central machine (note that S is fixed on each machine).
Then, this central machine sequentially augments S with elements whose marginal
values are more than t (here S changes by each insertion). The new elements of S are
communicated back to all machines and they run the same procedure, this time with a
smaller threshold t(1� e).

The main problem with this approach is that there might be many items on each
machine that satisfy the chosen threshold t at each round (i.e., many more than |OPT|).

98

7.3. FastCover for Fast Distributed Submodular Cover

A flood of such items from m machines overwhelms the central machine. Instead, what
FastCover does is to enforce each machine to randomly pick only k items from
their potentially big set of candidates (i.e., ThresholdSample algorithm shown
in Alg. 8). The value k is carefully chosen (line 5). This way the number of items the
central machine processes is never more than O(m|OPT|).

Algorithm 7: FastCover

Input: V, e, L, and m
Output: S ✓ V where f (S) � L

1: Find a balanced partition {Ti}m
i=1 of V

2: S ∆
3: t maxx2V f (x)
4: while t � 1 do
5: k d(L� f (S))/te
6: for 1  i  m do
7: <Si, Fulli> ThresholdSample(i,t,k,S)
8: end for
9: for x 2 [m

i=1Si do
10: if f ({x} [S)� f (S) � t then
11: S S [{x}
12: if f (S) � L then
13: Break
14: end if
15: end if
16: end for
17: if 8i : Fulli = False then
18: t max{1, (1� e)t}
19: end if
20: end while
21: Return S

Theorem 21. FastCover terminates with at most log3/2(n/(|OPT|m))(1+ log(M)/e)+

log2(L) rounds (with high probability) and a solution of size at most |OPT| ln(L)/(1� e).

Although FastCover is distributed and unlike centralized algorithms does not enjoy
the benefits of accessing all items together, its solution size is truly competitive with
the greedy algorithm and is only away by a factor of 1/(1� e). Moreover, its number
of rounds is logarithmic in n and L. This is in sharp contrast with the previously best
known algorithm, D isCover (introduced in Chapter 6), where the number of rounds

99

Chapter 7. Fast Distributed Submodular Cover: Public-Private Data Summarization

Algorithm 8: ThresholdSample

Input: Index i, t, k, and S
Output: Si ⇢ Ti with |Si|  k

1: Si ∆
2: for x 2 Ti do
3: if f (S [{x})� f (S) � t then
4: Si Si [{x}
5: end if
6: end for
7: if |Si|  k then
8: Return < Si, False >
9: else

10: Si k random items of Si
11: Return < Si, True >
12: end if

scales with
p

min(m, |OPT|)4. Thus, FastCover not only improves exponentially
over D isCover in terms of speed but also its number of rounds decreases as the
number of available machines m increases. Even though FastCover is a simple
distributed algorithm, its performance analysis is technical and is deferred to Appendix
A.3. Below, we provide the main ideas behind the proof of Theorem 21.

Proof sketch. We say that an item has a high value if its marginal value to S is at least t. We
define an epoch to be the rounds during which t does not change. In the last round of each epoch,
all high value items are sent to the central machine (i.e., the set [m

i=1Si) because Fulli is false
for all machines. We also add every high value item to S in lines 10� 11. So, at the end of each
epoch, marginal values of all items to S are less than t. Since we reduce t by a factor of (1� e),
we can always say that t � (1� e)maxx2V D(x|S) which means we are only adding items
that have almost the highest marginal values. By the classic analysis of greedy algorithm for
submodular maximization, we can conclude that every item we add has an added value that is
at least (1� e)(L� f (S))/|OPT|. Therefore, after adding |OPT| ln(L)/(1� e) items, f (S)
becomes at least L.

To upper bound rounds, we divide the rounds into two groups. In a good round, the algorithm
adds at least k

2 items to S. The rest are bad rounds. In a good round, we add k/2 � (L �
f (S))/(2t) items, and each of them increases the value of S by t. Therefore in a good round,

4Note that
p

min(m, |OPT|) can be as large as n1/6 when |OPT| = n1/3 and the memory limit of
each machine is n2/3 which results in m � n1/3.

100

7.4. Experiments

we see at least (L � f (S))/2 increase in value of S. In other words, the gap L � f (S) is
reduced by a factor of at least 2 in each good round. Since f only takes integer values, once
L � f (S) becomes less than 1, we know that f (S) � L. Therefore, there cannot be more
than log2 L good rounds. Every time we update t (start of an epoch), we decrease it by a
factor of 1� e (except maybe the last round for which t = 1). Therefore, there are at most
1 + log 1

1�e

(M)  1 + log(M)
log(1/(1�e))  1 + log(M)

e

epochs. In a bad round, a machine with more
than k high value items, sends k of those to the central machine, and at most k/2 of them are
selected. In other words, the addition of these items to S in this bad round caused more than
half of high value items of each machine to become of low value (marginal values less than t).
Since there are n/m items in each machine, and Fulli becomes False once there are at most k
high value items in the machine, we conclude that in expectation there should not be more than
log2(n/km) bad rounds in each epoch. Summarizing the upper bounds yields the bound on
total number of rounds. Finer analysis leads to the high probability claim.

7.4 Experiments

In this section, we evaluate the performance of FastCover on the three applications
that we described in Section 7.2: personalized movie recommendation, personalized
location recommendation, and dominating set on social networks. To validate our
theoretical results and demonstrate the effectiveness of FastCover, we compare the
performance of our algorithm against D isCover (Alg. 6 from Chapter 6) and the
centralized greedy algorithm (when possible).

Our experimental infrastructure was a cluster of 16 quad-core machines with 20GB of
memory each, running Spark [Zah+10]. The cluster was configured with one master
node responsible for resource management, and the remaining 15 machines working as
executors. We set the number of reducers to m = 60. To run FastCover on Spark,
we first distributed the data uniformly at random to the machines, and performed
a map/reduce task to find the highest marginal gain t = M. Each machine then
carries out a set of map/reduce tasks in sequence, where each map/reduce stage
filters out elements with a specific threshold t on the whole dataset. We then tune the
parameter t, communicate back the results to the machines and perform another round
of map/reduce calculation. We continue performing map/reduce tasks until we get to
the desired value L.

101

Chapter 7. Fast Distributed Submodular Cover: Public-Private Data Summarization

Number of rounds
10 20 30 40

So
lu

tio
n

se
t s

iz
e

380

390

400

410

420

430

440

450
FastCover
DisCover
Greedy,=1.0

0=0.6

0=0.9

,=0.2

,=0.10=0.4 0=0.3

(a) Location data (60%)
Number of rounds

10 20 30 40 50 60

So
lu

tio
n

se
t s

iz
e

1250

1300

1350

1400

1450

1500
FastCover
DisCover
Greedy

,=1.0

,=0.4

0=0.9

0=0.6

,=0.2

,=0.1

0=0.4 0=0.3

(b) Location data (80%)

Number of rounds
10 20 30 40 50

So
lu

tio
n

se
t s

iz
e

2100

2150

2200

2250

2300

2350

2400
FastCover
DisCover
Greedy

0=0.9
,=1.0

,=0.4

0=0.6

0=0.4
0=0.3

,=0.1
,=0.2

(c) Location data (90%)

Figure 7.1: Performance of FastCover vs. other baselines. a), b), c) solution set size vs.
number of rounds for personalized location recommendation on a set of 3,056 GPS measurements,
for covering 60%, 80%, 90% of the maximum utility of each user.

7.4.1 Personalized Location Recommendation with Spark

Our location recommendation experiment involves applying FastCover to the in-
formation gain utility function, described in Eq. (7.2.2). Our dataset consists of 3,056
GPS measurements from 20 users in the form of (latitude, longitude, altitude) collected
during bike tours around Zurich [Tsa+10]. The size of each path is between 50 and
500 GPS coordinates. For each pairs of points i and j we used the corresponding GPS
coordinates to calculate their distance in meters d(i, j) and then formed a squared

102

7.4. Experiments

0=0.5 0=0.3 0=0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Number of iterations
Normalized solution set size

(a) Movies (10%)
0=0.7 0=0.5 0=0.3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Number of iterations
Normalized solution set size

(b) Movies (20%)

0=0.7 0=0.5 0=0.3
0

0.05

0.1

0.15

0.2

0.25

0.3 Number of iterations
Normalized solution set size

(c) Movies (30%)

Figure 7.2: Performance of FastCover vs. other baselines. Solution set size vs. number
of rounds for personalized movie recommendation on a set of 1000 movies, 138,493 users and
20,000,263 ratings, for covering a) 10%, b) 20%, c) 30% of the maximum utility of each user.

exponential kernel Ki,j = exp(�d(i, j)2/h2) with h = 1500. For each user, we marked
20% of her data private (data points are chosen consecutively) selected from each path
taken by the biker. The parameter au is set randomly for each user u.

Figures 7.1a, 7.1b, 7.1c compare the performance of FastCover to the benchmarks
for building a recommendation set that covers 60%, 80%, and 90% of the maximum
utility of each user. We considered running D isCover (Alg. 6) with different values
of parameter a that makes a trade off between the size of the solution and number

103

Chapter 7. Fast Distributed Submodular Cover: Public-Private Data Summarization

of rounds of the algorithm. It can be seen that by avoiding the doubling steps of
D isCover, our algorithm FastCover is able to return a significantly smaller solution
than that of D isCover in considerably fewer number of rounds. Interestingly, for small
values of e, FastCover returns a solution that is even smaller than the centralized
greedy algorithm.

7.4.2 Personalized Movie Recommendation with Spark

Our personalized public-private recommendation experiment involves FastCover

applied to a set of 1,313 movies, and 20,000,263 users’ ratings from 138,493 users of
the MovieLens database [Mov]. All selected users rated at least 20 movies. Each movie
is associated with a 25 dimensional feature vector calculated from users’ ratings. We
use the inner product of the non-normalized feature vectors to compute the similarity
si,j between movies i and j [LWD15]. Our final objective function consists of 138,493
coverage functions -one per user- and a global sum-coverage function defined on the
whole pool of movies (see Eq. (7.2.1)). Each function is normalized by its maximum
value to make sure that all functions have the same scale.

Figures 7.2a, 7.2b, 7.2c show the ratio of the size of the solutions obtained by Fast -

Coverage
0.1 0.2 0.3 0.4 0.5

So
lu

tio
n

se
t s

iz
e

100

200

300

400

500

600

700

800

900 Union of the summaries for each user
Single summary for all users

(a) Movie (1K)
Solution set size

1M 2M 3M 4M 5M 6M 7M

Fa
st

C
ov

er
 s

pe
ed

up

0

1

2

3

4

5

6

7

8

(b) Friendster (14M)

Figure 7.3: Performance of FastCover vs. other baselines. a) solution set size vs. coverage
for simultaneously covering all users vs. covering users one by one and taking the union.
The recommendation is on a set of 1000 movies for 1000 users. b) Exponential speedup of
FastCover over D isCover on a subgraph of 14M nodes.

104

7.4. Experiments

Cover to that of the greedy algorithm. The figures demonstrate the results for 10%,
20%, and 30% covers for all the 138,493 users’ utility functions. The parameter au is
set to 0.7 for all users. We scaled down the number of iterations by a factor of 0.01, so
that the corresponding bars can be shown in the same figures. Again, FastCover

was able to find a considerably smaller solution than the centralized greedy. Here, we
couldn’t run D isCover because of its prohibitive running time on Spark.

Figure 7.3a shows the size of the solution set obtained by FastCover for building
recommendations from a set of 1000 movies for 1000 users vs. the size of the merged
solutions found by finding recommendations separately for each user. It can be seen
that FastCover was able to find a much smaller solution by covering all the functions
at the same time.

7.4.3 Large Scale Dominating Set with Spark

In order to be able to compare the performance of our algorithm with D isCover more
precisely, we applied FastCover to the Friendster network consists of 65,608,366
nodes and 1,806,067,135 edges [YL15]. This dataset was used in Chapter 6 to evalu-
ate the performance of D isCover. This is a trivial instance of public-private data
summarization as all the data is public and there is a single utility function. We use
the dominating set problem to run a large-scale application for which D isCover

terminates in a reasonable amount of time and its performance can be compared to our
algorithm FastCover.

Figures 7.4a, 7.4b, 7.4c show the performance of FastCover for obtaining covers
for 50%, 40%, 30% of the whole graph, compared to the centralized greedy solution.
Again, the size of the solution obtained by FastCover is smaller than the greedy
algorithm for small values of e. Note that running the centralized greedy is impractical
if the dataset cannot fit into the memory of a single machine. Figure 7.4d compares
the solution set size and the number of rounds for FastCover and D isCover with
different values of e and a. The points in the bottom left correspond to the solution
obtained by FastCover which confirm its superior performance. We further measured
the actual running time of both algorithms on a smaller instance of the same graph
with 14,043,721 nodes. We tuned e and a to get solutions of approximately equal size
for both algorithms. Figure 7.3b shows the speedup of FastCover over D isCover.

105

Chapter 7. Fast Distributed Submodular Cover: Public-Private Data Summarization

It can be observed that by increasing the coverage value L, FastCover shows an
exponential speedup over D isCover.

Number of rounds
10 20 30

So
lu

tio
n

se
t s

iz
e

#104

4.4

4.5

4.6

4.7

4.8

4.9

5

5.1
FastCover
Greedy

0=0.3

0=0.5

0=0.1

(a) Friendster (30%)
Number of rounds

10 20 30 40

So
lu

tio
n

se
t s

iz
e

#105

1.05

1.1

1.15

1.2

1.25

1.3

1.35
FastCover
Greedy

0=0.3

0=0.1

0=0.5

(b) Friendster (40%)

Number of rounds
10 20 30 40 50

So
lu

tio
n

se
t s

iz
e

#105

2.7

2.75

2.8

2.85

2.9

2.95

3

3.05

3.1
FastCover
Greedy

0=0.1

0=0.3

0=0.5

(c) Friendster (50%)
Number of rounds

0 50 100 150 200

So
lu

tio
n

se
t s

iz
e

#105

2.6

2.8

3

3.2

3.4

3.6

3.8

4 DisCover ,=0.1
DisCover ,=0.2
DisCover ,=0.4
DisCover ,=1.0
FastCover 0=0.5
FastCover 0=0.3
FastCover 0=0.1

(d) Friendster (50%)

Figure 7.4: Performance of FastCover vs. other baselines. Solution set size vs. the number
of rounds for covering a) 30%, b) 40%, c) 50% of the Friendster network with 65,608,366
vertices. d) solution set size vs. the number of rounds for FastCover and D isCover for
covering 50% of the Friendster network.

106

7.5. Summary

7.5 Summary

In this chapter, we introduced the public-private model of data summarization moti-
vated by privacy concerns of recommender systems. We also developed a fast distributed
algorithm, FastCover, that provides a succinct summary for all users without violat-
ing their privacy. We showed that FastCover returns a solution that is competitive to
that of the best centralized, polynomial-time algorithm (i.e., greedy solution). We also
showed that FastCover runs exponentially faster than D isCover, the distributed
algorithm introduced in the previous chapter. The superior practical performance of
FastCover against all the benchmarks was demonstrated through a large set of
experiments, including movie recommendation, location recommendation and dominat-
ing set (all were implemented with Spark). Our theoretical results combined with the
practical performance of FastCover makes it the only existing distributed algorithm
for the submodular cover problem that truly scales to massive data.

107

Chapter 7. Fast Distributed Submodular Cover: Public-Private Data Summarization

108

Part III

Streaming Algorithms

109

8
Overview of part III

In part II of the Thesis, we studied distributed algorithms for submodular summariza-
tion. In this part, we consider extracting representative elements from a large stream
of data “on the fly”. Such methods –with a limited memory available to them– can
process quickly arriving data in a timely manner, facilitating real-time analytics.

Constrained streaming submodular maximization. The need for real time analysis
of rapidly producing data streams (e.g., video and image streams) motivated the design
of streaming algorithms that can efficiently extract and summarize useful information
from massive data “on the fly”. Such problems can often be reduced to maximizing
a submodular set function subject to various constraints. While efficient streaming
methods have been recently developed for monotone submodular maximization, in
a wide range of applications, such as video summarization, the underlying utility
function is non-monotone, and there are often various constraints imposed on the
optimization problem to consider privacy or personalization. In Chapter 9 we develop
the first efficient single pass streaming algorithm, Streaming Local Search, that
for any streaming monotone submodular maximization algorithm with approximation
guarantee a under a collection of independence systems I , provides a constant 1/

�
1 +

2/
p

a + 1/a + 2d(1 +
p

a)
�

approximation guarantee for maximizing a non-monotone
submodular function under the intersection of I and d knapsack constraints. Our

111

Chapter 8. Overview of part III

experiments show that for video summarization, our method runs more than 1700
times faster than previous work, while maintaining practically the same performance.

Deletion-robust streaming submodular maximization. How can we summarize a
dynamic data stream when elements selected for the summary can be deleted at any
time? This is an important challenge in online services, where the users generating the
data may decide to exercise their right to restrict the service provider from using (part
of) their data due to privacy concerns. Motivated by this challenge, we introduce the
dynamic deletion-robust submodular maximization problem. In Chapter 10, we develop the
first resilient streaming algorithm, called Robust -Streaming, with a constant factor
approximation guarantee to the optimum solution. We evaluate the effectiveness of
our approach on several real-world applications, including summarizing (1) streams of
geo-coordinates (2); streams of images; and (3) click-stream log data, consisting of 45
million feature vectors from a news recommendation task.

Summary of contributions. The key contributions of this part of the Thesis are:

1. We consider submodular optimization in a streaming setting, where at any point
of time the algorithm has access only to a small fraction of data stored in primary
memory. We develop novel, efficient approximation algorithms:

• Streaming Local Search, a one pass streaming algorithm for (non-
monotone) submodular maximization under a collection of independence
systems and d knapsacks constrains, and

• Robust -Streaming, a deletion robust method for summarizing a dynamic
data stream when subsets of elements of the summary can be deleted at any
time.

2. We theoretically analyze our approaches, and provide approximation guarantees
for the quality of the solutions.

3. We demonstrate the performance of our algorithms on several real-world stream-
ing problems, including

• video summarization on YouTube and Open Video Project (OVP) datasets,
where our method obtained more than 1700 times speedup compare to
previous work,

112

• dynamic summarization of a collection of images based on a combination of
594 submodular functions with 20% deletion,

• dynamic summarization of a stream of geolocation data with 70% deletion,
and

• large scale click through prediction based on 45,811,883 user visits from the
Featured Tab of the Today Module on Yahoo! Front Page, with 99% deletion.

113

9
Constrained Streaming Submodular

Maximization

Previously, we have seen that classical methods, such as the celebrated greedy algorithm
[NWF78a] or its accelerated versions [Min78; BV14, Chapter 12] require random access
to the entire data, make multiple passes, and select elements sequentially in order
to produce near optimal solutions. Such centralized methods do not scale to large
problems (where the data itself arrives at a fast pace) for several reasons: 1) the high
volume of data does not fit in the main memory of the computing device (space
limitation), 2) summaries cannot be updated instantaneously due to the sequential
nature of these algorithms (time limitation), and 3) real-time decisions cannot be made
as a result of multiple passes over the entire data (time-space limitation).

These limitations have recently inspired the design of streaming algorithms for con-
strained submodular maximization that are able to gain insights from data as it is
generated [CGQ15; Bad+14; CK14]. These methods, while providing near-optimal so-
lutions, only access a small fraction of data at any given time and are able to extract
representative elements on the fly. Although efficient streaming methods have been
recently developed for maximizing a monotone submodular function f with a variety of
constraints, there is no effective solution for non-monotone submodular maximization
under general types of constraints in the streaming setting.

115

Chapter 9. Constrained Streaming Submodular Maximization

In this chapter, we are motivated by applications of non-monotone submodular maxi-
mization. In particular, we consider video summarization in a streaming setting, where
video frames are produced at a fast pace, and we want to keep an updated summary of
the video so far, with little or no memory overhead. This has important applications e.g.
in surveillance cameras, wearable cameras, and astro video cameras, which generate
data at too rapid a pace to efficiently analyze and store it in main memory. The same
framework can be applied more generally in many settings where we need to extract a
small subset of data from a large stream to train or update a machine learning model.
At the same time, various constraints may be imposed by the underlying summarization
application. These may range from a simple limit on the size of the summary to more
complex restrictions such as focusing on particular individuals or objects, or excluding
them from the summary. These requirements often arise in real-world scenarios to
consider privacy concerns (e.g. in case of surveillance cameras) or personalization
(according to users’ interests). We will discuss other concrete problem instances, with
their corresponding non-monotone submodular objective functions, and various types
of constraints in Chapter 13.

We provide Streaming Local Search, the first single pass streaming algorithm
for non-monotone submodular function maximization, subject to the intersection of a
collection of independence systems I and d knapsack constraints. Our approach builds
on local search, a widely used technique for maximizing non-monotone submodular
functions in a batch mode. Local search, however, needs multiple passes over the input,
and hence does not directly extend to the streaming setting, where we are only allowed
to make a single pass over the data. This work provides a general framework into which
we can plug in any streaming monotone submodular maximization algorithm Ind -
Stream with approximation guarantee a under a collection of independence systems
I . In particular, any of the monotone streaming algorithms discussed in Section 2.3.2
can be used as IndStream (See Table 2.3 for a list of single pass streaming algorithms).
For any such monotone algorithm, Streaming Local Search provides a constant
1/
�
1 + 2/

p
a + 1/a + 2d(1 +

p
a)
�

approximation guarantee for maximizing a non-
monotone submodular function under the intersection of I and d knapsack constraints.
Furthermore, the memory and update time of Streaming Local Search scales
linearly with O(log(k)/

p
a) compare to IndStream, where k is the size of the largest

feasible solutions. Using parallel computation, the increase in the update time can be
reduced to O(1/

p
a), making our approach an appealing solution in real-time scenarios.

116

9.1. Streaming Submodular Maximization

We show that for video summarization, our algorithm leads to streaming solutions
that provide competitive utility when compared with those obtained via centralized
methods, at a small fraction of the computational cost, i.e. more than 1700 times faster.

9.1 Streaming Submodular Maximization

We consider the problem of summarizing a stream of data V, by selecting, on the fly, a
subset that maximizes a (non-monotone) submodular utility function f subject to a set
z of constraints:

S⇤ = arg max
S2z

f (S)

In this work, we consider a collection of independence systems and multiple knapsack
constraints. Matroids, matchoids, and p-systems are independence systems with addi-
tional properties (See Section 2.2.2 for definitions). For knapsack constraints, we use
cij to denote the cost of element j 2 V in the i-th knapsack. Without loss of generality,
throughout this chapter we assume that all the knapsack budgets are 1. I.e., we would
like to find a set S 2 z that maximizes f where for each knapsack i 2 [d], we have
Âe2S ci(e)  1.

In context of streaming submodular maximization we assume that the ground set
V = {e1, · · · , en} is received from the stream in some arbitrary order. At each point t
in time, the algorithm may maintain a memory Mt ⇢ V of points, and must be ready
to output a candidate feasible solution St ⇢ Mt, such that St 2 z. Upon receiving an
element et from the stream, the algorithm may elect to 1) insert it into its memory, 2)
discard some elements in its memory and accept et instead, or 3) discard et.

The performance of a streaming algorithm is measured by four basic parameters: 1)
the number of passes the algorithm needs to make over the data stream, 2) the memory
required by the algorithm (i.e., maxt |Mt|), 3) the running time of the algorithm, in
particular the number of oracle queries (evaluations of f) made, 4) the approximation
ratio, i.e., f (ST)/OPT where ST is the final solution produced by the algorithm1.

1Note that T can be bigger than n, if the algorithm makes multiple passes over the data.

117

Chapter 9. Constrained Streaming Submodular Maximization

9.2 Video Summarization with DPPs

Suppose that we are receiving a stream of video frames, e.g. from a surveillance or a
wearable camera, and we wish to select a subset of frames that concisely represents all
the diversity contained in the video. Determinantal Point Processes (DPPs), discussed
in Section 3.1.2, are good tools for modeling diversity in such applications. The most
diverse and informative subset of frames can be found by maximizing a non-monotone
submodular function f (S) = log det(LS), where L is a positive semidefinite kernel
matrix that captures the similarity between data points [KT+12].

Various constraints can be imposed while maximizing the above non-monotone submod-
ular utility function. In its simplest form, we can partition the video into T segments,
and define a diversity-reinforcing partition matroid to select at most k frames from
each segment. Alternatively, various content-based constraints can be applied, e.g., we
can use object recognition to select at most 0  ki frames from person i in the video, or
to find a summary that is focused on a particular person or object. Finally, each frame
can be associated with multiple costs, based on qualitative factors such as resolution,
contrast, luminance, or the probability that the given frame contains an object. Multiple
knapsack constraints, one for each quality factor, can then limit the total costs of the
elements of the solution and enable us to produce a summary closer to human-created
summaries by filtering uninformative frames.

9.3 Streaming algorithm for constrained submodular max-
imization

In this section, we describe our streaming algorithm for maximizing a non-monotone
submodular function subject to the intersection of a collection of independence systems
and d knapsack constraints. Our approach builds on local search, which is a powerful
and widely used technique for maximizing non-monotone submodular functions. It
starts from a candidate solution S and iteratively increases the value of the solution by
either including a new element in S or discarding one of the elements of S [FMV11].
Gupta et al. [Gup+10a] showed that similar results can be obtained with much lower
complexity by using algorithms for monotone submodular maximization, which, however,
are run multiple times. Despite their effectiveness, these algorithms need multiple passes

118

9.3. Streaming algorithm for constrained submodular maximization

over the input and do not directly extend to the streaming setting, where we are only
allowed to make a single pass over the data. In the sequel, we show how local search
can be implemented in a single pass in the streaming setting.

9.3.1 Streaming Local Search for a collection of independence sys-
tems

The simple yet crucial observation underlying the approach of Gupta et al. [Gup+10a]
is the following. The solution obtained by approximation algorithms for monotone
submodular functions often satisfy f (S) � a f (S [C⇤), where 1 � a > 0, and C⇤ is the
optimal solution. In the monotone case f (S [C⇤) � f (C⇤), and we obtain the desired
approximation factor f (S) � a f (C⇤). However, this does not hold for non-monotone
functions. But, if f (S \ C⇤) provides a good fraction of the optimal solution, then we
can find a near-optimal solution for non-monotone functions even from the result of
an algorithm for monotone functions, by pruning elements in S using unconstrained
maximization. This still retains a feasible set, since the constraints are downward closed.
Otherwise, if f (S \ C⇤)  eOPT, then running another round of the algorithm on the
remainder of the ground set will lead to a good solution.

Backed by the above intuition, we aim to build multiple disjoint solutions simultane-

Algorithm 9: Streaming Local Search for independence systems
Input: f : 2V ! R+, a membership oracle for independence systems I ⇢ 2V ; and

a monotone streaming algorithm IndStream with a-approximation under I .
Output: A set S ✓ V satisfying S 2 I .

1: while stream is not empty do
2: . e is the next element from the stream
3: D0 {e}
4: . Local Search iterations
5: for i = 1 to d1/

p
a + 1e do

6: . Di is the discarded set by IndStreami
7: [Di, Si]= IndStreami(Di�1)
8: S0i =Unconstrained -Max(Si).
9: end for

10: S = arg maxi{ f (Si), f (S0i)}
11: end while
12: Return S

119

Chapter 9. Constrained Streaming Submodular Maximization

ously within a single pass over the data. Let IndStream be a single pass streaming
algorithm for monotone submodular maximization under a collection of independence
systems, with approximation factor a. In particular, any of the monotone streaming
algorithms listed in Table 2.3 can be used as IndStream. Upon receiving a new
element from the stream, IndStream can choose (1) to insert it into its memory,
(2) to replace one or a subset of elements in the memory by it, or otherwise (3) the
element gets discarded and cannot be used later by the algorithm. The key insight for
our approach is that it is possible to build other solutions from the elements discarded
by IndStream. Consider a chain of q = d1/

p
a + 1e instances of our streaming

algorithm, i.e. {IndStream1, · · · , IndStreamq}. Any element e received from the
stream is first passed to IndStream1. If IndStream1 discards e, or adds e to its
solution and instead discards a set D1 of elements from its memory, then we pass the
set D1 of discarded elements on to be processed by IndStream2. Similarly, if a set of
elements D2 is discarded by IndStream2, we pass them to IndStream3, and so on.
The elements discarded by the last instance IndStreamq are discarded forever. Finally,
at any point in time that we want to return the final solution, we run unconstrained
submodular maximization (e.g. the algorithm of [Buc+15]) on each solution Si obtained
by IndStreami to get S0i, and return the best solution among {Si, S0i} for i 2 [1, q].

Theorem 22. Let IndStream be a streaming algorithm for monotone submodular maximiza-
tion under a collection of independence systems I with approximation guarantee a. Algorithm
9 returns a set S 2 I with

f (S) � 1
(1 + 1/

p
a)2 OPT,

using memory O(M/
p

a), and average update time O(T/
p

a) per element, where M and T
are the memory and update time of IndStream.

The proofs of the theorems in this chapter can be found in Appendix A.4.

We make Theorem 22 concrete via an example: Chekuri et al [CGQ15] proposed a
1/4p-approximation algorithm for maximizing a monotone submodular function under
a p-matchoid constraint in the streaming setting. Using this algorithm as IndStream

in our Streaming Local Search, we obtain the following result:

Corollary 23. With Streaming Greedy of [CGQ15] as IndStream, Streaming

Local Search yields a solution S 2 I with approximation guarantee 1/(1+ 2pp)2, using

120

9.3. Streaming algorithm for constrained submodular maximization

O(
ppk log(k)/e) memory and O(pppk log(k)/e) average update time per element, where I

are the independent sets of a p-matchoid, and k is the size of the largest feasible solution.

The above 1/(4p + 4pp + 1) approximation is a significant improvement over the work
of [CGQ15], for maximizing a non-monotone function under a p-matchoid constraint.
Note that any monotone streaming algorithm with approximation guarantee a under a
collection of independence systems I can be integrated into Algorithm 9 to provide
approximation guarantees for non-monotone submodular maximization under the
same set I of constraints. For example, as soon as there is a subroutine for monotone
streaming submodular maximization under a p-system in the literature, one can use
it in Algorithm 9 as IndStream, and get the guarantee provided in Theorem 22 for
maximizing a non-monotone submodular function under a p-system, in the streaming
setting.

9.3.2 Streaming Local Search for independence systems and multi-
ple knapsack constraints

To respect multiple knapsack constraints in addition to the collection of independence
systems I , we integrate the idea of a density threshold [BV14; Svi04] into our local search
algorithm. We use a (fixed) density threshold r to restrict the IndStream algorithm to
only pick elements if the function value per unit size of the selected elements is above
the given threshold. We call this new algorithm IndStreamDensity. The threshold
should be carefully chosen to be below the value/size ratio of the optimal solution. To
do so, we need to know (a good approximation to) the value of the optimal solution
OPT. To obtain a rough estimate of OPT, it suffices to know the maximum value
m = maxe2V f (e) of any singleton element: submodularity implies that mOPT km,
where k is an upper bound on the cardinality of the largest feasible solution satisfying
all constraints. We update the value of the maximum singleton element on the fly
[Bad+14], and lazily instantiate the thresholds to log(k)/e different possible values
(1 + e)i 2 [g, gk], for g defined in Algorithm 10. We show that for at least one of the
discretized density thresholds we obtain a good enough solution.

Theorem 24. Streaming Local Search (outlined in Alg. 10) has an approximation

121

Chapter 9. Constrained Streaming Submodular Maximization

Algorithm 10: Streaming Local Search for independence systems I and d
knapsacks

Input: f : 2V ! R+, a membership oracle for independence systems I ⇢ 2V ; d
knapsack-cost functions cj : V ! [0, 1]; and an upper bound k on the cardinality
of the largest feasible solution.

Output: A set S ✓ V satisfying S 2 I and cj(S)  1 8j.
1: m = 0.
2: while stream is not empty do
3: e is the next element from the stream
4: D0 {e}
5: m = max(m, f (e)), em = arg maxe2V f (e).
6: g = 2·m

(1+1/
p

a)(1+1/
p

a+2d
p

a)

7: R =
�

g, (1 + e)g, (1 + e)2
g, (1 + e)3

g, . . . , gk

8: for r 2 R in parallel do

9: . Local Search

10: for i = 1 to d1/
p

a + 1e do
11: . picks elements only if

fSi (e)

Âd
j=1 cje

� r

12: [Di, Si]= IndStreamDensityi(Di�1, r)
13: . unconstrained submodular maximization
14: S0i =Unconstrained -Max(Si).
15: end for
16: S

r

= arg maxi{ f (Si), f (S0i)}
17: end for
18: S = arg max

r2R f (S
r

)
19: end while
20: Return arg max{ f (S), f ({em})

guarantee

f (S) � 1� e

(1 + 1/
p

a)(1 + 2d
p

a + 1/
p

a)
OPT,

with memory O(M log(k)/(e
p

a)), and average update time O(T log(k)/(e
p

a)) per element,
where k is an upper bound on the size of the largest feasible solution, and M and T are the
memory and update time of the IndStream algorithm.

Corollary 25. By using Streaming Greedy of [CGQ15], we get that Streaming

Local Search has an approximation ratio (1 + e)(1 + 4p + 4pp + d(2 + 1/pp)) with
O(
ppk log2(k)/e

2) memory and update time O(pppk log2(k)/e

2) per element, where I are

122

9.4. Experiments

the independent sets of the p-matchoid constraint, and k is the size of the largest feasible solution.

Beyond the Black-Box. Although the DPP probability in Eq. 3.1.4 only depends on
the selected subset S, in many applications f (S) may depend on the entire data set V. So
far, we have adopted the common assumption that f is given in terms of a value oracle
(a black box) that computes f (S). Although in practical settings this assumption might
be violated, as we discussed in Section 5.2.5, many objective functions are additively
decomposable over the ground set V. That means, f (S) = 1

V Âe2V fe(S), where fe(S) is a
non-negative submodular function associated with every data point e 2 V, and fe(.)
can be evaluated without access to the full set V. For decomposable functions, we can
approximate f (S) by

fW(S) =
1

W Â
e2W

fe(S),

where W is a uniform sample from the stream (e.g. using reservoir sampling [Vit85]).

Theorem 26 (Badanidiyuru et al. [Bad+14]). Assume that f is decomposable, all of fe(S)
are bounded, and w.l.o.g. | fe(S)| 1. Let W be uniformly sampled from V. Then for |W| �
2k2 log(2/d)+2k3 log(V)

#

2 , we can ensure that with probability 1�d, Streaming Local Search

guarantees

f (S) � 1� e

(1 + 1/
p

a)(1 + 2d
p

a + 1/
p

a)
(OPT� #).

9.4 Experiments

In this section, we apply Streaming Local Search to video summarization in the
streaming setting. The main goal of this section is to validate our theoretical results and
demonstrate the effectiveness of our method in practical scenarios, where the existing
streaming algorithms are incapable of providing any guarantee for the quality of the
solution. In particular, for streaming non-monotone submodular maximization under
a collection of independence systems and multiple knapsack constraints, none of the
previous works provide any theoretical guarantees. We use the streaming algorithm
of [CGQ15] for monotone submodular maximization under a p-matchoid constraint
as IndStream, and compare the performance of our method with exhaustive search
[Gon+14], and a centralized method for maximizing a non-monotone submodular

123

Chapter 9. Constrained Streaming Submodular Maximization

function under a p-system and multiple knapsack constraints, Fantom, that will be
introduced in Chapter 13.

Dataset. For our experiments, we use the Open Video Project (OVP), and the YouTube
datasets with 50 and 39 videos, respectively [DA+11]. We use the pruned video frames
as described in [Gon+14], where one frame is uniformly sampled per second, and
uninformative frames are removed. Each video frame is then associated with a feature
vector that consists of Fisher vectors [PD07] computed from SIFT features [Low04],
contextual features, and features computed from the frame saliency map [Rah+10].
The size of the feature vectors, vi, are 861 and 1581 for the OVP and YouTube dataset,
respectively.

The DPP kernel L (c.f. Section 3.1.2), can be parametrized and learned via maximum
likelihood estimation [Gon+14]. For parametrization, we follow [Gon+14], and use both
a linear transformation, i.e. Lij = vT

i WTWvi, as well as a non-linear transformation
using a one-hidden-layer neural network, i.e. Lij = zT

i WTWzj where zi = tanh(Uvi),
and tanh(.) stands for the hyperbolic transfer function. The parameters, U and W or just
W, are learned on 80% of the videos, selected uniformly at random. By the construction
of [Gon+14], we have det(L) > 0. However, det(L) can take values less than 1, and
the function is non-monotone. We added a positive constant to the function values to
make them non-negative. Following [Gon+14] for evaluation, we treat each of the 5
human-created summaries per video as ground truth for each video.

Sequential DPP. To capture the sequential structure in video data, [Gon+14] pro-
posed a sequential DPP. Here, a long video sequence is partitioned into T disjoint yet
consecutive short segments, and for selecting a subset St from each segment t 2 [1, T],
a DPP is imposed over the union of the frames in the segment t and the selected subset
St�1 in the immediate past frame t� 1. The conditional distribution of the selected

subset from segment t is thus given by P(St|St�1) =
det(KSt[St�1)

det(It+KSt�1[Vt)
, where Vt denotes

all the video frames in segment t, and It is a diagonal matrix in which the elements
corresponding to St�1 are zeros and the elements corresponding to St are 1. Intuitively,
the sequential DPP only captures the diversity between the frames in segment t, and
the selected subset St�1 from the immediate past segment t� 1. MAP inference for
the sequential DPP is as hard as for the standard DPP, but submodular optimization

124

9.4. Experiments

Table 9.1: Performance of various video summarization methods with segment size 10 on
YouTube and OVP datasets, measured by F-Score (F), Precision (P), and Recall (R). The methods
marked by (c) are centralized.

Alg. of [Gon+14](c) Fantom [ch. 13](c) Streaming LS
Linear N. Nets Linear N. Nets Linear N. Nets

YouTube
F 57.8±0.5 60.3±0.5 57.7±0.5 60.3±0.5 58.3±0.5 59.8±0.5
P 54.2±0.7 59.4±0.6 54.1±0.5 59.1±0.6 55.2±0.5 58.6±0.6
R 69.8±0.5 64.9±0.5 70.1±0.5 64.7±0.5 70.1±0.5 64.2±0.5

OVP
F 75.5±0.4 77.7±0.4 75.5±0.3 78.0±0.5 74.6±0.2 75.6±0.5
P 77.5±0.5 75.0±0.5 77.4±0.3 75.1±0.7 76.7±0.2 71.8±0.7
R 78.4±0.5 87.2±0.3 78.4±0.3 88.6±0.2 76.5±0.3 86.5±0.2

techniques can be used to find approximate solutions. In our experiments, we use a
sequential DPP as the utility function in all the algorithms.

Results. Table 9.1 shows the F-score, Precision and Recall for our algorithm, that of
[Gon+14] and Fantom (Alg. 15 from Chapter 13), for segment size |Vt| = 10. It can
be seen that in all three metrics, the summaries generated by Streaming Local

Search are competitive to the two centralized baselines.

Figures 9.1a, 9.2a show the ratio of the F-score obtained by Streaming Local

Search and Fantom vs. the F-score obtained by exhaustive search [Gon+14] for
varying segment sizes, using linear embeddings on the YouTube and OVP datasets.
It can be observed that our streaming method achieves the same solution quality as
the centralized baselines. Figures 9.1a, 9.2a show the speedup of Streaming Local

Search and Fantom over the method of [Gon+14], for varying segment sizes. We
note that both Fantom and Streaming Local Search obtain a speedup that is
exponential in the segment size. In summary, Streaming Local Search achieves
solution qualities comparable to [Gon+14], but 1700 times faster than [Gon+14], and 2
times faster than Fantom for larger segment size. This makes our streaming method
an appealing solution for extracting real-time summaries. In real-world scenarios, video
frames are typically generated at such a fast pace that larger segments make sense.
Moreover, unlike the centralized baselines that need to first buffer an entire segment,
and then produce summaries, our method generates real-time summaries after receiving
each video frame. This capability is crucial in privacy sensitive applications.

125

Chapter 9. Constrained Streaming Submodular Maximization

10 12 14 16 18
Segment size

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 F
-s

co
re

(a) YouTube Linear

10 12 14 16 18
Segment size

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 F
-s

co
re

(b) YouTube N. Nets

10 12 14 16 18
Segment size

0

500

1000

1500

Sp
ee

du
p

Stream Local Search
Fantom

(c) YouTube Linear

10 12 14 16 18
Segment size

0

500

1000

1500

2000
Sp

ee
du

p
Streaming Local Search
Fantom

(d) YouTube N. Nets

Figure 9.1: Performance of Streaming Local Search compared to the other benchmarks. a)
shows the ratio of the F-score obtained by Streaming Local Search and Fantom vs. the F-score obtained by
the method of [Gon+14], using the sequential DPP objective and linear embeddings on YouTube dataset.
b) shows the relative F-scores for non-linear features from a one-hidden-layer neural network. c), d) show
the speed up of Streaming Local Search and Fantom over the method of [Gon+14].

Figures 9.1b and 9.2b show similar results for nonlinear representations, where a one-
hidden-layer neural network is used to infer a hidden representation for each frame.
We make two observations: First, non-linear representations generally improve the
solution quality. Second, as before, our streaming algorithm achieves exponential speed
up (Figures 9.1d and 9.2d).

Finally, we also compared the three algorithms with a “standard”, non-sequential DPP
as the utility function, for generating summaries of length 5% of the video length.
Again, our method yields competitive performance with a much shorter running time

126

9.4. Experiments

10 12 14 16 18
Segment size

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 F
-s

co
re

(a) OVP Linear

10 12 14 16 18
Segment size

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 F
-s

co
re

(b) OVP N. Nets

10 12 14 16 18
Segment size

0

500

1000

1500

2000

Sp
ee

du
p

Streaming Local Search
Fantom

(c) OVP Linear

10 12 14 16 18
Segment size

0

500

1000

1500

2000

Sp
ee

du
p

Streaming Local Search
Fantom

(d) OVP N. Nets

Figure 9.2: Performance of Streaming Local Search compared to the other benchmarks. a)
shows the ratio of the F-score obtained by Streaming Local Search and Fantom vs. the
F-score obtained by the method of [Gon+14], using the sequential DPP objective and linear embeddings
on OVP dataset. b) shows the relative F-scores for non-linear features from a one-hidden-layer neural
network. c), d) show the speedup of Streaming Local Search and Fantom over the method of [Gon+14].

(Figures 9.3c, 9.3a, 9.3d, 9.3b).

Using constraints to generate customized summaries. In our second experiment, we
show how constraints can be applied to generate customized summaries. We apply
Streaming Local Search to YouTube video 106, which is a part of America’s
Got Talent series. It features a singer and three judges in the judging panel. Here, we
generated two sets of summaries using different constraints. The top row in Figure
9.4 shows a summary focused on the judges. Here we considered 3 uniform matroid

127

Chapter 9. Constrained Streaming Submodular Maximization

Fantom Streaming Local Search Random
0

0.2

0.4

0.6

0.8

1 Utility
Running time

(a) YouTube Linear

Fantom Streaming Local Search Random
0

0.2

0.4

0.6

0.8

1 Utility
Running time

(b) YouTube N. Nets

Fantom Streaming Local Search Random
0

0.2

0.4

0.6

0.8

1 Utility
Running time

(c) OVP Linear

Fantom Streaming Local Search Random
0

0.2

0.4

0.6

0.8

1 Utility
Running time

(d) OVP N. Nets

Figure 9.3: Performance of Streaming Local Search compared to the other benchmarks. a),
c) show the utility and running time for Streaming Local Search and random selection vs.
the utility and running time of Fantom, using the original DPP objective and linear embeddings on
YouTube and OVP datasets. b), d) show similar qualities using non-linear features from a one-hidden-layer
neural network.

constraints to limit the number of frames chosen containing each of the judges, i.e.,
I = {S✓V : |S \ Vj|  lj}, where Vj ✓V is the subset of the frames (not necessarily
non-overlapping) including judge j, and j 2 [1, 3]. The limits lj for all the matroid
constraints are set to 3. To produce real-time summaries while receiving the video,
we used the Viola-Jones algorithm [VJ04] to detect faces in each frame, and trained a
multiclass support vector machine using histograms of oriented gradients (HOG) to
recognize different faces. The bottom row in Figure 9.4 shows a summary focused on
the singer using one matroid constraint.

128

9.5. Related Work

Figure 9.4: Summary focused on judges, and singer for YouTube video 106.

Figure 9.5: Summary produced by method of [Gon+14] (top row), vs. Streaming Local Search

(middle row), and a user selected summary (bottom row), for YouTube video 105.

To further enhance the quality of the summaries, we assigned different weights to
the frames based on the probability for each frame to contain objects, using selective
search [Uij+13]. Assigning a higher cost to the frames with a low probability of having
objects, and having a knapsack constraint that limits the total cost of the elements of
the solution, let us filter uninformative and blurry frames, and produce a summary
closer to human-created summaries. Figure 9.5 compares the result obtained by our
method and the method of [Gon+14] with a human-created summary.

9.5 Related Work

9.5.1 Video Summarization

Video summarization aims to retain diverse and representative frames according
to criteria such as representativeness, diversity, interestingness, or importance of the
frames [NMZ03; LK06; LGG12]. This often requires hand-crafting to combine the
criteria effectively. Recently, [Gon+14] proposed a supervised subset selection method
using DPPs. Despite its superior performance, this method uses an exhaustive search

129

Chapter 9. Constrained Streaming Submodular Maximization

for MAP inference, which makes it inapplicable for producing real-time summaries.

9.5.2 Local Search

Local search has been widely used for submodular maximization subject to various
constraints. This includes the analysis of greedy and local search by Nemhauser et al.
[NWF78b] providing a 1/(p + 1) approximation for monotone submodular maximiza-
tion under p matroid constraints. Among the most recent results for non-monotone
submodular maximization are a (1 + O(1/pp))p-approximation subject to a p-system
constraints [FHK17], a 1/5� # approximation under d knapsack constraints [Lee+09],
and a (p + 1)(2p + 2d + 1)/p-approximation for maximizing a general submodular
function subject to a p-system and d knapsack constraints [MZK16].

9.6 Summary

We have developed the first streaming algorithm, Streaming Local Search, for
maximizing non-monotone submodular functions subject to a collection of indepen-
dence systems and multiple knapsack constraints. In fact, our work provides a general
framework for converting monotone streaming algorithms to non-monotone stream-
ing algorithms for general constrained submodular maximization. We demonstrated
its applicability to streaming video summarization with various personalization con-
straints. Our experimental results showed that our method is able to speed up the
summarization task more than 1700 times, while achieving a similar performance to the
centralized baselines. This makes it a promising approach for real-time summarization
tasks. Indeed, our method applies to any summarization task with a non-monotone
(nonnegative) submodular utility function, and a collection of independence systems
and knapsack constraints. This includes but is not limited to the other concrete problem
instances, with their corresponding non-monotone submodular objective functions,
and various types of constraints that will be discussed in Chapter 13. Streaming

Local Search facilitates real-time analytics and predictions on large streams of
data, by efficiently extracting online summaries, in applications with a (non-monotone)
submodular utility function and various constraints.

130

10
Deletion-Robust Submodular

Maximization

As we saw in Chapter 9, streaming algorithms for submodular summarization not
only avoids the need for vast amounts of random-access memory but also provides
predictions in a timely manner based on the data seen so far, facilitating real-time
analytics. While extracting useful information from big data in real-time promises many
benefits, the development of more sophisticated methods for extracting, analyzing and
using personal information has made privacy a major public issue. Various web services
rely on the collection and combination of data about individuals from a wide variety
of sources. At the same time, the ability to control the information an individual can
reveal about herself in online applications has become a growing concern.

The “right to be forgotten” (with a specific mandate for protection in the European Data
Protection [Reg12], and concrete regulation [EU15] released in 2014) allows individuals
to claim the ownership of their personal information and gives them the authority to
their online activities (videos, photos, tweets, etc). As an example, consider a road traffic
information system that continuously monitors traffic speeds, travel times and incidents
in real time. It combines and matches the massive amount of control messages available
at the cellular network with GPS coordinates for each message while generating the area-
wide traffic information service. However, some consumers, while using the service

131

Chapter 10. Deletion-Robust Submodular Maximization

and providing some data, may not be willing to share information about specific
locations due to privacy considerations (e.g., their place of residence). With the right to
be forgotten, an individual can have certain data deleted from online database records
so that third parties (e.g., search engines) can no longer trace them [Web11]. The data
could be in the form of messages, pictures, events, and interests posted to an online
social networking website (e.g., Facebook, Flickr, Google+, or Twitter). Similarly, it could
be in the form of videos and images shared by a Google Glass while the user is traveling
and exploring an area. Or finally, it could just be the behavioral patterns or feedback
provided by a user through clicking on a piece of advertisement or news.

In this chapter, we propose the first framework that offers instantaneous data sum-
marization while preserves the right of an individual to be forgotten. We cast this
problem as an instance of robust streaming submodular maximization where the goal
is to produce a concise real-time summary in the face of data deletion requested by
users. We develop, Robust -Streaming, that transforms any streaming algorithm
with provable guarantees and makes it robust against m deletions by instantiating
m additional parallel, but crucially non-overlapping, solutions. More precisely, for a
generic streaming algorithm StreamingAlg with g approximation guarantee (dis-
cussed in Section 2.3.2, and are listed in Table 2.3), Robust -Streaming outputs a
robust solution, against any m deletions from the summary at any given time, with a
g approximation guarantee to a computationally unrestricted, omniscient algorithm
that knows in advance that such m data points will be deleted and hence will not select
them at all. To the best of our knowledge, Robust -Streaming is the first algorithm
with such strong theoretical guarantees and general applicability.

Our experimental results demonstrate the effectiveness of Robust -Streaming on
several submodular maximization problems. We show that for active set selection on
location data as well as click-stream log data, and interactive image collection summa-
rization, Robust -Streaming leads to summaries with competitive utilities compared
against those obtained via classical streaming methods that have the knowledge of
which elements will be deleted later.

132

10.1. Deletion-Robust Model

10.1 Deletion-Robust Model

So far in this Thesis, we discussed the static submodular data summarization, where we
have a large but fixed dataset V of size n, and we are interested in finding a summary
that best represents the data by maximizing a submodular utility function f subject to
a family of constraints:

OPT = max{ f (A)|A 2 I}, (10.1.1)

where I is the family of feasible solutions. In this section, we formalize a novel dynamic
variant, and constraints on time and memory that algorithms need to obey.

10.1.1 Dynamic Data: Additions and Deletions

In dynamic deletion-robust submodular maximization problem, the data V is generated
at a fast pace and in real-time, such that at any point t in time, a subset Vt ✓ V
of the data has arrived. Naturally, we assume that V1 ✓ V2 ✓ · · · ✓ Vn, with no
assumption made on the order or the size of the datastream. Importantly, we allow
data to be deleted dynamically as well. We use Dt to refer to data deleted by time
t, where again D1 ✓ D2 ✓ · · · ✓ Dn. Without loss of generality, below we assume
that at every time step t exactly one element et 2 V is either added or deleted, i.e.,
|Dt \ Dt�1|+ |Vt \ Vt�1| = 1.

We now seek to solve a dynamic variant of Problem 10.1.1. More formally, at any time
t, we are interested in the following dynamic but constrained submodular optimization
problem:

OPTt = max{ f (At)|At 2 It} (10.1.2)

where
It = {S : S 2 I , S ✓ Vt \ Dt}

is a potentially dynamic family of feasible solutions. We also denote by OPTt the
maximum utility achievable for Problem (10.1.2) at time t. Note that in general a
feasible solution at time t might not be a feasible solution at a later instance t0. This is
particularly important in practical situations where a subset of the elements Dt should
be removed from the solution. We do not make any assumptions on the order or the
size of the data stream V, but we assume that the total number of deletions is limited to m,
i.e., |Dn|  m.

133

Chapter 10. Deletion-Robust Submodular Maximization

10.1.2 Dealing with Limited Time and Memory

In principle, we could solve Problem (10.1.2) by repeatedly – at every time t – solving
a static submodular maximization problem by restricting the ground set V to Vt \ Dt.
This is impractical even for moderate problem sizes. For large problems, we may not
even be able to fit Vt into the main memory of the computing device (space constraints).
Moreover, in real-time applications, one needs to make decisions in a timely manner
while the data is continuously arriving (time constraints).

We hence focus on streaming algorithms which may maintain a limited memory Mt ⇢
Vt \ Dt, and must have an updated feasible solution {At | At ✓Mt, At 2 It} to output
at any given time t. Ideally, the capacity of the memory |Mt| should not depend on t
and Vt. As discussed in the previous chapter (c.f. Section 9.1), whenever a new element
is received, the algorithm can choose 1) to insert it into its memory, provided that the
memory does not exceed a pre-specified capacity bound, 2) to replace it with one or
a subset of elements in the memory (In case of preemptive streaming algorithms), or
otherwise 3) the element gets discarded and cannot be used later by the algorithm.

In addition, if the algorithm receives a deletion request for a subset Dt ⇢ Vt at time t (in
which case It will be updated to accommodate this request) it has to drop Dt from Mt

in addition to updating At to make sure that the current solution is feasible (all subsets
A0t ⇢ Vt that contain an element from Dt are infeasible, i.e., A0t /2 It). To account for such
losses, the streaming algorithm can only use other elements maintained in its memory in
order to produce a feasible candidate solution, i.e. At ✓Mt ✓ ((Vt \Vt�1)[Mt�1) \Dt.
We say that the streaming algorithm is robust against m deletions, if it can provide a
feasible solution At 2 It at any given time t such that f (At) � tOPTt for some constant
t > 0. Note that the streaming algorithm is competing against the optimal centralized
method that has access to the full V and knows all the elements that will be removed by
time t. In the following, we show how robust streaming algorithms can be obtained by
carefully increasing the memory and running multiple instances of existing streaming
methods simultaneously.

10.2 Example Applications

We now discuss three concrete applications, with their submodular objective func-
tions f , where the size of the datasets and the nature of the problem often require a

134

10.2. Example Applications

deletion-robust streaming solution.

10.2.1 Summarizing Click-stream and Geolocation Data

There exists a tremendous opportunity of harnessing prevalent activity logs and sensing
resources. For instance, GPS traces of mobile phones can be used by road traffic
information systems (such as Google traffic, TrafficSense, Navigon) to monitor travel
times and incidents in real time. In another example, stream of user activity logs is
recorded while users click on various parts of a webpage such as ads and news while
browsing the web, or using social media. Continuously sharing all collected data is
problematic for several reasons. First, memory and communication constraints may
limit the amount of data that can be stored and transmitted across the network. Second,
reasonable privacy concerns may prohibit continuous tracking of users.

In many such applications, the data can be described in terms of a kernel matrix K
which encodes the similarity between different data elements. As discussed in Section
3.1.1, a small diverse subset (active set) of elements can be found by maximizing the
following monotone submodular function, f (S) = log det(I + aKS,S) [KG13], where
a > 0 and KS,S is the principal sub-matrix of K indexed by the set S. In light of privacy
concerns, it is natural to consider participatory models that empower users to decide
what portion of their data could be made available. If a user decides not to share, or
to revoke information about parts of their activity, the monitoring system should be
able to update the summary to comply with users’ preferences. Therefore, we use
Robust -Streaming to identify a robust set of the k most informative data points.

10.2.2 Summarizing Image Collections

In the image collection summarization problem, the goal is to select a small subset of
images that best represents different categories. For example, one may have a collection
of images taken on a holiday trip, and want to select a small subset that concisely
represents all the diversity from the trip. As discussed in Section 3.5, this problem can
be addressed by maximizing the weighted linear combination of multiple submodular
functions that capture different notions of representativeness, including facility location,
sum-coverage, and truncated graph cut.

135

Chapter 10. Deletion-Robust Submodular Maximization

Now, consider a situation where a user want to summarize a large collection of her
photos that she is taking while traveling. If she does not like some of the returned
photos in the summary, we would like to be able to update the result without processing
the whole collection from scratch. Robust -Streaming can be used as an appealing
method of choice. Another scenario is when users upload their photos on social media
such as Flicker where a summary of recent photos are shown. Now, if a user decides to
remove some of her photos, we should be able to immediately update the summary.
Again, Robust -Streaming comes to the rescue.

10.3 Robust-Streaming Algorithm

In this section, we first elaborate on why naively increasing the solution size does
not help. Then, we present our main algorithm, Robust -Streaming, for deletion-
robust streaming submodular maximization. Our approach builds on the following key
ideas: 1) simultaneously constructing non-overlapping solutions, and 2) appropriately
merging solutions upon deleting an element from the memory.

10.3.1 Increasing the Solution Size Does Not Help

One of the main challenges in designing streaming solutions is to immediately discover
whether an element received from the data stream at time t is good enough to be
added to the memory Mt. This decision is usually made based on the added value or
marginal gain of the new element which in turn depends on the previously chosen
elements in the memory, i.e., Mt�1. Now, let us consider the opposite scenario when an
element e should be deleted from the memory at time t. Since now we have a smaller
context, submodularity guarantees that the marginal gains of the elements added to
the memory after e was added, could have only increased if e was not part of the
stream (diminishing returns). Hence, if some elements had large marginal values to be
included in the memory before the deletion, they still do after the deletion. Based on
this intuition, a natural idea is to keep a solution of a bigger size, say m + k (rather than
k) for at most m deletions. However, this idea does not work as shown by the following
example.

136

10.3. Robust-Streaming Algorithm

Bad Example (Coverage): Consider a collection of n subsets V = {B1, . . . , Bn}, where
Bi ✓ {1, . . . , n}, and a coverage function f (A) = | [i2A Bi|, A ✓ V. Suppose we receive
B1 = {1, . . . , n}, and then Bi = {i} for 2 i  n from the stream. Streaming algorithms
that select elements according to their marginal gain and are allowed to pick k + m
elements, will only pick up B1 upon encounter (as other elements provide no gain),
and return An = {B1} after processing the stream. Hence, if B1 is deleted after the
stream is received, these algorithms return the empty set An = ∆ (with f (An) = 0). An
optimal algorithm which knows that element B1 will be deleted, however, will return set
An = {B2, . . . , Bk+2}, with value f (An) = k + 1. Hence, standard streaming algorithms
fail arbitrarily badly even under a single deletion (i.e., m = 1), even when we allow
them to pick sets larger than k.

In the following, we show how we can solve the above issue by carefully constructing
not one but multiple solutions.

10.3.2 Building Multiple Solutions

As stated earlier, the existing one-pass streaming algorithms for submodular maxi-
mization work by identifying elements with marginal gains above a carefully chosen
threshold. This ensures that any element received from the stream which is fairly similar
to the elements of the solution set is discarded by the algorithm. Since elements are
chosen as diverse as possible, the solution may suffer dramatically in case of a deletion.

One simple idea is to try to find m (near) duplicates for each element e in the memory,
i.e., find e0 such that f (e0) = f (e) and D(e0|e) = 0 [OSU16]. This way if we face m
deletions we can still find a good solution. The drawback is that even one duplicate may
not exist in the data stream (see the bad example above), and we may not be able to
recover for the deleted element. Instead, what we will do is to construct non-overlapping
solutions such that once we experience a deletion, only one solution gets affected.

In order to be robust against m deletions, we take a generic streaming algorithm
StreamingAlg with g approximation guarantee. A list of streaming algorithms for
submodular maximization with corresponding approximation guarantees is shown
in Table 2.3. We then run a cascading chain of r instances of StreamingAlgs as
follows. Let Mt = M(1)

t , M(2)
t , . . . , M(r)

t denote the content of their memories at time
t. When we receive a new element e 2 Vt from the data stream at time t, we pass
it to the first instance of StreamingAlg

(1). If StreamingAlg

(1) discards e, the

137

Chapter 10. Deletion-Robust Submodular Maximization

…

Data Stream
discarded forever

1

2 r

1 2 r

2R rR1R1M

2M rM

1S 2S rS

Figure 10.1: Robust -Streaming uses r instances of a generic StreamingAlg to
construct r non-overlapping memories at any given time t, i.e., M(1)

t , M(2)
t , . . . , M(r)

t . Each
instance produces a solution S(i)

t and the solution returned by Robust -Streaming is the
first valid solution St={S(i)

t |i=min j2 [1 · · ·r], M(i)
t 6=null}.

discarded element is cascaded in the chain and is passed to its successive algorithm,
i.e. StreamingAlg

(2). If e is discarded by StreamingAlg

(2), the cascade continues
and e is passed to StreamingAlg

(3). This process continues until either e is accepted
by one of the instances or discarded for good. Now, let us consider the case where e
is accepted by the i-th instance, S ieve -Streaming

(i), in the chain. As discussed in
Section 10.1.2, StreamingAlg may choose to discard a set of points R(i)

t ⇢ M(i)
t from

its memory before inserting e, i.e., M(i)
t M(i)

t [{e} \ R(i)
t . Note that R(i)

t is empty,
if e is inserted and no element is discarded from M(i)

t . For every discarded element
r 2 R(i)

t , we start a new cascade from (i + 1)-th instance, StreamingAlg

(i+1).

Note that in the worst case, every element of the stream can go once through the whole
chain during the execution of the algorithm, and thus the processing time for each
element scales linearly by r. An important observation is that at any given time t, all
the memories M(1)

t , M(2)
t , . . . , M(r)

t contain disjoint sets of elements. In the next section,
we show how this data structure leads to a deletion-robust streaming algorithm.

10.3.3 Dealing with Deletions

Equipped with the above data structure shown in Figure 10.1, we now demonstrate how
deletions can be treated. Assume an element ed is being deleted from the memory of
the j-th instance of StreamingAlg

(j) at time t, i.e., M(j)
t M(j)

t \ {ed}. As discussed

138

10.3. Robust-Streaming Algorithm

in Section 10.3.1, the solution of the streaming algorithm can suffer dramatically from a
deletion, and we may not be able to restore the quality of the solution by substituting
similar elements. Since there is no guarantee for the quality of the solution after a
deletion, we remove StreamingAlg

(j) from the chain by making R(i)
t =null and for

all the remaining elements in its memory M(j)
t , namely, R(j)

t M(j)
t \ {ed}, we start a

new cascade from j + 1-th instance, StreamingAlg

(j+1).

The key reason why the above algorithm works is that the guarantee provided by
the streaming algorithm is independent of the order of receiving the data elements.
Note that at any point in time, the first instance i of the algorithm with M(i)

t 6= null
has processed all the elements from the stream Vt (not necessarily in the order the
stream is originally received) except the ones deleted by time t, i.e., Dt. Therefore, we
can guarantee that StreamingAlg

(i) provides us with its inherent g-approximation
guarantee for reading Vt \ Dt. More precisely, f (S(i)

t) � aOPTt, where OPTt is the
optimum solution for the constrained optimization problem (10.1.2) at time t, when we
have at most m deletions.

In case of adversary deletions, there will be one deletion from the solution of m instances
of StreamingAlg in the chain. Therefore, having r = m+ 1 instances, we will remain
with only one StreamingAlg that gives us the desired result. However, as shown
later in this section, if the deletions are i.i.d. (which is often the case in practice), and
we have m deletions in expectation, we need r to be much smaller than m + 1. Finally,
note that we do not need to assume that m  k where k is the size of the largest feasible
solution.The above idea works for arbitrary mn.

The pseudocode of Robust -Streaming is given in Algorithm 11. It uses r  m + 1
instances of StreamingAlg as subroutines in order to produce r solutions. We
denote by S(1)

t , S(1)
t , . . . , S(r)

t the solutions of the r StreamingAlg s at any given time
t. We assume that an instance i of StreamingAlg

(i) receive an input element and
produces a solution S(i)

t based on the input. It may also change its memory content
M(i)

t , and discard a set R(i)
t . Among all the remained solutions (i.e., the ones that are

not ”null”), it returns the first solution in the chain, i.e. the one with the lowest index.

Theorem 27. Let StreamingAlg be a 1-pass streaming algorithm that achieves an g-
approximation guarantee for the constrained maximization problem (10.1.2) with an update
time of T, and a memory of size M when there is no deletion. Then Robust -Streaming

uses r  m + 1 instances of StreamingAlg s to produce a feasible solution St 2 It (now
It encodes deletions in addition to constraints) such that f (St) = gOPTt as long as no more

139

Chapter 10. Deletion-Robust Submodular Maximization

Algorithm 11: Robust -Streaming

Input: data stream Vt, deletion set Dt, r  m+1.
Output: solution St at any time t.

1: t = 1, M(i)
t = 0, S(i)

t = ∆ 8i 2 [1 · · · r]
2: while ({Vt \ Vt�1} [{Dt \ Dt�1} 6= ∆) do
3: if {Dt \ Dt�1} 6= ∆ then
4: ed {Dt \ Dt�1}
5: Delete(ed)
6: else
7: et {Vt \ Vt�1}
8: Add(1, et)
9: end if

10: t = t + 1
11: St =

�
S(i)

t | i = min{j 2 [1 · · · r], M(j)
t 6= null}

12: end while

13: function Add(i, R)
14: for e 2 R do
15: [R(i)

t , M(i)
t , S(i)

t] =StreamingAlg

(i)(e)
16: if R(i)

t 6= ∆ and i < r then
17: Add(i + 1, R(i)

t)
18: end if
19: end for
20: end function

21: function Delete(e)
22: for i = 1 to r do
23: if e 2 M(i)

t then
24: R(i)

t = M(i)
t \ {e}

25: M(i)
t null

26: Add(i + 1, R(i)
t)

27: return
28: end if
29: end for
30: end function

than m elements are deleted from the data stream. Moreover, Robust -Streaming uses a
memory of size rM, and has worst case update time of O(r2MT), and average update time of
O(rT).

140

10.3. Robust-Streaming Algorithm

Algorithm Problem Constraint Apprx. Memory
Robust + S ieve -
Streaming

[Bad+14]

Mon.
Subm.

Cardinality 1/2� e O(mk log k/e)

Robust + f -MSM
[CK14]

Mon.
Subm.

p-matroids 1
4p O(mk(log |V|)O(1))

Robust +
Streaming -
Greedy [CGQ15]

Non-mon.
Subm. p-matchoid (1�e)(2�o(1))

(8+e)p O(mk log k/e

2)

Robust +
Streaming -
Local Search

[Chapter 9]

Non-mon.
Subm.

ind. systems +
d knapsacks

(1�e)
1+ 2p

a

+ 1
a

+2d(1+
p

a) O(mM log(k)/e

p
a)

Table 10.1: Robust -Streaming can be combined with the existing one-pass streaming
algorithms in order to make them robust against m deletions. a, M is the approximation
guarantee, and memory for streaming monotone submodular maximization under a collection of
independence systems and d knapsack constraints.

The proofs of the theorems in this chapter can be found in Appendix A.5. In Table 10.1
we combine the result of Theorem 27 with the existing streaming algorithms that satisfy
our requirements.

Theorem 28. Assume each element of the stream is deleted with equal probability p = m/n,
i.e., in expectation we have m deletions from the stream. Then, with probability 1� d, Robust -
Streaming provides an g-approximation as long as

r �
✓

1
1� p

◆k
log
�
1/d

�
.

Theorem 28 shows that for fixed k, d and p, a constant number r of StreamingAlgs
is sufficient to support m = pn (expected) deletions independently of n. In contrast, for
adversarial deletions, as analyzed in Theorem 27, pn + 1 copies of StreamingAlg

are required, which grows linearly in n. Hence, the required dependence of r on m
is much milder for random than adversarial deletions. This is also verified by our
experiments in Section 10.4.

141

Chapter 10. Deletion-Robust Submodular Maximization

10.4 Experiments

We address the following questions: 1) How much can Robust -Streaming recover
and possibly improve the performance of StreamingAlg in case of deletions? 2)
How much does the time of deletions affect the performance? 3) To what extent does
deleting representative vs. random data points affect the performance? To this end, we
run Robust -Streaming on the applications we described in Section 10.2, namely,
image collection summarization, summarizing stream of geolocation sensor data, as
well as summarizing a clickstream of size 45 million.

Throughout this section we consider the following streaming algorithms introduced in
Section 2.3.2: S ieve -Streaming [Bad+14], Stream -Greedy [GK10], and Stream -
ing -Greedy [CGQ15]. We allow all streaming algorithms, including the non-preemptive
S ieve -Streaming, to update their solution after each deletion. We also consider a
stronger variant of S ieve -Streaming, called ExtS ieve, that aims to pick k · (m +

1) elements to protect for deletions, i.e., is allowed the same memory as Robust -
Streaming. After the deletions, the remaining solution is pruned to k elements.

To compare the effect of deleting representative elements to that of deleting random
elements from the stream, we use two stochastic variants of the greedy algorithm,
namely, Stochastic -Greedy [Chapter 12] and Random -Greedy [Buc+14]. This
way we introduce randomness into the deletion process in a principled way. Hence, we
have:

Stochastic-Greedy (SG): Similar to the the greedy algorithm, Stochastic -Greedy

starts with an empty set and adds one element at each iteration until obtains a solution
of size m. But in each step it first samples a random set R of size (n/m) log(1/e) and
then adds an element from R to the solution which maximizes the marginal gain. We
will discuss Stochastic -Greedy later in details, in Chapter 12.

Random-Greedy (RG): This algorithm iteratively selects a random element from the
top m elements with the highest marginal gains, until finds a solution of size m.

For each deletion method, the m data points are deleted either while receiving the data
(where the steaming algorithms have the chance to update their solutions by selecting
new elements) or after receiving the data (where there is no chance of updating the

142

10.4. Experiments

solution with new elements). Finally, the performance of all algorithms are normalized
against the utility obtained by the centralized algorithm that knows the set of deleted elements
in advance.

10.4.1 Image Collection Summarization

We first apply Robust -Streaming to a collection of 100 images from [Tsc+14]. We
used the weighted combination of 594 submodular functions either capturing coverage
or rewarding diversity (c.f. Section 10.2.2). Here, despite the small size of the dataset,
computing the weighted combination of 594 functions makes the function evaluation
considerably expensive.

Number of deletions
5 10 15

N
or

m
al

iz
ed

 o
bj

ec
tiv

e
va

lu
e

0.86

0.88

0.9

0.92

0.94

0.96

0.98 Robust-RG
Robust-SG

Sieve-SG

Sieve-RG

ExtSieve-RG

ExtSieve-SG

(a) Images (b) Images

Figure 10.2: Performance of Robust -Streaming vs S ieve -Streaming for different
deletion strategies (SG, RG) on a collection of 100 images. Here we fix k = 5 and r = 3. a)
performance of Robust -Streaming and S ieve -Streaming normalized by the utility
obtained by greedy that knows the deleted elements beforehand. b) updated solution of size k = 5
returned by Robust -Streaming after deleting the 1 image from the summary.

Figure 10.2a compares the performance of S ieve -Streaming with its robust version
Robust -Streaming for r = 3 and solution size k=5. Here, we vary the number
m of deletions from 1 to 20 after the whole stream is received. We see that Robust -
Streaming maintains its performance by updating the solution after deleting subsets
of data points imposed by different deletion strategies. It can be seen that, even for a
larger number m of deletions, Robust -Streaming, run with parameter r < m, is

143

Chapter 10. Deletion-Robust Submodular Maximization

able to return a solution competitive with the strong centralized benchmark that knows
the deleted elements beforehand. For the image collection, we were not able to compare
the performance of Stream -Greedy with its robust version due to the prohibitive
running time. Figure 10.2b shows an example of an updated image summary returned
by Robust -Streaming after deleting the first image from the summary.

10.4.2 Summarizing a stream of geolocation data

Next we apply Robust -Streaming to the active set selection objective described
in Section 10.2.1. Our dataset consists of 3,607 geolocations, collected during a one
hour bike ride around Zurich [Fat15]. For each pair of points i and j we used the
corresponding (latitude, longitude) coordinates to calculate their distance in meters di,j

and chose a Gaussian kernel Ki,j = exp(�d2
i,j/h2) with h=1500.

Figure 10.4a shows the dataset where red and green triangles show a summary of size
10 found by S ieve -Streaming, and the updated summary provided by Robust -
Streaming with r=5 after deleting m=70% of the datapoints. Figures 10.3a and 10.3c
compare the performance of S ieve -Streaming with its robust version when the data
is deleted after or during the stream, respectively. As we see, Robust -Streaming

provides a solution very close to the hindsight centralized method. Figures 10.3b and
10.3d show similar behavior for Stream -Greedy. Note that deleting data points via
Stochastic -Greedy or Random -Greedy are much more harmful on the quality
of the solution provided by Stream -Greedy. We repeated the same experiment by
dividing the map into grids of length 2km. We then considered a partition matroid by
restricting the number of points selected from each grid to be 1. The red and green
triangles in Figure 10.4b are the summary found by Streaming -Greedy and the
updated summary provided by Robust -Streaming after deleting the shaded area
in the figure.

10.4.3 Large scale click through prediction

For our large-scale experiment we consider again the active set selection objective,
described in Section 10.2.1. We used Yahoo! Webscope data set containing 45,811,883
user click logs for news articles displayed in the Featured Tab of the Today Module on
Yahoo! Front Page during the first ten days in May 2009 [Yah12]. For each visit, both

144

10.4. Experiments

the user and shown articles are associated with a feature vector of dimension 6. We
take their outer product, resulting in a feature vector of size 36.

The goal was to predict the user behavior for each displayed article based on historical
clicks. To do so, we considered the first 80% of the data (for the fist 8 days) as our

Number of deletions
20 40 66 80 100 120

N
or

m
al

iz
ed

 o
bj

ec
tiv

e
va

lu
e

0.93

0.935

0.94

0.945

0.95

0.955

0.96

0.965

0.97 Robust-RG

Sieve-SG

Robust-SG

ExtSieve-SGExtSieve-RG

Sieve-RG

(a) S ieve -Streaming, at end
Number of deletions

0 20 40 60 80 100 120

N
or

m
al

iz
ed

 o
bj

ec
tiv

e
va

lu
e

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1 Robust-SGRobust-RG

ExtSieve-SG
ExtSieve-RG

Sieve-RG

Sieve-SG

(b) Stream -Greedy, at end

Number of deletions
0 20 40 60 80 100 120

N
or

m
al

iz
ed

 o
bj

ec
tiv

e
va

lu
e

0.75

0.751

0.752

0.753

0.754

0.755

0.756

0.757

0.758

ExtSieve-RG

Sieve-SG

Sieve-RG

ExtSieve-SG

Robust-RG
Robust-SG

(c) S ieve -Streaming, during
Number of deletions

0 20 40 60 80 100 120

N
or

m
al

iz
ed

 o
bj

ec
tiv

e
va

lu
e

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82
Robust-RG

ExtSieve-RG
ExtSieve-SG

Robust-SG

Sieve-RG

Sieve-SG

(d) Stream -Greedy, during

Figure 10.3: Robust -Streaming vs S ieve -Streaming and Stream -Greedy for
different deletion strategies (SG, RG) on geolocation data. We fix k= 20 and r= 5. a) and c)
show the performance of robustified S ieve -Streaming, whereas b) and d) show performance
for robustified Stream -Greedy. a) and b) consider the performance after deletions at the
end of the stream, while c) and d) consider average performance while deletions happen during
the stream.

145

Chapter 10. Deletion-Robust Submodular Maximization

(a) Cardinality constraints (b) Matroid constraints

Figure 10.4: Robust -Streaming vs S ieve -Streaming and Stream -Greedy

for different deletion strategies (SG, RG) on geolocation data. We fix k=20 and r=5. a) red
and green triangles show a set of size 10 found by S ieve -Streaming and the updated
solution found by Robust -Streaming where 70% of the points are deleted. b) set found by
Streaming -Greedy, constrained to pick at most 1 point per grid cell (matroid constraint).
Here r = 5, and we deleted the shaded area.

training set, and the last 20% (for the last 2 days) as our test set. We used Vowpal-Wabbit
[LLS07] to train a linear classifier on the full training set. Since only 4% of the data
points are clicked, we assign a weight of 10 to each clicked vector. The AUC score of
the trained classifier on the test set was 65%.

We then used Robust -Streaming and S ieve -Streaming to find a representative
subset of size k consisting of k/2 clicked and k/2 not-clicked examples from the training
data. Due to the massive size of the dataset, we used Spark on a cluster of 15 quad-core
machines with 32GB of memory each. We partitioned the training data to the machines
keeping its original order. We ran Robust -Streaming on each machine to find a
summary of size k/15, and merged the results to obtain the final summary of size k.
We then start deleting the data uniformly at random until we left with only 1% of the
data, and trained another classifier on the remaining elements from the summary.

Figure 10.5a compares the performance of Robust -Streaming for a fixed active set
of size k = 10, 000, and r = 2 with random selection, randomly selecting equal numbers
of clicked and not-clicked vectors, and using S ieve -Streaming for selecting equal
numbers of clicked and not-clicked data points. The y-axis shows the improvement in

146

10.5. Summary

Random RandEqual ExtSieve Robust

N
or

m
al

iz
ed

 A
U

C
 im

pr
ov

em
en

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Yahoo! Webscope, r = 2
Random RandEqual ExtSieve Robust

N
or

m
al

iz
ed

 A
U

C
 im

pr
ov

em
en

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Yahoo! Webscope, r = 5

Figure 10.5: Robust -Streaming vs random unbalanced and balanced selection and
S ieve -Streaming selecting equal numbers of clicked and not-clicked data points, on
45,811,883 feature vectors from Yahoo! Webscope data. We fix k = 10, 000 and delete
99% of the data points.

AUC score of the classifier trained on a summary obtained by different algorithms over
random guessing (AUC=0.5), normalized by the AUC score of the classifier trained on
the whole training data. To maximize fairness, we let other baselines select a subset of
r.k elements before deletions. Figure 10.5b shows the same quantity for r = 5. It can be
seen that a slight increase in the amount of memory helps boosting the performance
for all the algorithms. However, Robust -Streaming benefits from the additional
memory the most, and can almost recover the performance of the classifier trained on
the full training data, even after 99% deletion.

10.5 Summary

We have developed the first deletion-robust streaming algorithm–Robust -Streaming

– for constrained submodular maximization. Given any single-pass streaming algo-
rithm StreamingAlg with a-approximation guarantee, Robust -Streaming uses
r  m + 1 instances of StreamingAlg to output a solution that is robust against m
deletions. The returned solution also satisfies an a-approximation guarantee w.r.t. to the
solution of the optimum centralized algorithm that knows the set of m deletions in ad-

147

Chapter 10. Deletion-Robust Submodular Maximization

vance. We have also demonstrated the effectiveness of our approach through extensive
set of experiments. As shown in Section 10.4, Robust -Streaming can immediately
update the solution in case of deletions, and significantly improves the performance of
the existing streaming approaches. This property of Robust -Streaming makes it
an appealing approach for solving very large scale applications on dynamic datasets
that experience deletions very often.

148

Part IV

Fast Centralized Algorithms

149

11
Overview of part IV

In Part II and III of this Thesis, we studied distributed and streaming methods for
submodular miaximization. A natural complementary goal to the aforementioned
methods for scaling up submodular maximization techniques, is to develop faster
centralized algorithms for submodular maximization. Such methods can be easily
integrated into the existing distributed methods, or in approaches that decompose the
submodular function into simpler functions for faster evaluation. In part IV of this
Thesis, we will first present a stochastic method for monotone submodular maximization
under cardinality constraint. We then discuss a fast algorithm for maximizing a (non-
monotone) submodular miaximization under a p-system and d knapsack constraints.

Lazier than Lazy Greedy. Is it possible to maximize a monotone submodular function
faster than the widely used lazy greedy algorithm (also known as accelerated greedy),
both in theory and practice? In Chapter 12, we develop the first linear-time algorithm
for maximizing a general monotone submodular function subject to a cardinality
constraint. We show that our randomized algorithm, Stochastic -Greedy, can
achieve a (1 � 1/e � #) approximation guarantee, in expectation, to the optimum
solution in time linear in the size of the data and independent of the cardinality constraint.
We empirically demonstrate the effectiveness of our algorithm on submodular functions
arising in data summarization, including training large-scale kernel methods and
exemplar-based clustering. We observe that Stochastic -Greedy practically achieves

151

Chapter 11. Overview of part IV

the same utility value as lazy greedy but runs much faster. More surprisingly, we observe
that in many practical scenarios Stochastic -Greedy does not evaluate the whole
fraction of data points even once and still achieves indistinguishable results compared
to lazy greedy.

Fast Constrained Submodular Maximization. Can we summarize multi-category
data based on user preferences in a scalable manner? We cast personalized data
summarization as an instance of a general submodular maximization problem sub-
ject to multiple constraints. In Chapter 13, we develop the first practical and FAst
coNsTrained submOdular Maximization algorithm, Fantom, with strong theoreti-
cal guarantees. Fantom maximizes a submodular function (not necessarily monotone)
subject to the intersection of a p-system and d knapsack constrains. It achieves a
(1 + e)(p + 1)(2p + 2d + 1)/p approximation guarantee with only O(nrp log(n)

e

) query
complexity (n and r indicate the size of the ground set and the size of the largest feasible
solution, respectively). We then show how we can use Fantom for personalized data
summarization. In particular, a p-system can model different aspects of data, such as
categories or time stamps, from which the users choose. In addition, knapsacks encode
users’ constraints including budget or time. In our set of experiments, we consider sev-
eral concrete applications: movie recommendation, personalized image summarization,
and revenue maximization. We observe that Fantom constantly provides the highest
utility against all the baselines.

Summary of contributions. The key contributions of this part of the Thesis are:

1. We consider fast centralized algorithms for submodular maximization. We develop
novel, efficient approximation algorithms:

• Stochastic -Greedy, a linear-time algorithm for maximizing a general
monotone submodular function subject to a cardinality constraint, and

• Fantom, a fast algorithm for maximizing a (not necessarily monotone) sub-
modular function subject to the intersection of a p-system and d knapsacks
constrains.

2. We theoretically analyze our approaches, and provide approximation guarantees
for the quality of the solutions.

152

3. We demonstrate the performance our algorithms on several real-world problems,
including

• selecting placements of size 200 from a set of 12,527 possible locations for
sensor placement,

• selecting active sets of size 200 from Parkinsons Telemonitoring dataset
consisting of 5,875 biomedical voice measurements,

• selecting summaries of size 200 from 50K Tiny Images,

• movie recommendation over 11K movies from the MovieLens database,

• personalized image summarization with 10K images, and

• revenue maximization on the YouTube social networks with 5000 communi-
ties.

153

12
Lazier than Lazy Greedy

Previously, we have seen that in many machine learning and data mining applications,
a summary of manageable size can be obtained by maximizing a submodular set
function under a cardinality constraint. In this chapter, we propose the first linear-
time algorithm, Stochastic -Greedy, for maximizing a non-negative monotone
submodular function subject to a cardinality constraint k. We show that Stochastic -
Greedy achieves a (1� 1/e� e) approximation guarantee to the optimum solution
with running time O(n log(1/e)) (measured in terms of function evaluations) that
is independent of k. We start by a brief review of the classical greedy algorithm. We
then discuss an accelerated version of the greedy algorithm Lazy -Greedy, and then
introduce our fast randomized method, Stochastic -Greedy.

12.1 Greedy Algorithm

As we discussed in Chapter 2, the greedy algorithm is the simplest and the most
efficient for maximizing a monotone submodular function under cardinality constraint.
Here, the optimization problem is to find a subset A⇤ of size at most k that maximizes
the monotone submodular utility function f , i.e.,

A⇤ = arg max
A:|A|k

f (A), (12.1.1)

155

Chapter 12. Lazier than Lazy Greedy

We saw in Section 2.2.1 that for non-negative monotone submodular functions, the
greedy algorithm starts with the empty set A0 and in iteration i, adds an element
maximizing the marginal gain D(e|Ai�1), where D(i|A)

.
= f (A [{i})� f (A) measures

the marginal gain of adding a new element i to a summary A. For a ground set V of
size n, this greedy algorithm needs O(n · k) function evaluations in order to find a
summarization of size k. However, in many data intensive applications, evaluating f is
expensive and running the standard greedy algorithm is infeasible.

12.1.1 Lazy-Greedy

Submodularity can be exploited to implement an accelerated version of the classi-
cal greedy algorithm, usually called Lazy -Greedy [Min78]. Instead of computing
D(e|Ai�1) for each element e 2 V, the Lazy -Greedy algorithm keeps an upper bound
r(e) (initially •) on the marginal gain sorted in decreasing order. In each iteration i, the
Lazy -Greedy algorithm evaluates the element on top of the list, say e, and updates its
upper bound, r(e) D(e|Ai�1). If after the update r(e) � r(e0) for all e0 6= e, submod-
ularity guarantees that e is the element with the largest marginal gain. Even though
the exact cost (i.e., number of function evaluations) of Lazy -Greedy is unknown,
this algorithm leads to orders of magnitude speedups in practice. As a result, it has
been used as the state-of-the-art implementation in numerous applications including
network monitoring [Les+07], network inference [RLK12], document summarization
[LB11a], and speech data subset selection [Wei+13], to name a few. However, as the size
of the data increases, even for small values of k, running Lazy -Greedy is infeasible.
A natural question to ask is whether it is possible to further accelerate Lazy -Greedy

by a procedure with a weaker dependency on k. Or even better, is it possible to have an
algorithm that does not depend on k at all and scales linearly with the data size n?

In this chapter, we develop the first centralized algorithm whose cost (i.e., number
of function evaluations) is independent of the cardinality constraint, which in turn
directly addresses the shortcoming of Lazy -Greedy. Our experimental results on
exemplar-based clustering and active set selection in nonparametric learning also
confirms that Stochastic -Greedy consistently outperforms Lazy -Greedy by a
large margin while achieving practically the same utility value. More surprisingly, in
our experiments we observe that Stochastic -Greedy sometimes does not even
evaluate all the items and shows a running time that is less than n while still providing

156

12.2. Stochastic-Greedy Algorithm

solutions close to the ones returned by Lazy -Greedy. Due to its independence of k,
Stochastic -Greedy is the first algorithm that truly scales to voluminous datasets.

12.2 Stochastic-Greedy Algorithm

In this section, we present our randomized greedy algorithm Stochastic -Greedy

and then show how to combine it with lazy evaluations. We will show that Stochastic -
Greedy has provably linear running time independent of k, while simultaneously
having the same approximation ratio guarantee (in expectation). In the following
section we will further demonstrate through experiments that this is also reflected in
practice, i.e., Stochastic -Greedy is substantially faster than Lazy -Greedy, while
being practically identical to it in terms of the utility.

The main idea behind Stochastic -Greedy is to produce an element which improves
the value of the solution roughly the same as greedy, but in a fast manner. This is
achieved by a sub-sampling step. At a very high level this is similar to how stochastic
gradient descent improves the running time of gradient descent for convex optimization.

12.2.1 Random Sampling

The key reason that the classic greedy algorithm works is that at each iteration i, an
element is identified that reduces the gap to the optimal solution by a significant
amount, i.e., by at least (f (A⇤)� f (Ai�1))/k. This requires n oracle calls per step, the
main bottleneck of the classic greedy algorithm. Our main observation here is that by
submodularity, we can achieve the same improvement by adding a uniformly random
element from A⇤ to our current set A. To get this improvement, we will see that it is
enough to randomly sample a set R of size (n/k) log(1/e), which in turn overlaps with
A⇤ with probability 1� e. This is the main reason we are able to achieve a boost in
performance.

The algorithm is formally presented in Algorithm 12. Similar to the greedy algorithm,
our algorithm starts with an empty set and adds one element at each iteration. But in
each step it first samples a set R of size (n/k) log(1/e) uniformly at random and then
adds the element from R to A which increases its value the most.

157

Chapter 12. Lazier than Lazy Greedy

Algorithm 12: Stochastic -Greedy

input f : 2V ! R+, k 2 {1, . . . , n}.
output A set A ✓ V satisfying |A|  k.

1: A ∆.
2: for (i 1; i  k; i i + 1) do
3: R a random subset obtained by sampling s random elements from V \ A.
4: ai arg maxa2R D(a|A).
5: A A [{ai}
6: end for

Return: A.

Our main theoretical result is the following. It shows that Stochastic -Greedy

achieves a near-optimal solution for general monotone submodular functions, with
computational complexity independent of the cardinality constraint.

Theorem 29. Let f be a non-negative monotone submoduar function. Let us also set s =
n
k log 1

e

. Then Stochastic -Greedy achieves a (1� 1/e� e) approximation guarantee
in expectation to the optimum solution of problem (12.1.1) with only O(n log 1

e

) function
evaluations.

The proof can be found in Appendix A.6. Since there are k iterations in total and at each
iteration we have (n/k) log(1/e) elements, the total number of function evaluations
cannot be more than k⇥ (n/k) log(1/e) = n log(1/e). The proof of the approximation
guarantee is given in the analysis section.

12.2.2 Random Sampling with Lazy Evaluation

While our theoretical results show a provably linear time algorithm, we can combine
the random sampling procedure with lazy evaluation to boost its performance. There
are mainly two reasons why lazy evaluation helps. First, the randomly sampled sets
can overlap and we can exploit the previously evaluated marginal gains. Second, as in
Lazy -Greedy although the marginal values of the elements might change in each step
of the greedy algorithm, often their ordering does not change [Min78]. Hence in line 4
of Algorithm 12 we can apply directly lazy evaluation as follows. We maintain an upper
bound r(e) (initially •) on the marginal gain of all elements sorted in decreasing order.
In each iteration i, Stochastic -Greedy samples a set R. From this set R it evaluates
the element that comes on top of the list. Let’s denote this element by e. It then updates

158

12.3. Experimental Results

the upper bound for e, i.e., r(e) D(e|Ai�1). If after the update r(e) � r(e0) for all
e0 6= e where e, e0 2 R, submodularity guarantees that e is the element with the largest
marginal gain in the set R. Hence, lazy evaluation helps us reduce function evaluation
in each round.

12.3 Experimental Results

In this section, we address the following questions: 1) how well does Stochastic -
Greedy perform compared to previous art and in particular Lazy -Greedy, and
2) How does Stochastic -Greedy help us get near optimal solutions on large
datasets by reducing the computational complexity? To this end, we compare the
performance of our Stochastic -Greedy method to the following benchmarks:
Random -Selection, where the output is k randomly selected data points from V;
Lazy -Greedy, where the output is the k data points produced by the accelerated
greedy method [Min78]; Sample -Greedy, where the output is the k data points
produced by applying Lazy -Greedy on a subset of data points parametrized by
sampling probability p; and Threshold -Greedy, where the output is the k data
points provided by the algorithm of [BV14].

In order to compare the computational cost of different methods independently of the
concrete implementation and platform, in our experiments we measure the computa-
tional cost in terms of the number of function evaluations used. Moreover, to implement
the Sample -Greedy method, random subsamples are generated geometrically using
different values for probability p. Higher values of p result in subsamples of larger
size from the original dataset. To maximize fairness, we implemented an accelerated
version of Threshold -Greedy with lazy evaluations (not specified in the paper)
and report the best results in terms of function evaluations. Among all benchmarks,
Random -Selection has the lowest computational cost (namely, one) as we need to
only evaluate the selected set at the end of the sampling process. However, it provides
the lowest utility. On the other side of the spectrum, Lazy -Greedy makes k passes
over the full ground set, providing typically the best solution in terms of utility. The
lazy evaluation eliminates a large fraction of the function evaluations in each pass.
Nonetheless, it is still computationally prohibitive for large values of k.

In our experimental setup, we focus on three important and classic machine learning

159

Chapter 12. Lazier than Lazy Greedy

applications: nonparametric learning, exemplar-based clustering, and sensor placement.

12.3.1 Nonparametric Learning

Our first application is data subset selection in nonparametric learning discussed in
Section 3.1.1. In our experiment we chose a Gaussian kernel with h = 0.75 and s = 1.
We used the Parkinsons Telemonitoring dataset [Tsa+10] consisting of 5,875 bio-medical
voice measurements with 22 attributes from people with early-stage Parkinson’s disease.
We normalized the vectors to zero mean and unit norm. Figures 12.1a and 12.1c compare
the utility and computational cost of Stochastic -Greedy to the benchmarks for
different values of k. For Threshold -Greedy, different values of e have been chosen
such that a performance close to that of Lazy -Greedy is obtained. Moreover, different
values of p have been chosen such that the cost of Sample -Greedy is almost equal to
that of Stochastic -Greedy for different values of e. As we can see, Stochastic -
Greedy provides the closest (practically identical) utility to that of Lazy -Greedy

with much lower computational cost. Decreasing the value of # results in higher utility
at the price of higher computational cost. Figure 12.3a shows the utility versus cost
of Stochastic -Greedy along with the other benchmarks for a fixed k = 200
and different values of e. Stochastic -Greedy provides very compelling tradeoffs
between utility and cost compared to all benchmarks, including Lazy -Greedy.

12.3.2 Exemplar-based clustering

We also applied Stochastic -Greedy to the problem of exemplar-based clustering
discussed in Section 3.2. In our experiment we chose d(x, x0) = ||x � x0||2 for the
dissimilarity measure. We used a set of 10,000 Tiny Images [TFF08] where each 32⇥ 32
RGB image was represented by a 3,072 dimensional vector. We subtracted from each
vector the mean value, normalized it to unit norm, and used the origin as the auxil-
iary exemplar. Figures 12.1b and 12.1d compare the utility and computational cost of
Stochastic -Greedy to the benchmarks for different values of k. It can be seen that
Stochastic -Greedy outperforms the benchmarks with significantly lower compu-
tational cost. Figure 12.3b compares the utility versus cost of different methods for a
fixed k = 200 and various p and e. Similar to the previous experiment, Stochastic -

160

12.3. Experimental Results

0 20 40 60 80 100 120 140 160 180 2000

5

10

15

20

25

k

U
til

ity

Lazy−Greedy
Threshold−Greedy eps=0.2
Threshold−Greedy eps=0.3
Threshold−Greedy eps=0.4
Stochastic−Greedy eps = 0.01
Stochastic−Greedy eps = 0.1
Stochastic−Greedy eps = 0.3
Stochastic−Greedy eps = 0.9
Random Selection

(a) Parkinsons

0 20 40 60 80 100 120 140 160 180 2001.8

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

2.3 x 104

k

U
til

ity

Lazy−Greedy
Threshold−Greedy eps = 0.7
Threshold−Greedy eps = 0.8
Threshold−Greedy eps = 0.9
Stochastic−Greedy eps = 0.01
Stochastic−Greedy eps = 0.1
Stochastic−Greedy eps = 0.3
Stochastic−Greedy eps = 0.9
Random−Selection

(b) Images 10K

0 20 40 60 80 100 120 140 160 180 2000

1

2

3

4

5

6

7

x 104

k

C
os

t

Threshold−Greedy eps = 0.2
Threshold−Greedy eps =0 .3

Threshold−Greedy eps = 0.4
Stochastic−Greedy eps = 0.01

Stochastic−Greedy eps = 0.1

Stochastic−Greedy eps = 0.3
Stochastic−Greedy eps = 0.9

Random Selection

Lazy−Greedy

(c) Parkinsons

0 20 40 60 80 100 120 140 160 180 2000

1

2

3

4

5

6

x 104

k

C
os

t

Random SelectionStochastic−Greedy eps = 0.9

Stochastic−Greedy eps = 0.3
Stochastic−Greedy eps = 0.1

Stochastic−Greedy eps = 0.01

Lazy−Greedy

Threshold−Greedy eps =0 .7
Threshold−Greedy eps = 0.8

Threshold−Greedy eps = 0.9

(d) Images 10K

Figure 12.1: Performance comparisons. a), and b) show the performance of all the algorithms for
different values of k on Parkinsons Telemonitoring, and a set of 10,000 Tiny Images respectively.
c), and d) show the cost of all the algorithms for different values of k on the same datasets.

Greedy achieves near-maximal utility at substantially lower cost compared to the
other benchmarks.

Large scale experiment. We also performed a similar experiment on a larger set of
50,000 Tiny Images. For this dataset, we were not able to run Lazy -Greedy and
Threshold -Greedy. Hence, we compared the utility and cost of Stochastic -
Greedy with Random -Selection using different values of p. As shown in Figures
12.2b and 12.2d, Stochastic -Greedy outperforms Sample -Greedy in terms

161

Chapter 12. Lazier than Lazy Greedy

of both utility and cost for different values of k. Finally, as Figure 12.3d shows that
Stochastic -Greedy achieves the highest utility but performs much faster compare
to Sample -Greedy which is the only practical solution for this larger dataset.

0 20 40 60 80 100 120 140 160 180 200

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

k

U
til

ity

Lazy−Greedy
Threshold−Greedy eps = 0.6
Threshold−Greedy eps = 0.7
Threshold−Greedy eps = 0.9
Stochastic−Greedy eps = 0.01
Stochastic−Greedy eps = 0.1
Stochastic−Greedy eps = 0.3
Stochastic−Greedy eps = 0.9
Random−Selection

(a) Water Network

0 20 40 60 80 100 120 140 160 180 200

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

x 105

k

U
til

ity

Stochastic−Greedy eps = 0.1
Stochastic−Greedy eps = 0.3
Stochastic−Greedy eps = 0.9
Sample−Greedy eps = 0.03
Sample−Greedy eps = 0.13
Sample−Greedy eps = 0.23
Sample−Greedy eps = 0.33
Sample−Greedy eps = 0.43
Random Selection

(b) Images 50K

0 20 40 60 80 100 120 140 160 180 2000

0.5

1

1.5

2

2.5

3

3.5

4

4.5 x 104

k

C
os

t

Lazy−Greedy

Threshold−Greedy eps =0 .6

Stochastic−Greedy eps = 0.01

Stochastic−Greedy eps = 0.1

Stochastic−Greedy eps = 0.3
Stochastic−Greedy eps = 0.9 Random Selection

Threshold−Greedy eps = 0.7
Threshold−Greedy eps = 0.9

(c) Water Network

0 20 40 60 80 100 120 140 160 180 2000

2

4

6

8

10

12

14 x 104

k

C
os

t

Sample−Greedy p = 0.43

Sample−Greedy p = 0.33

Sample−Greedy p = 0.23

Stochastic−Greedy eps = 0.3
Stochastic−Greedy eps = 0.1

Sample−Greedy p = 0.13
Sample−Greedy p = 0.03

Random Selection

Stochastic−Greedy eps = 0.9

(d) Images 50K

Figure 12.2: Performance comparisons. a), and b) show the performance of all the algorithms
for different values of k on Water Network, and a set of 50,000 Tiny Images respectively. c) and
d) show the cost of all the algorithms for different values of k on the same datasets.

162

12.3. Experimental Results

0 1 2 3 4 5 6 7 8
x 104

18

18.5

19

19.5

20

Cost

U
til

ity

Lazy−Greedy
Threshold−Greedy eps = 0.2
Threshold−Greedy eps = 0.3
Threshold−Greedy eps = 0.4
Threshold−Greedy eps = 0.5
Threshold−Greedy eps = 0.6
Sample−Greedy p = 0.13
Sample−Greedy p = 0.23
Sample−Greedy p = 0.33
Sample−Greedy p = 0.43
Stochastic−Greedy eps = 0.001
Stochastic−Greedy eps = 0.01
Stochastic−Greedy eps = 0.1
Stochastic−Greedy eps = 0.3
Stochastic−Greedy eps = 0.55

(a) Parkinsons

0 1 2 3 4 5 6 7
x 104

2.22

2.23

2.24

2.25

2.26

2.27

2.28
x 104

Cost

U
til

ity

Lazy−Greedy
Threshold−Greedy eps = 0.7
Threshold−Greedy eps = 0.8
Threshold−Greedy eps = 0.9
Threshold−Greedy eps = 0.999
Sample−Greedy p = 0.03
Sample−Greedy p =0.13
Sample−Greedy p = 0.23
Sample−Greedy p = 0.33
Sample−Greedy p = 0.43
Stochastic−Greedy eps = 0.001
Stochastic−Greedy eps = 0.01
Stochastic−Greedy eps = 0.1
Stochastic−Greedy eps = 0.3

(b) Images 10K

0.5 1 1.5 2 2.5 3 3.5 4 4.5
x 104

2580

2585

2590

2595

2600

2605

2610

2615

2620

Cost

U
til

ity

Lazy−Greedy
Threshold−Greedy eps = 0.6
Threshold−Greedy eps = 0.9
Threshold−Greedy eps = 0.99
Threshold−Greedy eps = 0.999
Sample−Greedy p = 0.01
Sample−Greedy p =0.13
Sample−Greedy p = 0.23
Sample−Greedy p = 0.33
Stochastic−Greedy eps = 0.001
Stochastic−Greedy eps = 0.01
Stochastic−Greedy eps = 0.1
Stochastic−Greedy eps = 0.3
Stochastic−Greedy eps = 0.55

(c) Water Network

0 1 2 3 4 5 6 7 8 9 10
x 104

1.105

1.11

1.115

1.12

1.125

1.13 x 105

Cost

U
til

ity

Stochastic−Greedy eps = 0.1
Stochastic−Greedy eps = 0.3
Stochastic−Greedy eps = 0.6
Stochastic−Greedy eps = 0.9
Sample−Greedy p = 0.03
Sample−Greedy p =0.13
Sample−Greedy p = 0.23
Sample−Greedy p = 0.33
Sample−Greedy p = 0.43

(d) Images 50K

Figure 12.3: Performance comparisons. The utility obtained versus cost for a fixed k = 200 on
a) Parkinsons Telemonitoring, b) a set of 10,000 Tiny Images, c) Water Network, d) and a set of
50,000 Tiny Images respectively.

12.3.3 Sensor Placement

Our last experiment involves Stochastic -Greedy applied to sensor placement (see
Sec. 3.2). In our experiments we used the 12,527 node distribution network provided as
part of the Battle of Water Sensor Networks (BWSN) challenge [Ost+08]. Figures 12.2a
and 12.2c compare the utility and computational cost of Stochastic -Greedy to
the benchmarks for different values of k. It can be seen that Stochastic -Greedy

163

Chapter 12. Lazier than Lazy Greedy

outperforms the benchmarks with significantly lower computational cost. Figure 12.3c
compares the utility versus cost of different methods for a fixed k = 200 and various p
and e. Again Stochastic -Greedy shows similar behavior to the previous exper-
iments by achieving near-maximal utility at much lower cost compared to the other
benchmarks.

12.4 Summary

We have developed the first linear time algorithm Stochastic -Greedy with no
dependence on k for cardinality constrained submodular maximization. Stochastic -
Greedy provides a 1� 1/e� e approximation guarantee to the optimum solution
with only n log 1

e

function evaluations. We have also demonstrated the effectiveness of
our algorithm through an extensive set of experiments. As these show, Stochastic -
Greedy achieves a major fraction of the function utility with much less computational
cost. This improvement is useful even in approaches that make use of parallel computing
or decompose the submodular function into simpler functions for faster evaluation.
The properties of Stochastic -Greedy make it very appealing and necessary for
solving very large scale problems.

164

13
Fast Constrained Submodular

Maximization: Personalized

Summarization

In Chapter 12, we saw that data summarization, in the form of extracting a representative
subset of k data points, is a natural way to obtain a faithful description of the whole
data. In this chapter, we will consider the more general problem of data summarization
by maximizing a (non-monotone) submodular function under more general types
of constraints. We discussed a similar objective in the streaming setting in Chapter
9. Here, we focus on developing fast centralized algorithms. We start by motivating
non-monotone functions for data summarization and various constraints that are often
imposed by the underlying application. We then discuss some concrete applications,
and introduce our algorithm for constrained non-monotone submodular maximization.

In general, a representative summary has two requirements [Tsc+14; DKR13b]:

• Coverage: A good summary is concise so that it contains elements from distinct
parts of data. Naturally, a concise summary minimizes information loss.

• Diversity: A good summary is compact so that it does not contain elements that
are too similar to each other.

165

Chapter 13. Fast Constrained Submodular Maximization: Personalized Summarization

Note that coverage and diversity could sometimes be conflicting requirements: higher
coverage usually means selecting more elements whereas higher diversity penalizes
having similar elements in the summary and prevents the summary from growing
too large. Depending on the application, a good summary can trade off between cov-
erage and diversity by putting more emphasis on one or the other. By design, utility
functions expressing coverage are monotone as it is quit natural to assume that adding
more elements to a summary will only decrease the information loss. Such monotone
submodular functions have been extensively used for many data summarization appli-
cations including clustering [DF07b; GK10], scene summarization [SSS07], document
and corpus summarization [LB11b; Sip+12b], recommender systems [EAG11], crowd
teaching [Sin+14], and active set selection in kernel machines [SS01; Mir+13]. In con-
trast, utility functions that accommodate diversity are not necessarily monotone as
they penalize larger solutions [Tsc+14; DKR13b]. Consequently, the functions designed
to measure both coverage and diversity (e.g., combination of monotone submodular
functions and decreasing penalty terms) are naturally non-monotone.

On top of maximizing a non-monotone submodular utility function, there are often
constraints imposed by the underlying data summarization application. For instance, an
individual interested in showing a summary of her recent trip photos may not intend to
include more than a handful of them (i.e., cardinality constraint). Or, a user interested in
watching representative video clips (with different duration) from a particular category
may not wish to spend more than a certain amount of time (i.e., knapsack constraint).

There exist fast and scalable methods to maximize a monotone submodular function
f with a variety of constraints [BV14; Bad+14; WIB14; Kum+13]. We also discussed
a stochastic algorithm for monotone submodular maximization under a cardinality
constraint in Chapter 12. As a result, monotone submodular maximization subject to
simple constraints (often a cardinality constraint) has been one of the prototypical
optimization problems for data summarization.

In this chapter, we aim to significantly push the theoretical boundaries of constrained
submodular maximization while providing a practical data summarization method
for far richer scenarios. We develop a FAst coNsTrained submOdular Maximization
algorithm, Fantom, for maximizing a not necessarily monotone submodular function
f , under the intersection of a p-system and d knapsacks. We show that Fantom

provides a solution with (1 + e)(p + 1)(2p + 2d + 1)/p approximation guarantee with
O(nrp log(n)

e

) query complexity (n and r indicate the size of the ground set and the size

166

13.1. Constrained Submodular Maximization

of the largest feasible solution, respectively).

To the best of our knowledge, there is no algorithm with such strong guarantees
for maximizing a general submodular function under the aforementioned constrains.
Moreover, even in the case of a single matroid and a single knapsack constraint, the best
known algorithms suffer from a prohibitive running time that makes them impractical
for any effective data summarization applications (see Section 2.3.3). Last but not least,
a p-system contains cardinality, matroid, and the intersection of p matroids, as special
cases. Thus, it allows us to easily model various data summarization scenarios for
which only heuristic methods were known.

We discuss the personalized data summarization in Section 13.2 with three concrete
applications: movie recommendation on a dataset containing 11K movies, personalized
image summarization on a multi-category dataset with 10K images, and revenue
maximization on the YouTube social network with 5000 communities.

13.1 Constrained Submodular Maximization

Our goal in this chapter is to maximize a (non-monotone) submodular function f
subject to a set of constraints z, i.e.,

max
S✓V

f (S) s.t. S 2 z,

where z is defined by the intersection of a p-system (V, I) and d knapsacks (See Section
2.2.2 for definitions). In other words, we would like to find a set S 2 I that maximizes
f where for each knapsack ci (where 1  i  d) we have Âe2S ci(e)  1. For the ease of
presentation, we use cij to denote the cost of element j 2 V in the i-th knapsack.

The problem we consider in this chapter is similar to the problem we discussed in
Chapter 9. However, unlike Chapter 9 where we considered the streaming setting,
our goal in this chapter is to provide fast centralized solutions for constrained (non-
monotone) submodular maximization.

167

Chapter 13. Fast Constrained Submodular Maximization: Personalized Summarization

13.2 Applications of Personalized Data Summarization

Before explaining how we solve the problem of non-monotone submodular maxi-
mization under a p-system and d kanpsack constraints, we discuss three concrete
applications with their corresponding utility functions and constraints z.

Personalized movie recommendation: Consider a movie recommender system, where
a user specifies the genres she is interested in, out of l categories. Moreover, each item
has a cost that can represent the monetary cost, duration, or even accessibility of the
movie, among many other factors. The recommender system has to provide a short
list that meets the user’s constraints, in terms of money, time, or accessibility. To model
this scenario, we use intersection of l uniform matroids to prevent each category from
having more than a certain number of movies. A knapsack constraint is also used to
model the user’s limitation in terms of the money she can pay, the time she can spend,
or how much effort she has to make to find such movies.

To find a representative set of movies for recommendation, we can use the two non-
monotone submodular utility functions introduced in Section 3.6 for movie recommen-
dation. Such utility functions capture both coverage and diversity of the selected subsets,
and we can find a diverse and representative set for recommendation by maximizing
them under the user specified constraints.

Personalized image summarization: Here, we have a collection of images V from l
disjoint categories (e.g., mountains, bikes, birthdays, etc) and the user is interested in
a summary only from a few categories. For simplicity, we assume that each image is
only a member of a single category. This assumption lets us define a partition matroid
consisting of l groups. The user basically identifies the set of desired groups, and a
limit on the number of images that can be chosen from each group. The cost of an
image is chosen as a function of its quality, such as the resolution, contrast, luminance,
etc. For the utility function, we can use the facility location objective penalized by the
similarity within the selected subset. This non-monotone submodular utility functions
has been discussed in Section 3.5.

Revenue maximization with multiple products: Here, the goal is to offer for free or
advertise some of the products q 2 Q to a set of users S ✓ V such that through their

168

13.3. Our Algorithm: Fantom

influence on others, the revenue increases. The non-monotone submodular objective
function introduced in Section 3.8 can be used to find the influential set of individuals
for advertising each product. Now, users in a social network may want to see only
a small number of advertisements. This requirement can be modeled by a partition
matroid. Moreover, nodes with higher (weighted) degrees are usually more influential
and harder to get. So we also define a cost ci = ci(Âj2V wij) for including a node i to a
set of users targeted for advertising any product. Again, the total cost cannot exceed a
threshold modeled by a knapsack.

13.3 Our Algorithm: Fantom

In this section, we describe a very fast algorithm for maximizing a non-monotone sub-
modular function subject to the intersection of a p-system and d knapsack constraints.
Our algorithm is a novel combination of two algorithms: a local search algorithm
discussed in Chapter 9 (c.f. Section 9.3.1) for maximizing non-monotone submodular
function subject to a p-system [Gup+10b], and an algorithm for maximizing monotone
submodular function subject to a p-system and d knapsack constraints [BV14]. Addi-
tionally we tighten the analysis of [Gup+10b] to get a better approximation ratio even
for the case of d = 0.

Our algorithm is split into three parts. In the first part we take the most natural
algorithm for maximizing submodular functions, i.e., the celebrated greedy algorithm.
We restrict the greedy algorithm to only pick elements with enough ”density” for
knapsack constraints. In general, greedy algorithms don’t tend to work well for non-
monotone submodular functions. We prove that the algorithm either picks a good
enough of a solution, or if we throw away the greedy solution, the optimal solution
in the remaining elements is not too bad. Based on this observation, in the second
part we iterate the greedy algorithm multiple times on the remaining elements to
generate multiple solutions and pick the best among them. In the third and final part,
we discretize and iterate over all possible values of ”density” as defined in the first part.

13.3.1 Greedy with Density Threshold (GDT)

In the first part, we consider a natural variant of the greedy algorithm, where we pick
elements in a greedy manner while simultaneously restricting it to pick elements with

169

Chapter 13. Fast Constrained Submodular Maximization: Personalized Summarization

enough ”density” for knapsack constraints. I.e., GDT (outlined in Alg. 13) does not
pick elements if the ratio of the marginal value of the element to the sum of its costs for
each knapsack is below a given threshold.

Algorithm 13: GDT - Greedy with density threshold
input f : 2V ! R+, a membership oracle for p-system I ⇢ 2V , and d knapsack

cost functions ci : V ! [0, 1], density threshold r.
output A set S ✓ V satisfying S 2 I and ci(S)  18i.

1: Run greedy and at each step pick the element if and only if fS(j)
Âl

i=1 cij
� r, where

fS(j) = f (S [{j})� f (S)
2: Let z = arg max{ f (j)|j 2 V}
3: Return arg max(f (S), f ({z}))

Theorem 30. For any set C 2 I , GDT outputs a set S 2 I such that

f (S) � min
✓

r

2
,

1
p + 1

f (S [C)� dr

p + 1

◆
.

The proofs of the theorems in this Chapter can be found in Appendix A.7.

13.3.2 Iterated Greedy with Density Threshold (IGDT)

While greedy tends to perform well for monotone functions, it can pick really bad
solutions for non-monotone functions. In this part, we run GDT multiple times, each
time on remaining elements to get multiple solutions. We prove that this process
produces at least one reasonable solution.

Theorem 31. For any set C 2 I , IGDT (outlined in Alg. 14) outputs a set S 2 I such that

f (S) � min
✓

r

2
,

p
(p + 1)(2p + 1)

f (C)� dr

2p + 1

◆

13.3.3 Fantom

In this section, we consider the final piece of the puzzle. In the previous two algorithms,
we consider the density threshold to be a given number. In our final algorithm we

170

13.3. Our Algorithm: Fantom

Algorithm 14: IGDT: Iterated greedy with density threshold
input f : 2V ! R+, a membership oracle for p-system I ⇢ 2V , and d knapsack

cost functions ci : V ! [0, 1], density threshold r.
output A set S ✓ V satisfying S 2 I and ci(S)  18i.

1: W = V
2: for i = 1; i  p + 1; i ++ do
3: Si = GDT(f , W, r)
4: S0i = Unconstrained-Maximization(Si)
5: U = U [{Si, S0i}
6: W = W� Si
7: end for
8: Return arg max{ f (S)|S 2 U}

discretize the set of density thresholds into log(n)/e different possible values and run
the previous algorithm on each of them. We finally show that for at least one of the
discretized density thresholds we should get a good enough solution.

Algorithm 15: Fantom

input f : 2V ! R+, a membership oracle for p-system I ⇢ 2V , and d knapsack
cost functions ci : V ! [0, 1].

output A set S ✓ V satisfying S 2 I and ci(S)  18i.
1: M = maxj2V f (j), g = 2·p·M

(p+1)(2p+1) , U = {}
2: R =

�
g, (1 + e)g, (1 + e)2

g, (1 + e)3
g, . . . , g · n

3: for r 2 R do
4: S = IGDT(f , W, r)
5: U = U [{S}
6: end for
7: Return arg max{ f (S)|S 2 U}

Theorem 32. Fantom (outlined in Alg. 15) has an approximation ratio (1+ e)(p + 1)(2p +
2d + 1)/p with running time O(nrp log(n)

e

).

Without any knapsack constraints (d = 0), each call to IGDT (Alg. 14) in Fantom

returns the same solution. Hence, for the case of d = 0, we obtain an improved
approximation guarantee of (p + 1)(2p + 1)/p, with a similar running time O(nrp) to
[Gup+10b].

Proposition 33. For the case of d = 0, Fantom has a (p + 1)(2p + 1)/p-approximation
ratio with O(nrp) running time.

171

Chapter 13. Fast Constrained Submodular Maximization: Personalized Summarization

As discussed in Section 2.3.3, (see Table 2.4), even for the special case of 1 matroid and
1 knapsack constraints, all the existing algorithms have exorbitant running times and
cannot be implemented in any reasonable time in practice. There are two main reasons
for this. The first is due to an expensive enumeration step running over all subsets of
very large size, and the second is due to running the continuous greedy algorithm. To
compare our algorithms against practical baselines in Section 13.4, we consider two
heuristics based on classical methods for maximizing submodular functions.

Greedy: Our first baseline starts with an empty set S = f and keeps adding elements
one by one greedily while the p-system and d knapsack constraints are satisfied.

Density Greedy: Our second baseline starts with an empty set S = f and keeps adding
elements greedily by their value to total-knapsack cost ratio while the p-system and d
knapsack constraints are satisfied.

The above heuristics do not have provable performance guarantees as shown by the
following examples.

Bad example for Greedy. Let n = |V| be the number of elements in the ground
set and let m = n/2. Define sets Ti = {yi, zi} for 1  i  m. Let V = [m

i=1Ti. Let
Y = {y1, y2, . . . , ym} and Z = {z1, z2, . . . , zm}. Let e > 0 be a small constant. Define the
submodular function

8S ✓ V, f (S) = (1 + e) · |S \Y|+ |S \ Z|

and the following two constraints.

1. A partition matroid constraint where S is a feasible solution if for 1  i 
m, |S \ Ti|  1.

2. A knapsack constraint where cost is defined as follows. For any e 2 Y, c(e) =

1� 1
2m and for any e 2 Z, c(e) = 1/m.

Then, it is easy to see that Baseline 1 picks a set S = {yi} for some i and gets value
1 + e, while the optimal solution is Z of value m = n/2.

Bad example for Density Greedy. Let T1 = {y1, z1} and T2 = {y2, z2} and V =

T1 [T2. Let Y = {y1, y2} and Z = {z1, z2}. Let e > 0 be a small constant. Define the

172

13.4. Experiments

submodular function

8S ✓ V, f (S) = e · |S \Y|+ |S \ Z|

and the following two constraints.

1. A partition matroid constraint where S is a feasible solution if for 1  i 
2, |S \ Ti|  1,

2. A knapsack constraint where cost is defined as follows. For any e 2 Y, c(e) = e/2
and for any e 2 Z, c(e) = 1/2.

Then, it is easy to see that Baseline 2 picks a set S = Y for some i and gets value 2e,
while the optimal solution is Z of value 2. Hence the approximation ration is at least
1/e and as e! 0 we get unbounded approximation ratio.

13.4 Experiments

In this section, we evaluate Fantom on the three real-world applications we described
in Section 13.2: personalized movie recommendation, personalized image summa-
rization, and revenue maximization. The main goal of this section is to validate our
theoretical results, and demonstrate the effectiveness of Fantom in practical scenarios
where existing algorithms are incapable of providing desirable solutions.

13.4.1 Personalized movie recommendation

Our personalized recommendation experiment involves Fantom applied to a set of
10,437 movies from the MovieLens ratings database [Mov]. Each movie is associated
with a 25 dimensional feature vector calculated from user ratings. There are 19 genres
in total, and each movie is associated with at most 8 genres. We used the inner product
of the non-normalized feature vectors to compute the similarity si,j between movies i
and j (this idea was inspired by [LWD15]). The costs ci are drawn from the Beta(10, 2)
cumulative distribution ci = FBeta(10,2)(ri), where ri 2 (0, 1) is the normalized average
rating of movie i. The Beta distribution lets us differentiate the highly rated movies
from those with lower ratings and can be used as a proxy for the cost of watching
different movies.

173

Chapter 13. Fast Constrained Submodular Maximization: Personalized Summarization

Knapsack limit (c)
0.2 0.4 0.6 0.8 1

O
bj

ec
tiv

e
va

lu
e

#104

1

1.5

2

2.5

FANTOM

Greedy

Density Greedy

(a) Movies
Matroid limit (m)

1 2 3 4 5 6 7

O
bj

ec
tiv

e
va

lu
e

#104

0

0.5

1

1.5

2

2.5

3
FANTOM

Density Greedy

Greedy

(b) Movies

Knapsack limit (c)
0.2 0.4 0.6 0.8 1

O
bj

ec
tiv

e
va

lu
e

#104

1

1.5

2

2.5

3

3.5
FANTOM

Greedy

Density Greedy

(c) Movies
Matroid limit (m)

1 2 3 4 5 6 7

O
bj

ec
tiv

e
va

lu
e

#104

0

1

2

3

4

5

6

7

Greedy

FANTOM

Density Greedy

(d) Movies

Figure 13.1: Performance of Fantom compared to the benchmarks for movie recommendation
from a set of 10,437 movies from MovieLens. a) shows the performance of Fantom based on
Eq. 3.6.1 for recommending movies from three genres: adventure, animation, and fantasy for
m = 3, and varying knapsack limit c. b) shows the same quantity for c = 1, and varying the
matroid limits m. c) shows the solution value based on Eq. 3.6.2 with m = 3, and varying c. d)
shows the same quantity for c = 1, and varying m.

Figure 13.1a compares the performance of our approach to the benchmarks using
Eq. 3.6.1 with l = 1 for three genres: adventure, animation, and fantasy. A total of
l = 19 uniform matroid constraints are considered to limit the number of movies

174

13.4. Experiments

1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23 24 25

Eq. Fantom Greedy Density Greedy
Av. rate Genres # Av. rate Genres # Av. rate Genres

3.
6.

1

1 3.99 1,2,15 6 4.20 2,3,9 11 1.16 3,4
2 3.98 3,4,5,9 7 4.21 1,2 12 1.16 2,4
3 4.00 2,3,4,9,19 8 3.26 1,2,8,14 13 1.25 2,4,5,9
4 3.08 9,11 9 2.66 2,5,12 14 1.34 2,3,4,9
5 2.53 3,4,5 10 1.96 1,2,4 15 1.39 1,2,4

3.
6.

2

16 3.91 2,3,5,9,14 21 3.78 1,2,3,4,5,9 12 1.16 2,4
17 3.70 2,3,4,8,9 22 3.75 1,2,3,4,5,9 13 1.25 2,4,5,9
18 3.78 1,2,5,12,14,16 23 4.06 1,2,3,4,9,15 14 1.34 2,3,4,9
19 3.53 1,2,3,4,5 24 3.82 2,5,8,9,13,15,16 11 1.16 3,4
20 3.16 1,2,5,9,11,16 25 2.08 1,2,4,5,9,15 15 1.39 1,2,4

Table 13.1: Movies recommended by Fantom vs. Greedy and Density Greedy using Eq.
3.6.1, and Eq. 3.6.2 for m = 5 and c= 1. There are 19 genres in total: Action(1), Adventure(2),
Animation (3), Children (4), Comedy (5), Crime (6), Documentary (7), Drama (8), Fantasy (9),
Film-Noir (10), Horror (11), Musical (12), Mystery (13), Romance (14), Sci-Fi (15), Thriller
(16), War (17), Western (18), IMAX (19). The user is interested in adventure, animation, and
fantasy movies (genres 1,2,9). See the Appendix for a complete list of movie names.

chosen from each of the 19 genres. The limits for all the matroid constraints are set
to 3. We also considered an additional uniform matroid constraint to restrict the size
of the final solution to 10 movies. Moreover, a knapsack constraint is considered to
model the total available budget. It can be seen that Fantom significantly outperforms
the benchmarks for different knapsack limits. Figure 13.1b shows similar qualitative
behavior for a fixed knapsack limit c = 1, and varying matroid limits m associated
with each of the 19 genres. Again, Fantom is able to show a good performance in
scenarios where Greedy and Density Greedy perform arbitrary poorly. Figures 13.1c
and 13.1d show the same qualitative behavior using Eq. 3.6.2. Table 13.1 summarized

175

Chapter 13. Fast Constrained Submodular Maximization: Personalized Summarization

the movies recommended by different methods, along with their average rating and
associated genres. We can see that by using Eq. 3.6.2 the recommended movies have
more common genres with what the user requested.

13.4.2 Revenue maximization with multiple products

Our larger scale experiment involves applying Fantom to maximize the revenue
function defined in Eq. 3.8.2. We performed our experiment on the top 5000 largest
communities of the YouTube social network consists of 39,841 nodes and 224,235 edges
[YL15]. We consider the settings where we are to advertise |Q| = q different types of
product across all communities of the same social network. For simplicity, we assume
that there are x units available from each product, and the influence of individuals on
each other is the same for all product types. The edge weights are assigned according
to a uniform distribution U (0, 1), and the cost of selecting each node ci is determined
according to an exponential cumulative distribution function of the normalized sum of
its edge weights. For the exponential distribution, we chose the parameter l = 0.2 to
scale the costs to the interval [0, 1]. To model different characteristics of the products, we
model the revenues by the concave function vq

i (S) = aq
q

Âj2S wi,j, where aq depends
on the type of the product. We used q = 10 different values aq 2 [0.8, 1.3] to model the
revenue of different product types. Finally, we modeled user constraints by a partition
matroid that puts a limits u on the number of products that can be offered to each user.
Another partition matroid is employed to restrict the number of products m offered for
free to users in each community.

Figure 13.2a shows the revenue obtained by Fantom versus the budget c when there
are x = 50 free items available from each product, the number of individuals that can
be selected from each community is limited to m = 5, and the number of products that
can be offered to each user is at most u = 3. We note again that Fantom significantly
outperforms the other benchmarks. Figure 13.2b shows the same behavior for varying
the matroid limit m, when x = 50 and budget c = 0.1. Similarly, Figure 13.2c shows the
performance of Fantom for m = 5, x = 50, c = 0.2, and varying the user constraints
u. Finally, Figure 13.2d shows the performance of Fantom for m = 5, u = 3, c = 0.2,
and varying the number of available items x from each product type.

176

13.4. Experiments

Knapsack limit (c)
0.05 0.1 0.15 0.2

O
bj

ec
tiv

e
va

lu
e

0

20

40

60

80

100

120

140

160

180

FANTOM

Greedy

Density Greedy

(a) YouTube
Matroid limit (m)

1 2 3 4 5

O
bj

ec
tiv

e
va

lu
e

30

40

50

60

70

80

90

100

FANTOM

Greedy

Density Greedy

(b) YouTube

User constraint (u)
1 2 3 4 5

O
bj

ec
tiv

e
va

lu
e

40

60

80

100

120

140

160

FANTOM

Greedy

Density Greedy

(c) YouTube
Number of items per product (x)

20 40 60 80 100

O
bj

ec
tiv

e
va

lu
e

0

20

40

60

80

100

120

140

160

180

200

FANTOM

Greedy

Density Greedy

(d) YouTube

Figure 13.2: Performance of Fantom compared to the benchmarks for revenue maximization
on top 5000 communities of YouTube with 39,841 nodes and 224,235 edges. a) shows the
performance of Fantom for selling q = 10 product types, with x = 50 available items per
product, matroid limit m = 5 for all communities, user constraint u = 3, and varying knapsack
limit c. b) shows the same quantity for c = 0.1, q = 10, x = 50, u = 3 and varying m. c)
shows the solution value for c = 0.2, q = 10, x = 50, m = 3, and varying u. d) shows the same
quantity for c = 0.2, q = 10, m = 5, u = 3 and varying x.

13.4.3 Personalized image summarization

Our personalized recommendation experiment involves Fantom applied to Eq. 3.7.1.
We performed our experiments on a set of 10,000 Tiny Images [KH09]. The images

177

Chapter 13. Fast Constrained Submodular Maximization: Personalized Summarization

belong to 10 classes, with 1000 images per class. Each 32 by 32 RGB pixel image was
represented by a 3,072 dimensional vector. We used the inner product to compute the
similarity si,j between image i and j. The costs are chosen proportional to the normalized
variance of the image pixels as a simple technique to calculate image qualities. This
way, we assign a higher cost to images with higher contrast and a lower cost to blurry
images.

Knapsack limit (c)
0.16 0.18 0.2 0.22 0.24

O
bj

ec
tiv

e
va

lu
e

#105

6.2

6.22

6.24

6.26

6.28

6.3

6.32

6.34

6.36

FANTOM

Greedy

Density Greedy

(a) Images
Matroid limit (m)

1 2 3 4 5

O
bj

ec
tiv

e
Va

lu
e

#105

5.2

5.4

5.6

5.8

6

6.2

6.4

Greedy

FANTOM

Density Greedy

(b) Images

Figure 13.3: Performance of Fantom compared to the benchmarks for personalized image
summarization: a) shows the solution value for summarizing three categories airplane, auto-
mobile, and bird for m = 3, and varying the knapsack limit c. b) shows the same quantity for
c = 0.1, and varying the matroid limits m.

A partition matroid constraint is considered to limit the number of images chosen
from each of the specified categories. Moreover, a knapsack constraint is employed
to model the limited available budget. Figure 13.3a compares the performance of our
approach to the benchmarks for summarizing images from three categories: airplane,
automobile, and bird. The results are shown for varying knapsack limit c, while the
maximum number of images allowed from each category is set to m = 3. Similarly,
Figure 13.3b shows the results for fixed c = 0.1, and varying m. We find again that
Fantom significantly outperforms the benchmarks.

178

13.5. Summary

13.5 Summary

In this chapter, we cast personalized data summarization as an instance of a general
submodular maximization problem subject to multiple constraints. We develop the
first practical and fast constrained submodular maximization algorithm, Fantom, that
provides a a(1� #)p/(p + 1)(2p + 2l + 1) approximation guarantee for maximizing
a (not necessarily monotone) submodular function subject to the intersection of a p-
system and d knapsack constrains. We have also showed the application of Fantom

to various personalized data summarization problems: movie recommendation on a
dataset containing 11K movies, personalized image summarization on a multi-category
dataset with 10K images, and revenue maximization on the YouTube social network with
5000 communities. As stated earlier, Fantom can be easily integrated into the existing
distributed methods to further scale up (non-monotone) submodular summarization
under general constraints.

179

Chapter 13. Fast Constrained Submodular Maximization: Personalized Summarization

180

Part V

Conclusion and Future Research
Directions

181

14
Conclusions

Data summarization is a compelling (and sometimes the only) approach that aims at
both exploiting the richness of large-scale data and being computationally tractable. In
this Thesis, we studied massive data summarization using submodular functions and
studied the fundamental question:

Is it possible to scale up submodular maximization techniques?

Classical approaches to submodular optimization require random access to the entire
data, make multiple passes, and select elements sequentially in order to produce near
optimal solutions. Once the size of the dataset increases beyond the memory capacity
(typical in many modern datasets) or the data is arriving incrementally over time,
neither the greedy algorithm, nor its accelerated versions can be used. Naturally, such
solutions cannot scale to large instances. The limitations of centralized methods inspired
the design of parallel computing methods, or streaming algorithms that are able to gain
insights from data as it is being collected.

In this Thesis, we presented novel approaches for large-scale submodular maxization.
Our algorithms can be grouped to three classes, distributed algorithms, streaming
algorithms, and fast centralized algorithms.

183

Chapter 14. Conclusions

14.1 Summary

In this section, we will briefly summarize the key contributions presented in this Thesis.

14.1.1 Distributed Algorithms

In part II of this Thesis, we considered distributed approaches for scaling up submodu-
lar summarization techniques. We first studied the problem of submodular function
maximization in a distributed fashion. We developed a simple, parallel protocol called
GreeD i for distributed submodular maximization. It requires minimal communica-
tion, and can be easily implemented in MapReduce style parallel computation models.
We theoretically characterized its performance, and showed that under some natural
conditions, for large datasets the quality of the obtained solution is competitive with
the best centralized solution. Our experimental results (implemented with Hadoop)
demonstrated that our approach leads to parallel solutions that are typically within
97% of those obtained via centralized methods.

We then considered the problem of submodular cover in a distributed setting. We
developed a distributed algorithm – D isCover – for solving the submodular cover
problem. It can be easily implemented in MapReduce-style parallel computation models
and provides a solution that is competitive with the (impractical) centralized solution.
We also studied a natural trade-off between the communication cost (for each round
of MapReduce) and the number of rounds. Our experimental results (implemented
with Spark) demonstrated the effectiveness of our approach on a variety of submodular
cover instances.

We next introduced a more general framework for data summarization, namely, public-
private data summarization. This setting is motivated by privacy concerns in many
modern online platforms, where the dataset consists of public data, shared among
all users, and disjoint sets of private data accessible to the owners only. To address
this problem, we proposed a fast distributed algorithm, FastCover, that enables
us to solve the problem of covering multiple submodular functions in one run of
the algorithm. We showed that FastCover returns a solution that is competitive to
that of the best centralized, polynomial-time greedy algorithm. The superior practical
performance of FastCover against all the benchmarks was demonstrated through a
large set of experiments using Spark.

184

14.1. Summary

14.1.2 Streaming Algorithms

In part III, we studied streaming algorithms able to efficiently summarize useful infor-
mation from massive data “on the fly”. We first provided the first single pass streaming
algorithm, Streaming Local Search, for maximizing non-monotone submodu-
lar functions subject to a collection of independence systems and multiple knapsack
constraints. We showed it’s effectiveness on video summarization for producing online
summaries in the streaming setting. The ability of our method to generates real-time
summaries after receiving each element from the stream is of significant importance in
privacy sensitive applications.

We then introduced dynamic submodular maximization, and developed the first
deletion-robust streaming algorithm –Robust -Streaming – for constrained submod-
ular maximization. For a single-pass streaming algorithm StreamingAlg with ap-
proximation guarantee a, Robust -Streaming uses multiple instances of Streamin -
gAlg to output a solution that is robust against m deletions. The returned solution
also satisfies an approximation guarantee w.r.t to the solution of the optimum cen-
tralized algorithm that knows the set of m deletions in advance. Our experiments
showed that Robust -Streaming can immediately update the solution in case of
deletions, and significantly improves the performance of the existing streaming ap-
proaches. This property of Robust -Streaming makes it an appealing approach for
solving very large-scale applications on dynamic datasets that experience deletions
very often. Given the importance of submodular optimization to numerous data mining
and machine learning applications, we believe our results provide an important step
towards addressing such problems at scale.

14.1.3 Fast Centralized Algorithms

In complementary to the aforementioned methods for scaling up submodular opti-
mization techniques, in part IV, we developed a fast centralized algorithms that can be
integrated into the existing distributed frameworks to provide further scalability.

In particular, we developed a randomized technique for maximizing a monotone
submodular function that is faster than the widely used lazy greedy algorithm, both
in theory and practice. We showed that our randomized algorithm, Stochastic -
Greedy, can achieve the same approximation guarantee as greedy, in expectation, to

185

Chapter 14. Conclusions

the optimum solution in time linear in the size of the data and independent of the
cardinality constraint. As shown by our experiments, Stochastic -Greedy achieves
a major fraction of the function utility provided by the greedy algorithm, with much
less computational cost.

Lastly, we considered summarization of multi-category data based on user preferences.
We showed that this problem can be formulated as maximizing a (not-necessarily
monotone) submodular function subject to intersection of a p-system and d knapsack
constraints. While algorithms with good approximation ratios existed for this problem,
they all suffered from a prohibitive running time that make them impractical for any
effective data summarization applications. We developed the first practical and fast
constrained submodular maximization, Fantom, algorithm with strong theoretical
guarantees, and showed it’s effectiveness on several personalized data summarization
applications.

14.1.4 Applications

In addition to providing algorithms and theoretical analyses, we presented extensive
empirical evaluation of our approaches on several large-scale real-world problems.

A major focus of this Thesis were on summarizing massive data. We used our large-
scale methods to summarize 80 million Tiny Images, more than 45 million user visits
from the Featured Tab of the Today Module on Yahoo! Front Page, as well as finding
dominating sets in Friendster social network with more than 65.6 million nodes and 1.8
billion edges.

We also considered the problem of public-private data summarizaton, and reported
the performance of our distributed algorithms using Spark on concrete applications of
this problem, including personalized movie recommendation on a dataset containing
more than 2 million ratings by more than 100K users for 11K movies, personalized
location recommendation based on 20 users and their collected GPS locations, and
finding dominating sets on a social network containing more than 65 million nodes
and 1.8 billion edges.

In addition to the above large-scale applications, we used our algorithm for personalized
data summarization. In particular, we provided personalized movie recommendations
among over 11K movies of the MovieLens database from 19 genres, personalized

186

14.1. Summary

image summarization with 10K images, and revenue maximization on the YouTube
social networks with 5K communities. In the streaming setting, we showed that for the
personalized video summarization problem, our method, while achieving practically
the same performance, runs more than 1700 times faster than previous work.

Finally, we showed the effectiveness of our algorithms for summarizing a dynamic data
stream with “the Right to be Forgotten”. Here, the user can decide to delete a subset of
elements from the selected summary at any time, and we should be able to update the
summary immediately. We evaluated our approach on several real-world applications,
including summarizing geo-tagged mobile air-quality measurements collected on bikes;
a streaming image collection application; and click-stream log data, consists of 45.8
million points, from a news recommendation task.

187

Chapter 14. Conclusions

14.2 Future Research Directions

A tremendous amount of data is generated every second, and demand fast analysis
and efficient storage. Examples include massive clickstreams (e.g., Google, Yahoo,
etc), stock market data, log aggregation, image and videos (e.g., Instagram, YouTube,
etc.), and sensor data for environmental or health monitoring. Our long-term research
goal is to harness such massive amount of data from various sources, be able to
make predictions about future events, and ultimately, enhance social and technological
systems. Exploiting such large-scale data allows us to build large-scale machine learning
methods for predictive as well as prescriptive analytics, and will have applications
in several domains, including medical and health care systems, building and home
automation, environmental sensing and urban planning. In order to achieve this long-
term goal, we define the following intermediate steps and directions.

• Extracting representative elements and patterns in data from various sources.

• Developing statistical machine learning models and algorithms to make inference.

• Deriving predictive and prescriptive analytics in a timely manner.

• Scaling the developed techniques to massive datasets.

To make progress on this long-term goal, we pursue the following research directions.

Developing appropriate abstractions When combining and interpreting data from
potentially heterogeneous sources, we often need to develop appropriate abstractions
for each source of data. For example, when discovering routines from human locations,
we may use location labels instead of the raw geo-location tags. Similar scenario happens,
when receiving real-time data from thousands of potentially different types of sensors.
Developing appropriate abstractions allow for identical higher-order reasoning about
the underlying heterogeneous data. Furthermore, such abstractions facilitate modeling
streams of data as time series, and allow for recording historical trends.

Actively deriving predictive and prescriptive analytics. The extracted nuggets of
insightful information can be exploited to develop appropriate statistical and proba-
bilistic models. We will then be able to take advantage of machine learning methods

188

14.2. Future Research Directions

to derive predictive analytics. This requires solving difficult challenges, as we need to
combine evidence from different sources, data may be incomplete or inconsistent, and
the underlying environment may be time varying. Moreover, in many situations, data
and observations from various sources may not be independent. In such scenarios, we
need scalable hierarchical and mixture models, which are able to handle this type of
mutual dependence. Beyond developing predictive models, we want to be able to track
the root causes of various events in an autonomous manner, and make appropriate
suggestions to improve the performance and efficiency of the underlying system.

Dealing with massive data and scalability. One of our primary research focuses is
on large scale data analysis and manipulation. The massive volume of data received
from various sources is prohibitively expensive to analyze. In order to permit timely
analysis of such rapid data we need techniques able to sift through huge amount of
data and extract insightful information. In this Thesis, we made several steps towards
this long-term goal. Nevertheless, further scaling up and improving the efficiency of
the developed techniques provides rich opportunities for further research.

We further need large-scale, computationally tractable machine learning algorithms
for inferring model parameters, and make predictions. The important question here is
what kinds of analyses are suitable for making inference on such heterogeneous data,
and how to further scale up data mining and machine learning algorithms to deal with
such data. These directions pose great opportunities for scholarly study and will allow
us to find patterns that are practically observable in the combined data from various
sources.

Taking privacy concerns into account. Dealing with personal data, including traces
of users’ activities on social networks (posts, tweets, etc) or images/videos taken with
wearables such as Google Glass, privacy concerns become a growing concern. When
mining and analyzing data, we want to preserves the right of individuals to have control
over the information they reveal about themselves. This becomes of greater importance
when investigating information from a wide variety of sources, as the combined data
can increase the chance of revealing undesirable information about the individuals.
In this Thesis, we considered dynamic data summarization, where user can decide to
delete a subset of elements from the selected summary at any time. We plan to extend
such privacy preserving methods to heterogeneous data from various sources.

189

A
Proofs

191

Appendix A. Proofs

A.1 Proofs from Chapter 5

This section presents the complete proofs of theorems presented in the article.

Proof of Theorem 4

) direction:
The proof easily follows from the following lemmas.

Lemma 34. max
i

f (Ac
i [k]) �

1
m

f (Ac[k]).

Proof. Let Bi be the elements in Vi that are contained in the optimal solution, Bi =

Ac[k] \Vi. Then we have:

f (Ac[k]) = f (B1 [. . . [Bm) = f (B1) + f (B2|B1) + . . . + f (Bm|Bm�1, . . . , B1).

Using submodularity of f , for each i 2 {1 . . . m}, we have

f (Bi|Bi�1 . . . B1)  f (Bi),

and thus,
f (Ac[k])  f (B1) + . . . + f (Bm).

Since, f (Ac
i [k]) � f (Bi), we have

f (Ac[k])  f (Ac
1[k]) + . . . + f (Ac

m[k]).

Therefore,
f (Ac[k])  m max

i
f (Ac

i [k]).

Lemma 35. max
i

f (Ac
i [k]) �

1
k

f (Ac[k]).

Proof. Let f (Ac[k]) = f ({u1, . . . uk}). Using submodularity of f , we have

f (Ac[k]) 
k

Â
i=1

f (ui).

192

A.1. Proofs from Chapter 5

Thus, f (Ac[k])  k f (u⇤) where u⇤ = arg maxi f (ui). Suppose that the element with high-
est marginal gain (i.e., u⇤) is in Vj. Then the maximum value of f on Vj would be greater
or equal to the marginal gain of u⇤, i.e., f (Ac

j [k]) � f (u⇤) and since f (maxi f (Ac
i [k])) �

f (Ac
j [k]), we can conclude that

f (max
i

f (Ac
i [k])) � f (u⇤) � 1

k
f (Ac[k]).

Since f (Ad[m, k]) � maxi f (Ac
i [k]); from Lemma 34 and 35 we have

f (Ad[m, k]) � 1
min(m, k)

f (Ac[k]).

(direction:
Let us consider a set of unbiased and independent Bernoulli random variables Xi,j

for i 2 {1, . . . , m} and j 2 {1, . . . , k}, i.e., Pr(Xi,j = 1) = Pr(Xi,j = 0) = 1/2 and
(Xi,j ? Xi0,j0) if i 6= i0 or j 6= j0. Let us also define Yi = (Xi,1, . . . , Xi,k) for i 2 {1, . . . , m}.
Now assume that Vi = {Xi,1, . . . , Xi,k, Yi}, V =

Sm
i=1 Vi and f (S) = H(S), where H is

the entropy of the subset S of random variables. Note that H is a monotone submodular
function. It is easy to see that Ac

i [k] = {Xi,1, . . . , Xi,k} or Ac
i [k] = Yi as in both cases

H(Ac
i [k]) = k. If we assume Ac

i [k] = {Xi,1, . . . , Xi,k}, then B = {Xi,j|1  i  m, 1 
j  k}. Hence, by selecting at most k elements from B, we have H(Ad[m, k]) = k. On
the other hand, the set of k elements that maximizes the entropy is {Y1, . . . , Ym}. Note
that H(Yi) = k and Yi ? Yj for i 6= j. Hence, H(Ac) = k · m if m � k or otherwise
H(Ac[k]) = k2.

Proof of Theorem 5

Let us first mention a slight generalization over the performance of the standard greedy
algorithm. It follows easily from the argument in [NWF78a].

Lemma 36. Let f be a non-negative submodular function, and let Agc[q] of cardinality q be
the greedy selected set by the standard greedy algorithm. Then,

f (Agc[q]) �
⇣

1� e�
q
k

⌘
f (Ac[k]).

193

Appendix A. Proofs

By Lemma 36 we know that

f (Agc
i [k]) � (1� exp(�k/k)) f (Ac

i [k]).

Now, let us define

Bgc = [m
i=1Agc

i [k],

Agc
max[k] = max

i
f (Agc

i [k]),

Ã[k] = arg maxS✓Bgc&|S|k

f (S).

Then by using Lemma 36 again, we obtain

f (Agd[m, k]) � max
�

f (Agc
max[k]), (1� exp(�k/k)) f (Ã[k])

� (1� exp(�k/k))
min(m, k)

f (Ac[k]).

Proof of Proposition 7

Let K be a positive definite kernel matrix defined in section 3.1.1. If we replace a
point ei 2 S with another point e0i 2 V \ S, the corresponding row and column i in the
modified kernel matrix K0 will be changed. W.l.o.g assume that we replace the first
element e1 2 S with another element e01 2 V \ S, i.e., DK = K0 � K has the following
form with non-zero entries only on the first row and first column,

DK ⌘ K0 � K 

0

BBBB@

a1 a2 · · · ak

a2 0 · · · 0
...

...
ak 0 · · · 0

1

CCCCA
.

Note that kernel is Lipschitz continuous with constant L, hence we have |ai|  Ld(e1, e01)

194

A.1. Proofs from Chapter 5

for 1  i  k. Then the absolute value of the change in the objective function would be

�� f (S)� f (S0)
�� =

����
1
2

log det(I + K0)� 1
2

log det(I + K)
����

=
1
2

����log
det(I + K0)
det(I + K)

����

=
1
2

����log
det(I + K + DK)

det(I + K)

����

=
1
2

���log[det(I + K + DK). det(I + K)�1]
���

=
1
2

���log det(I + DK(I + K)�1)
��� . (A.1.1)

Note that since K is positive-definite, I+K is an invertible matrix. Furthermore, since DK
and K are symmetric matrices they both have k real eigenvalues. Therefore, (I + K)�1

has k eigenvalues li = 1
1+l

0
i
 1, for 1  i  k, where l

0
1 · · · l

0
k are (non-negative)

eigenvalues of kernel matrix K.

Now, we bound the maximum eigenvalues of DK and DK(I + K)�1 respectively. Con-

195

Appendix A. Proofs

sider vectors x, x0 2 Rn, such that ||x||2 = ||x0||2 = 1. We have,

���xTDK x0
��� =

��������������

0

BBBBBBB@

x1

x2
...

xk

1

CCCCCCCA

T 0

BBBB@

a1 a2 · · · ak

a2 0 · · · 0
...

...
ak 0 · · · 0

1

CCCCA

0

BBBB@

x01
x02
...

x0k

1

CCCCA

��������������

=

�����������

0

BBBB@

x1

x2
...

xk

1

CCCCA

T 0

BBBB@

Âk
i=1 aix0i
a2x01

...
akx01

1

CCCCA

�����������

=

�����x1

k

Â
i=1

aix0i + x01
k

Â
i=2

aixi

�����

= |x1|.
�����

k

Â
i=1

aix0i

�����+ |x01|.
�����

k

Â
i=2

aixi

�����

= |x1|.
k

Â
i=1

|aix0i|+ |x01|.
k

Â
i=2

|aixi|

 2kLd(e1, e01), (A.1.2)

where we used the following facts to derive the last inequality: 1) the Lipschitz continu-
ity of the kernel gives us an upperbound on the values of |ai|, i.e., |ai|  Ld(e1, e01) for
1  i  k; and 2) since ||x||2 = ||x0||2 = 1, the absolute value of the elements in vectors
x and x0 cannot be greater than 1, i.e., |xi|  1, |x0i|  1, for 1  i  k. Therefore,

lmax(DK) = max
x: ||x||2=1

|xTDKx|  2kLd(e1, e01).

Now, let v1, · · · vk 2 Rn be the k eigenvectors of matrix (I + K)�1. Note that {v1, · · · vk}
is an orthonormal system and thus for any x 2 Rn we can write it as x = Âk

i=1 civi, and
we have ||x||22 = Âk

i=1 c2
i . In order to bound the largest eigenvalue of DK(I + K), we

196

A.1. Proofs from Chapter 5

write

���xTDK (I + K)�1x
��� =

�����x
TDK (I + K)�1

k

Â
i=1

civi

�����

=

�����x
TDK

k

Â
i=1

licivi

�����

=

������

k

Â
j=1

cjvj

!T

DK

k

Â
i=1

licivi

!������

=

�����

k

Â
i,j=1

licicjvT
j DKvi

�����

(a)
 2kLd(e1, e01)

k

Â
i,j=1

|ci||cj|

= 2kLd(e1, e01)

k

Â
i=1

|ci|
!2

,

where in (a) we used Eq. A.1.2 and the fact that li  1 for 1  i  k. Using Cauchy-
Schwarz inequality

k

Â
i=1

|ci|
!2

 k
k

Â
i=1

|ci|2

and the assumption ||x||2 = 1, we conclude

���xTDK (I + K)�1x
���  2k2Ld(e1, e01)

k

Â
i=1

���c2
i

���

 2k2||x||22Ld(e1, e01)

 2k2Ld(e1, e01).

Therefore,

lmax

⇣
DK(I + K)�1

⌘
= max

x: ||x||2=1

���xTDK (I + K)�1x
���  2k2Ld(e1, e01). (A.1.3)

197

Appendix A. Proofs

Finally, we can write the determinant of a matrix as the product of its eigenvalues, i.e.

det(I + DK(I + K)�1)  (1 + 2k2Ld(e1, e01))
k. (A.1.4)

By substituting Eq. A.1.3 and Eq. A.1.4 into Eq. A.1.1 we obtain

�� f (S)� f (S0)
��  1

2

���log(1 + 2k2Ld(e1, e01))
k
���

 k
2

���log(1 + 2k2Ld(e1, e01))
���

 k3Ld(e1, e01),

where in the last inequality we used log(1 + x)  x, for x � 0.

Replacing all the k points in set S with another set S0 of the same size, we get

�� f (S)� f (S0)
��  k3L

k

Â
i=1

d(ei, e0i).

Hence, the differential entropy of the Gaussian process is l-Lipschitz with l = Lk3.

Proof of Proposition 8

Assume we have a set S of k exemplars, i.e., S0 = {e1, · · · , ek}, and each element of
the dataset v 2 V is assigned to its closest exemplar. Now, if we replace set S with
another set S0 of the same size, the loss associated with every element v 2 V may be
changed. W.l.o.g, assume we swap one exemplar at a time, i.e., in step i, 1  i  k, we
have Si = {e01, · · · , e0i, ei+1, · · · , ek}. Swapping the ith exemplar ei 2 Si�1 with another
element e0i 2 S0, 4 cases may happen: 1) element v was not assigned to ei before and
doesn’t get assigned to e0i, 2) element v was assigned to ei before and gets assigned
to e0i, 3) element v was not assigned to ei before and gets assigned to e0i, 4) element v
was assigned to ei before and gets assigned to another exemplar ex 2 Si \ {e0i}. For any
element v 2 V, we look into the four cases and show that in each case

|l(e0i, v)� l(ei, v)|  d(ei, e0i) aRa�1.

• Case 1: In this case, element v was assigned to another exemplar ex 2 Si \ ei and

198

A.1. Proofs from Chapter 5

the assignment doesn’t change. Therefore, there is no change in the value of the
loss function.

• Case 2: In this case, element v was assigned to ei before and gets assigned to e0i.
let a = d(ei, v) and b = d(e0i, v). Then we can write

|l(e0i, v)� l(ei, v)| = |aa � ba|
= |(a� b)|(aa�1 + aa�2b + · · ·+ aba�2 + ba�1)

 d(ei, e0i) aRa�1, (A.1.5)

where in the last step we used triangle inequality |d(e0t, v)� d(et, v)|  d(et, e0t)
and the fact that data points are in a ball of diameter R in the metric space.

• Case 3: In this case, v was assigned to another exemplar ex 2 Si�1 \ {ei} and gets
assigned to e0i, which implies that |l(e0i, v) � l(ex, v)|  |l(ei, v) � l(e0i, v)|, since
otherwise e would have been assigned to et before.

• Case 4: In the last case, element v was assigned to ei before and gets assigned
to another exemplar ex 2 Si \ {e0i}. Thus, we have |l(ex, v)� l(ei, v)|  |l(e0i, v)�
l(ei, v)| since otherwise v would have been assigned to ex before. Hence, in all
four cases the following inequality holds:

| min
e2Si�1

l(e, u)�min
e2Si

l(e, u)|  |l(e0i, v)� l(ei, v)|  d(ei, e0i) aRa�1.

By using Eq. A.1.5 and averaging over all elements v 2 V, we have

|L(Si�1)� L(Si)| =
1
|V| Â

v2V
| min

e2Si�1
l(e, u)�min

e2Si
l(e, u)|

 aRa�1d(ei, e0i).

Thus, for any point e0 that satisfies

max
v02V

l(v, v0)  l(v, e0), 8v 2 V \ S,

199

Appendix A. Proofs

we have L({e0 [S}) = L({S}) and thus

| f (Si�1)� f (Si)| = |L({e0})� L({e0 [Si�1})� L({e0}) + L({e0 [Si})|
 aRa�1d(ei, e0i).

Now, if we replace all the k points in set S with another set S0 of the same size, we get

�� f (S)� f (S0)
�� =

�����

k

Â
i=1

f (Si�1)� f (Si)

�����

=
k

Â
i=1

| f (Si�1)� f (Si)|

 aRa�1
k

Â
i=1

d(ei, e0i).

Therefore, for l = da, the loss function is l-Lipschitz with l = aRa�1.

Proof of Theorem 9

In the following, we say that sets S and S0 are g-close if | f (S)� f (S0)|  g. First, we
need the following lemma.

Lemma 37. If for each ei 2 Ac[k], |N
a

(ei)| � km log (k/d

1/m), and if V is partitioned into
sets V1, V2, . . . Vm, where each element is randomly assigned to one set with equal probabilities,
then there is at least one partition with a subset Ac

i [k] such that
�� f (Ac[k])� f (Ac

i [k])
��  lak

with probability at least (1� d).

Proof. By the hypothesis, the a neighborhood of each element in Ac[k] contains at
least km log (k/d

1/m) elements. For each ei 2 Ac[k], let us take a set of m log (k/d

1/m)

elements from its a-neighborhood. These sets can be constructed to be mutually disjoint,
since each a-neighborhood contains m log (k/d

1/m) elements. We wish to show that
at least one of the m partitions of V contains elements from a-neighborhoods of each
element.

Each of the m log (k/d

1/m) elements goes into a particular Vj with a probability 1/m.
The probability that a particular Vj does not contain an element a-close to ei 2 Ac[k]

is
d

1/m

k
. The probability that Vj does not contain elements a-close to one or more of

200

A.1. Proofs from Chapter 5

the k elements is at most d

1/m (by union bound). The probability that each V1, V2, . . . Vm

does not contain elements from the a-neighborhood of one or more of the k elements is
at most d. Thus, with high probability of at least (1� d), at least one of V1, V2, . . . Vm

contains an Ac
i [k] that is lak-close to Ac[k].

By lemma 37, for some Vi,
�� f (Ac[k])� f (Ac

i [k]
��)  lak with the given probability.

Furthermore, f (Agc
i [k]) � (1 � e�k/k) f (Ac

i [k]) by Lemma 36. Therefore, the result
follows using arguments analogous to the proof of Theorem 5.

Proof of Theorem 10

The following lemma says that in a sample drawn from distribution over an infinite
dataset, a sufficiently large sample size guarantees a dense neighborhood near each
element of Ac[k] when the elements are from representative regions of the data.

Lemma 38. A number of elements: n � 8km log (k/d

1/m)
bg(a)

, where a  a

⇤, suffices to have at

least 4km log (k/d

1/m) elements in the a-neighborhood of each ei 2 Ac[k] with probability at
least (1� d), for small values of d.

Proof. The expected number of a-neighbors of an ei 2 Ac[k], is E[|N
a

(ei)|] � 8km log (k/d

1/m).
We now show that in a random set of samples, at least a half of this number of neighbors
is realized with high probability near each element of Ac[k].

This follows from a Chernoff bound:

P[|N
a

(ei)|  4km log (k/d

1/m)]  e�km log (k/d

1/m)  (d1/m/k)km.

Therefore, the probability that some ei 2 Ac[k] does not have a suitable sized neighbor-
hood is at most k(d1/m/k)km. For d  1/k, kd

km  d

m. Therefore, with probability at least
(1� d), the a-neighborhood of each element ei 2 Ac[k] contains at least 4km log (1/d)

elements.

Lemma 39. For n � 8km log(k/d

1/m)
bg(#

lk)
, where #

lk  a

⇤, if V is partitioned into sets V1, V2, . . . Vm,

where each element is randomly assigned to one set with equal probabilities, then for sufficiently
small values of d, there is at least one partition with a subset Ac

i [k] such that
�� f (Ac[k])� f (Ac

i [k])
�� 

with probability at least (1� d).

201

Appendix A. Proofs

Proof. Follows directly by combining Lemma 38 and Lemma 37. The probability that
some element does not have a sufficiently dense #/lk-neighborhood with km log(2k/d

1/m)

elements is at most (d/2) for sufficiently small d, and the probability that some partition
does not contain elements from the one or more of the dense neighborhoods is at most
(d/2). Therefore, the result holds with probability at least (1� d).

By Lemma 39, there is at least one Vi such that
�� f (Ac[k])� f (Ac

i [k])
��  # with the given

probability. And f (Agd
i [k]) � (1� e�k/k) f (Ac

i [k]) using Lemma 36. The result follows
using arguments analogous to the proof of Theorem 5.

Proof of Theorem 11

Note that each machine has on the average n/m elements. Let us define Pi the event
that n/2m < |Vi| < 2n/m. Then based on the Chernoff bound we know that Pr(¬Pi) 
2 exp(�n/8m). Let us also define xi(S) the event that | fVi(S)� f (S)| < e, for some
fixed e < 1 and a fixed set S with |S|  k. Note that xi(S) denotes the event that the
empirical mean is close to the true mean. Based on the Hoeffding inequality (without
replacement) we have Pr(6= xiS|  2 exp(�2ne

2/m). Hence,

Pr(xi(S) ^Pi) � 1� 2 exp(�2ne

2/m)� 2 exp(�n/8m).

Let xi be an event that | fVi(S)� f (S)| < e, for any S such that |S|  k. Note that there
are at most nk sets of size at most k. Hence,

Pr(xi ^Pi) � 1� 2nk(exp(�2ne

2/m)� exp(�n/8m)). (A.1.6)

As a result, for e < 1/4 we have

Pr(xi ^Pi) � 1� 4nk exp(�2ne

2/m).

Since there are m machines, by the union bound we can conclude that

Pr((xi ^Pi) on all machines) � 1� 4mnk exp(�2ne

2/m).

The above calculation implies that we need to choose d � 4mnk exp(�2ne

2/m). Let n0

be chosen in a way that for any n � n0 we have ln(n)/n  e

2/(mk). Then, we need to

202

A.1. Proofs from Chapter 5

choose n as follows:
n = max

✓
n0,

m log(d/4m)
e

2

◆
.

Hence for the above choice of n, there is at least one Vi such that
�� f (Ac[k])� f (Ac

i [k])
�� 

with probability 1� d. Hence the solution is e away from the optimum solution with
probability 1� d. Now if we confine the evaluation of f (Ac

i) to data point only in
machine i then under the assumption of Theorem 10 we lose another e. Formally, the
result at this point simply follows by combining Theorem 5 and Theorem 10.

Proof of Theorem 13

The proof is similar to the proof of Theorem 4 and Theorem 5 and follows from the
following lemmas.

Lemma 40. maxi f (Ac
i [z]) �

1
m f (Ac[z]).

Proof. Let Bi be the elements in Vi that are contained in the optimal solution, Bi =

Ac[z] \Vi. Since Ac[z] 2 z and z is a set of hereditary constraints, we must have Bi 2 z

as well. Using submodularity of f and by the same argument as in the proof of Lemma
34, we have

f (Ac[z]) = f (B1 [· · · [Bm) = f (B1) + f (B2|B1) + · · ·+ f (Bm|Bm�1, · · · , B1)

 f (B1) + · · ·+ f (Bm).

Since f (Ac
i [z]) � f (Bi) we get

f (Ac[z])  f (Ac
1[z]) + · · ·+ f (Ac

m[z])  m max
i

f (Ac
i [z]).

Lemma 41. maxi f (Ac
i [z]) �

1
k f (Ac[z]).

Proof. The proof follows the outline of the proof of Lemma 35.

203

Appendix A. Proofs

Let f (Ac[z]) = f ({u1, · · · , u
r([z])}). Since Ac[z] 2 z and z is a set of hereditary con-

straints, we have ui 2 z. Using submodularity of f , we have

f (Ac[z]) 
r([z])

Â
i=1

f (ui)  r([z]) f (u⇤).

where u⇤ = arg maxi f (ui). Suppose that u⇤ 2 Vj, we get

f (max
i

f (Ac
i [z])) � f (Ac

j [z]) � f (u⇤) � 1
r([z])

f (Ac[z]).

Since f (Ad[m, r([z])]) � maxi f (Ac
i [z]); from Lemma 41 and 40 we have

f (Ad[m, r([z])]) � 1
min(m, r([z]))

f (Ac[z]). (A.1.7)

For the black box algorithm X with a t-approximation guarantee, we have

f (AX
i [z]) � t f (Ac

i [z]).

Now, we generalize the definitions used in the proof of Theorem 5

Bgc = [m
i=1Agc

i [z],

Agc
max[z] = max

i
f (Agc

i [z]),

Ã[z] = arg maxS✓Bgc&|S|r([z]) f (S).

Then using Eq. A.1.7 again, we obtain

f (Agd[m, z]) � max
�

f (Agc
max[z]), t f (Ã[z])

� t

min(m, r([z]))
f (Ac[z]).

Note that since we do not use monotonicity of the submodular function in any of the
proofs, the results hold in general for constrained maximization of any non-negative
submodular function.

204

A.1. Proofs from Chapter 5

Proof of Theorem 14

Lemma 42. If for each ei 2 AX[z], |N
a

(ei)| � r([z])m log (r([z])/d

1/m), and if V is parti-
tioned into sets V1, V2, . . . Vm, where each element is randomly assigned to one set with equal
probabilities, then there is at least one partition with a subset AX

i [z] 2 z such that�� f (Ac[z])� f (AX
i [z])

��  lar([z]) with probability at least (1� d).

The proof is similar to the proof of Lemma 37 by taking disjoint sets of size m log (r([z]))
d

1/m

in an a-neighborhood of each ei 2 Ac[z] and showing that with high probability, at least
one of the m partitions of V contains elements from a-neighborhoods of each element
in the optimal solution. Note that now the size of the optimal solution is at most r([z]).
Since z is locally replaceable with parameter a, as elements of Ac[z] gets replaced by
nearby elements in their a-neighborhood, the resulting set is also a feasible solution.

By Lemma 42, for some Vi,
�� f (Ac[z])� f (AX

i [z])
��  lar([z]) with the given probability.

On the other hand, for the black box algorithm X, we have f (AX
i [z]) � t f (Ac

i [z]).
Therefore, the result follows using arguments analogous to the proof of Theorem 13.

Proof of Theorem 15

We use the following Lemmas to show that in a sample drawn from a ddistribution over
an infinite dataset, a sufficiently large sample size guarantees a dense neighborhood
near each element of the optimal solution.

Lemma 43. A number of elements: n � 8r([z])m log (r([z])/d

1/m)
bg(a)

, where a  a

⇤, suffices

to have at least 4r([z])m log (r([z])/d

1/m) elements in the a-neighborhood of each ei 2 Ac[z]

with probability at least (1� d), for small values of d.

Lemma 44. For n � 8r([z])m log(r([z])/d

1/m)
bg(#

lr([z]))
, where #

lr([z])  a

⇤, if V is partitioned into

sets V1, V2, . . . Vm, where each element is randomly assigned to one set with equal probabilities,
then for sufficiently small values of d, there is at least one partition with a subset Ac

i [z] such
that

�� f (Ac[z])� f (Ac
i [z])

��  # with probability at least (1� d).

The proofs follows the same arguments as in the proof of Lemma 38 and 39. Recall that,
by assumption z is locally replaceable with parameter a. Hence, for #  alr([z]), any
set #-close to the optimal solution is also a feasible solution.

205

Appendix A. Proofs

By Lemma 44, there is at least one Vi such that
�� f (Ac[z])� f (Ac

i [z])
��  # with the given

probability. Furthermore, for the black box algorithm X, we have f (Agd
i [z]) � t f (Ac

i [z]).
Thus the result follows using arguments analogous to the proof of Theorem 13.

Proof of Theorem 16

Again the proof follows the same line of reasoning as the proof of Theorem 11, except
that for a constraint set z with r([z]) = maxS2z

|S|, there are at most nr([z]) feasible
solutions. Using the same definitions for Pi and Ei as in the proof of Theorem 11,
instead of Eq. A.1.6 we get

Pr(xi ^Pi) � 1� 2nr([z])(exp(�2ne

2/m)� exp(�n/8m)).

As a result, for e < 1/4 and using union bound we conclude that

Pr((xi ^Pi) on all machines) � 1� 4mnr([z]) exp(�2ne

2/m).

which implies that we need to choose d � 4mnr([z]) exp(�2ne

2/m). Now if n0 be
chosen in a way that for any n � n0 we have ln(n)/n  e

2/(mk), we get n �
max(n0, m log(d/4m)/e

2).

Bearing in mind that z is locally replaceable, there is at least one Vi such that the
solution Ac

i [z] is feasible and e away from the optimum solution with probability 1� d.
Now under the assumption of Theorem 15, if we evaluate f (Ac

i) only on machine i,
then we lose another e. Now by combining Theorem 13 and Theorem 15 we get the
desired result.

206

A.2. Proofs from Chapter 6

A.2 Proofs from Chapter 6

This section presents the complete proofs of theorems presented in the article.

Proof of Theorem 17

This theorem is a special case of theorem 18 with a = 1.

Proof of Theorem 18

We first prove a lemma which will be used in the proof of the theorem.

Lemma 45. Let `⇤ be the final value of ` at the end of the D isCover Algorithm. Then,

`⇤ < 2ak.

Proof. We consider it in two cases. In first case `⇤ < ak in which case the lemma is
trivially true. Else at some iteration of D isCover we have that ak  ` < 2ak. We then
show that for such a value of ` step 6 always holds and hence ` is never incremented,
proving the lemma. For the rest of the proof consider such a value of `.

Let Agd[m, `] be the set returned by GreeD i when requested to return a solution of
size ` when the current solution is Adc[m]. Let S⇤p be a set of size p which maximizes
f (S⇤p [Adc[m]). Let S⇤k = {e1, e2, . . . , ek} be the elements when then are sorted according
to their marginal contributions when they are added one by one to Adc[m]. Let S⇤k (l) =
{e1, e2, . . . , el}. By definition of sorting according to decreasing marginal values we have
the following inequality

8p, f (S⇤k (p + 1) [Adc[m])� f (S⇤k (p) [Adc[m]) (A.2.1)

� f (S⇤k (p + 2) [Adc[m])� f (S⇤k (p + 1) [Adc[m])

207

Appendix A. Proofs

Now we have the following set of inequalities.

f (Agd[m, `] [Adc[m])� f (Adc[m])

� l(f (S⇤` [Adc[m])� f (Adc[m])) By definition of l

� l(f (S⇤
ak [Adc[m])� f (Adc[m])) By monotonicity

� l(f (S⇤k (ak) [Adc[m])� f (Adc[m])) By definition of S⇤
ak

= l

ak�1

Â
i=0

(f (S⇤k (i + 1) [Adc[m])� f (S⇤k (i) [Adc[m]))

� la

k�1

Â
i=0

(f (S⇤k (i + 1) [Adc[m])� f (S⇤k (i) [Adc[m])) Elements sorted by marginals

= la(f (S⇤k [Adc[m])� f (Adc[m]))

� la(f (S⇤k)� f (Adc[m])) By monotonicity

� la(Q� f (Adc[m])) By monotonicity

The above set of inequalities prove that step 6 always holds and hence ` is never
incremented once it reaches a value such that ak  ` < 2ak, proving the lemma.

Now armed with Lemma 45 we complete the proof of theorem 18. Consider step 6 of
D isCover. This step can get executed at most log(2ak) times because of lemma 45.
Let Ti be the solution set S returned when step 6 of D isCover is satisfied for the ith

time. Let T⇤ = Tz be the solution before condition on step 6 is satisfied for the last time
and condition on step 6 be satisfied z + 1 times. Then by the inequality in step 6 we
have the inequality below.

f (Ti+1)� f (Ti) � al(Q� f (Ti))

) Q� f (Ti+1)  (1� al)(Q� f (Ti))

) Q� f (T⇤)  (1� al)zQ < 1

) (1� al)z < 1/Q

) z log(1� al) < � log(Q)

) zal > log(Q) Since log(1� x)  �x

) z > 1
al

log(Q)

Hence the total number of rounds of the algorithm is log(ak) + 1
al

log(Q) + 1. Addition-

208

A.2. Proofs from Chapter 6

ally since we pick at most 2ak elements in each round satisfying step 6 of DisCover

we get the solution is of size at most 2ak · (1
al

log(Q) + 1) = 2ak + 2k
l

log(Q).

Proof of Theorem 19

Let G(T, k) be the set returned by running greedy to choose k elements on T.

Fact 1. Let W be any ground set and S = G(W, k) and O be any set such that |O|  k. Then
we have the following inequality

f (S) � k
|O| (f (S [O)� f (S)) (A.2.2)

Proof. Let S = {e1, e2, . . . , ek} sorted by the order in which greedy algorithm picks
the elements. Let for each i, Si = {e1, e2, . . . , ei}. Let O = {o1, o2, . . . o|O|} and Oi =

{o1, o2, . . . , oi}. Follows easily from the following set of equations

f (S) = Âk
i=1 f (Si)� f (Si�1)

� Âk
i=1

1
|O| Â|O|

j=1 f (Si=1 [{oj})� f (Si�1) By property of greedy algorithm

� Âk
i=1

1
|O| Â|O|

j=1 f (Si=1 [Oj)� f (Si�1 [Oj�1) By submodularity

= Âk
i=1

1
|O| (f (Si=1 [O)� f (Si�1))

� Âk
i=1

1
|O| (f (S [O)� f (S)) By submodularity

= k
|O| (f (S [O)� f (S))

Now we complete proof of theorem 19. Let Vi be the set of elements on machine
i. Let Si = G(Vi, k). Then we will show a set S ✓ [m

i=1Si such that |S|  k and
f (S) � 1

18
p

min(k,m)
f (OPT). Then the theorem follows because G([m

i=1Si, k) produces at

least a 1� 1/e approximation to S.

Let S1, S2, . . . , Sq be the sets such that Si \OPT 6= ∆. Then note that q  min(k, m). We
will restrict the analysis to these sets. Let OPTi = Vi \ OPT. We construct the set S
by iteratively processing each Si and adding elements S. Let Li be the set S after we

209

Appendix A. Proofs

process Si. We start with L0 = ∆. Let us say we have processed till Sj�1, we will show
what happens when we process Sj.

Let Sj = {s1
j , s2

j , . . . , sk
j } in the order they are taken by the greedy algorithm. Let Sp

j be
the set of first p elements in Sj. Then there are three cases.

1. Assume for each p  k the following inequality is satisfied.

f (Lj�1 [Sp
j [OPTj)� f (Lj�1 [Sp

j) �
1
2
�

f (Lj�1 [OPTj)� f (Lj�1)
�

(A.2.3)

Then choose |OPTj| elements from Sj greedily and add them to Lj�1. Then we
prove a lower bound on the improvement.

f (Lj)� f (Lj�1) (A.2.4)

�
|OPTj|

k
�

f (Lj [Sj)� f (Lj)
�

Because of greedy algorithm

�
|OPTj|

k
f (Sj)�

|OPTj|
k

f (Lj) Because of monotonicity

� f (Sj [OPTj)� f (Sj)�
|OPTj|

k
f (Lj) Because of fact 1

� f (Lj�1 [Sj [OPTj)� f (Lj�1 [Sj)�
|OPTj|

k
f (Lj) Because of submodularity

� 1
2
�

f (Lj�1 [OPTj)� f (Lj�1)
�
�

|OPTj|
k

f (Lj) Because of assumption A.2.3

� 1
2
�

f (Ll [OPTj)� f (Ll)
�
�

|OPTj|
k

f (Lj) by submodularity

� 1
2
�

f (Ll [OPTj)� f (Ll)
�
�

|OPTj|
k

f (Ll) by monotonicity

(A.2.5)

2. The next two cases are folded into this case. Let c(j) be the minimum index such
that the following inequality is satisfied.

f (Lj�1 [Sc(j)
j [OPTj)� f (Lj�1 [Sc(j)

j)  1
2
�

f (Lj�1 [OPTj)� f (Lj�1)
�

(A.2.6)

210

A.2. Proofs from Chapter 6

Then we get the following sequence of inequalities

f (Lj�1 [Sc(j)
j)� f (Lj�1) (A.2.7)

= f (Lj�1 [Sc(j)
j [OPTj)� f (Lj�1) (A.2.8)

�
⇣

f (Lj�1 [Sc(j)
j [OPTj)� f (Lj�1 [Sc(j)

j)
⌘

� f (Lj�1 [OPTj)� f (Lj�1)�
⇣

f (Lj�1 [Sc(j)
j [OPTj)� f (Lj�1 [Sc(j)

j)
⌘

Because of monotonicity

� f (Lj�1 [OPTj)� f (Lj�1)�
1
2
�

f (Lj�1 [OPTj)� f (Lj�1)
�

From equation A.2.6

=
1
2
�

f (Lj�1 [OPTj)� f (Lj�1)
�

(A.2.9)

3. Consider when c(j) > 1. Then note that for any p < c(j) we have that f (Lj�1 [
Sp

j [OPTj) � f (L�1 j [Sp
j) �

1
2
�

f (Lj�1 [OPTj)� f (Lj�1)
�
. Hence we also get

the following inequality

f (Sp+1
j)� f (Sp

j) �
1

|OPTj| Â
e2OPTj

f (Sp
j [{e})� f (Sp

j) By choice of greedy

� 1
|OPTj|

⇣
f (Sp

j [OPTj)� f (Sp
j)
⌘

By submodularity

� 1
|OPTj|

⇣
f (Lj�1 [Sp

j [OPTj)� f (Lj�1 [Sp
j)
⌘

�

1
2|OPTj|

!
�

f (Lj�1 [OPTj)� f (Lj�1)
�

By assumption

(A.2.10)

Summing above inequalities, we get

f (Sc(j)
j) �

c(j)

2|OPTj|

!
�

f (Lj�1 [OPTj)� f (Lj�1)
�

(A.2.11)

Then we have three different situations

(a) c(j) <=
pq · |OPTj| and c(j) > OPTj then add |OPTj| elements to Lj�1

211

Appendix A. Proofs

greedily from Sj. Then we get

f (Lj)� f (Lj�1) (A.2.12)

�
|OPTj|

c(j)

⇣
f (Lj [Sc(j)

j)� f (Lj)
⌘

from property of greedy algorithm

�
|OPTj|
2c(j)

�
f (Lj�1 [OPTj)� f (Lj�1)

�
from equation A.2.9

� 1
2pq

�
f (Lj�1 [OPTj)� f (Lj�1)

�
because c(j) <=

p
q · |OPTj|

� 1
2pq

�
f (Lq [OPTj)� f (Lq)

�
from submodularity (A.2.13)

(b) c(j) > pq · |OPTj| then add |OPTj| elements to Lj�1 greedily from Sj. Then
we get

f (Lj)� f (Lj�1) (A.2.14)

�
|OPTj|

c(j)

⇣
f (Lj [Sc(j)

j)� f (Lj)
⌘

from property of greedy algorithm

�
|OPTj|

c(j)

⇣
f (Sc(j)

j)� f (Lj)
⌘

from monotonicity

� 1
2
�

f (Lj�1 [OPTj)� f (Lj�1)
�
�

|OPTj|
c(j)

f (Lj) from equation A.2.10

� 1
2
�

f (Lj�1 [OPTj)� f (Lj�1)
�
� 1
pq

f (Lj) because c(j) >
p

q · |OPTj|

� 1
2
�

f (Lq [OPTj)� f (Lq)
�
� 1
pq

f (Lj) from submodularity

� 1
2
�

f (Ll [OPTj)� f (Ll)
�
� 1
pq

f (Ll) from monotonicity

(A.2.15)

(c) If c(j) <= |OPTj| then Lj = Lj�1 [Sc(j)
j and we get f (Lj) � f (Lj�1) �

1
2
�

f (Lj�1 [OPTj)� f (Lj�1)
�

from equation A.2.9

We complete the proof by considering three different cases and proving the theorem in
each of the three cases. For simplicity let the indices which satisfy condition one be I1,
condition 2a) (or condition 2c) be I2a and condition 2b) be I2b. Let OPT0 = [i2I1OPTi,
OPT00 = [i2I2aOPTi and OPT000 = [i2I2bOPTi. Then by simply submodularity we

212

A.2. Proofs from Chapter 6

know that max(f (OPT0), f (OPT00), f (OPT000)) � f (OPT)/3. We deal with each case
separately.

• Case 1 when f (OPT0) � f (OPT)/3

f (Ll)� f (∆) � Â
i2I1

f (Li)� f (Li�1)

� Â
i2I1

✓
1
2
�

f (Ll [OPTj)� f (Ll)
�
�

|OPTj|
k

f (Ll)

◆

) 2 f (Ll) � Â
i2I1

1
2
�

f (Ll [OPTj)� f (Ll)
�

Rearranging terms

� 1
2
�

f (Ll [OPT0)� f (Ll)
�

By submodularity

� 1
2
�

f (OPT0)� f (Ll)
�

By monotonicity

) f (Ll) �
1
5

f (OPT0) Rearranging terms

� 1
15

f (OPT) By assumption (A.2.16)

• Case 2 when f (OPT00) � f (OPT)/3

f (Ll)� f (∆) � Â
i2I2a

f (Li)� f (Li�1)

� Â
i2I2a

1
2pq

�
f (Ll [OPTj)� f (Ll)

�

� 1
2pq

�
f (Ll [OPT00)� f (Ll)

�
By submodularity

� 1
2pq

O
�

f (OPT00)� f (Ll)
�

By monotonicity

) f (Ll) �
1

4pq
f (OPT00) Rearranging terms

� 1
12pq

f (OPT) By assumption (A.2.17)

213

Appendix A. Proofs

• Case 3 when f (OPT000) � f (OPT)/3

f (Ll)� f (∆) � Â
i2I2b

f (Li)� f (Li�1)

� Â
i2I2b

✓
1
2
�

f (Ll [OPTj)� f (Ll)
�
� 1
pq

f (Ll)

◆

) (
p

q + 1) f (Ll) �Â
I2b

1
2
�

f (Ll [OPTj)� f (Ll)
�

Rearranging terms

� 1
2
�

f (Ll [OPT000)� f (Ll)
�

By submodularity

� 1
2
�

f (OPT000)� f (Ll)
�

By monotonicity

) f (Ll) �
1

2(pq + 2)
f (OPT000) Rearranging terms

� 1
6(pq + 2)

f (OPT) By assumption

� 1
18pq

f (OPT) (A.2.18)

Remember that q = min(k, m) which completes the proof.

A.3 Proofs from Chapter 7

Before proving Theorem 21, we need to prove a few Lemmas to upper bound the size
of final solution and the number of rounds separately.

Lemma 46. FastCover returns a solution S with at most |OPT| ln(L)/(1� e) items and
f (S) � L.

Proof. We remind that an epoch ends when the if condition of line 14 holds, and
therefore we update t. We prove that at this point all items with marginal value at least
t have been added to S. Therefore the marginal value of every item to S is less than t

at the end of an epoch. Since Fulli = False for every i, all items with marginal value
at least t are in selected sets {Si}m

i=1. In lines 10� 12, FastCover makes sure that
every item in {Si}m

i=1 with marginal value at least t is added to S. So at the end of each
epoch all marginal values are less than t. We should also note that by submodularity

214

A.3. Proofs from Chapter 7

the marginal values to set S can only decrease, and t is unchanged during an epoch,
therefore all marginal values are still less than t at the end of the epoch.

We now prove that f (S) � L. The algorithm terminates either at the Break operation of
lines 13 in which f (S) � L or line 16. At line 16, we are at the end of an epoch, and
the else condition holds only if t = 1. Since all marginal values are less than t = 1 in
this stage, and f only takes integer values, we conclude that all marginal values should
be equal to zero. Using submodularity, we conclude that f (S) in this case is equal to
f (V) � L because f (V)� f (S)  Âx2V D(x|S) = 0 where D(x|S) is f (S[{x})� f (S).

We are ready to upper bound |S|. Since every time we update t, it is at least 1� e times
its old value, and at the end of each epoch t is greater than maximum marginal
value to S, we can say that throughout the entire algorithm (not just the end of
epochs), t is always at least (1� e)maxx2V D(x|S). This is in particular true at the
beginning of the algorithm that we set t = maxx2V f ({x}). Using submodularity
of f , we know that Âx2OPT D(x|S) � f (OPT) � f (S). So maxx2V D(x|S) should be
at least (f (OPT) � f (S))/|OPT|. Since every item we add has marginal value at
least t � (1� e)maxx2V D(x|S), we conclude that each item adds at least a value
of (1�e)(f (OPT)� f (S))

|OPT| . After adding t items, the gap f (OPT) � f (S) becomes at most
(f (OPT) � f (∆))(1 � 1�e

|OPT|)
t. With t = |OPT| ln(L)/(1 � e), this gap becomes less

than 1, and since f is integral, f (S) should be at least f (OPT) = L with |S| =

|OPT| ln(L)/(1� e) items.

To upper bound the number of rounds, we categorize all rounds into two groups. We
say a round is good if the algorithm adds at least k

2 items to S. Otherwise we call it a
bad round. We upper bound the number of good and bad rounds separately to reach a
unified bound on the total number of rounds of FastCover.

Lemma 47. The number of good rounds in all epochs is at most log2 L.

Proof. In a good round, at least k/2 items are added to S, and each addition increases
the value of f (S) by t. So in a good round, f (S) is increased by at least kt/2. On the
other hand, we define k to be d(L � f (Sbe f ore))/te where Sbe f ore is set S just before
starting this round. So f (S) is increased by at least L� f (Sbe f ore)/2 in this good round.
In other words, the difference L� f (S) is reduced by at least a multiplicative factor of
2 in each good round. Once this difference goes below 1, we know f (S) � L, and the
algorithm terminates. Therefore there are at most log2 L good rounds in total.

215

Appendix A. Proofs

Next we bound the total number of bad rounds. Since in each epoch, we reduce t by a
factor of (1� e) until it becomes at most 1, the number of epochs is upper bounded by
1 + log 1

1�e

(M)  log(M)
log(1/(1�e)) 

log(M)
e

. Therefore we need to upper bound the number
of bad rounds in each epoch.

Lemma 48. The number of bad rounds in each epoch is at most log3/2(n/km) with high
probability.

Proof. In an epoch, the value of t is unchanged, and we keep adding items to S. So the
set of items that each machine could potentially send to the central machine (items with
marginal value at least t to set S) only shrinks. We call these items candidate items. At
the beginning of an epoch, there are at most n/m such candidate items in each machine
since Ti has n/m items. The epoch ends when each machine has at most k candidate
items. We show that in each bad round, this set of candidate items shrinks by at least a
factor of 2/3 with high probability, and therefore the number of bad rounds in each
epoch is no more than log3/2(n/km).

Now we focus on a bad round, and how it changes the set of candidate items in a
machine i. Let Sbe f ore and Sa f ter be the values of set S before and after a bad round.
We note that Sa f ter \ Sbe f ore has less than k/2 items. We define Sbe f ore

i to be {x|x 2
Ti & f (Sbe f ore [{x})� f (Sbe f ore) � t} which is the set of candidate items of machine i
before this round. We note that set Si is a random subset of Sbe f ore

i with size at most k.

We similarly define Sa f ter
i to be {x|x 2 Ti & f (Sa f ter [{x})� f (Sa f ter) � t} which is

the set of candidate items in machine i in the next round. We prove that with high
probability the size of |Sa f ter

i |  2|Sbe f ore
i |/3.

If there are at most k items in Sbe f ore
i , the whole set Sbe f ore

i is sent to the central machine,
and each item in it is either added to S or its marginal value to S becomes less than t

after this round. So Sa f ter
i is empty in this case. In the other case, k random items in

Sbe f ore
i are selected to be sent to the central machine. For the sake of analysis, we define

an intermediary hypothetical set Shyp
i which is a set sandwiched between Sa f ter

i and
Sbe f ore

i . Let Shyp
i be the set {x|x 2 Sbe f ore

i AND f (Sa f ter [{x})� f (Sa f ter \ {x}) � t}.
This is the set of items that either they are candidate items in the next round (part
of Sa f ter

i) or they were added to S, and if we remove them from S, they become a
candidate item in the next round. By definition, we have Sa f ter

i ✓ Shyp
i ✓ Sbe f ore

i . The
significance of Shyp

i is that any item machine i chooses from it to send to the central
machine will be chosen by definition. So if Shyp

i has p fraction of Sbe f ore
i for some

216

A.4. Proofs from Chapter 9

0  p  1, in expectation pk items out of k items of Si will be selected in this round.

Using concentration bounds, we know that if |Shyp
i |

Sbe f ore
i

is at least 2
3 , with high probability at

least k/2 selected items in Si are in Shyp
i , and consequently will be added to S. However

we know that we are in a bad round, and less than k/2 items are added to S. Therefore
with high probability |Shyp

i | is less than 2|Sbe f ore
i |/3, and consequently |Sa f ter

i | is also
less than 2|Sbe f ore

i |/3 which completes the proof.

Next we summarize all lemmas and prove our main guarantees for the number of
rounds of Algorithm FastCover.

Proof of Theorem 21

Proof. Lemma 46 provides the desired upper bound on size of the solution. Using
Lemmas 47, and 48, we know that there are at most log2(L) good rounds in total, and
log3/2(n/km) bad rounds in each epoch with high probability. We have also proved
that there are not more than log(M)/e epochs. Therefore the total number of rounds is
upper bounded by log3/2(n/km) log(M)/e + log2(L).

Remark 49. Each machine sends back at most k items. In proof of Theorem 21, we
showed that t is always at least (1� e) times the maximum marginal value to set S.
Using submodularity, we know that L� f (S)  f (OPT)� f (S)  Âx2OPT D(x|S). So
k = (L� f (S))/t cannot be more than |OPT|/(1� e). The space requirement for the
central machine is km  m|OPT|/(1� e), and for each distributed machine is n/m.
Therefore our overall space requirement is no more than max{n/m, m|OPT|/(1� e)}.

A.4 Proofs from Chapter 9

Proof of theorem 22

Proof. Consider a chain of r instances of our streaming algorithm, i.e. {IndStream1, · · ·
, IndStreamr}. For each i 2 [1, r], IndStreami provides an a-approximation guar-
antee on the ground set Vi of items it has received. Therefore we have:

f (Si) � a f (Si [Ci), (A.4.1)

217

Appendix A. Proofs

where Ci = C⇤ \Vi for all i 2 [1, r], and C⇤ is the optimal solution. Moreover, for each
i, S0i is the solution of the unconstrained maximization algorithm on ground set Si.
Therefore, we have:

f (S0i) � b f (Si \ Ci), (A.4.2)

where b is the approximation guarantee of the unconstrained submodular maximiza-
tion algorithm (Unconstrained -Max).

We now use the following lemma from [Buc+14] to bound the total value of the solutions
provided by the r instances of IndStream.

Lemma 50 (Lemma 2.2. of [Buc+14]). Let f 0 : 2V ! R be submodular. Denote by A(p) a
random subset of A where each element appears with probability at most p (not necessarily
independently). Then, E[f 0(A(p))] � (1� p) f 0(∆).

Let S be a random set which is equal to every one of the sets {S1, · · · , Sr} with
probability p = 1/r. For f 0 : 2V ! R, and f 0(S) = f (S [OPT), from Lemma 50 we get:

E[f 0(S)] = E[f (S [C⇤)] =
1
r

r

Â
i=1

f (Si [C⇤)
Lemma 50
� (1� p) f 0(∆) = (1� 1

r
) f (C⇤)

(A.4.3)

Also, note that each instance i of IndStream in the chain has processed all the
elements of the ground set V except those that are in the solution of the previous
instances of IndStream in the chain. As a result, Vi = V \ [i�1

j=1Si, and for every
i 2 [1, r], we can write:

f (Ci) + f (C⇤ \ ([i�1
j=1Sj)) = f (Ci) + f ([i�1

j=1(C
⇤ \ Sj)) = f (C⇤). (A.4.4)

218

A.4. Proofs from Chapter 9

Now, using Eq. A.4.3, and via a similar argument as used in [FHK17], we can write:

(r� 1) f (C⇤) 
r

Â
i=1

f (Si [C⇤) By Eq. A.4.3


r

Â
i=1

h
f (Si [Ci) + f

�
[i�1

j=1 (C
⇤ \ Sj)

�i
By Eq. A.4.4

(A.4.5)


r

Â
i=1


f (Si [Ci) +

i�1

Â
j=1

f (C⇤ \ Sj)

�
(A.4.6)


r

Â
i=1


1
a

f (Si) +
1
b

i�1

Â
j=1

f (S0j)
�

By Eq. A.7.3, Eq. A.7.4


r

Â
i=1


1
a

f (S) +
1
b

i�1

Â
j=1

f (S)
�

By definition of S in Algorithm 9

=

✓
r
a

+
r(r� 1)

2b

◆
f (S).

Hence, we get:

f (S) � r� 1
r/a + r(r� 1)/2b

f (C⇤) (A.4.7)

Taking the derivative w.r.t. r, we get that the ratio is maximized for r =

⇠q
2b

a

+ 1
⇡

.

Plugging this value into Eq. A.4.7, we have:

f (S) �
1� 1p

2b/a+1

1
a

+
p

2b/a

2b

f (C⇤)

=

p
2b/a

(
q

2b

a

+ 1)(1
a

+
p

2b/a

2b

)
f (C⇤)

=

p
2b

(
p

2b + 1/
p

a)(1/
p

a + 1/
p

2b)
f (C⇤)

=

p
2b

(1/
p

a + 1/
p

2b)2
f (C⇤)

219

Appendix A. Proofs

Using b = 1/2 from [Buc+15], we get the desired result:

f (S) � 1
(1/
p

a + 1)2 f (C⇤)

Finally, Corollary 23 follows by replacing a = 1/4p from [CGQ15] and b = 1/2 from
[Buc+15]:

f (S) � 1
(2pp + 1)2 f (C⇤)

For calculating the average update time, we consider the worst case scenario, where
every element can go through the entire chain of r instances of IndStream at some
point during the run of Streaming Local Search. Here the total running time of
the algorithm is O(nrT), where n is the size of the stream, and T is the update time of
IndStream. Hence the average update time per element for Streaming Local

Search is O(nrT/n) = O(rT).

Proof of theorem 24

Proof. Here, a (fixed) density threshold r is used to restrict the IndStream to only

pick elements if
fSi (e)

Âd
j=1 cje

� r. We first bound the approximation guarantee of this new

algorithm IndStreamDensity, and then use a similar argument as in the proof ot
Theorem 22 to provide the guarantee for Streaming Local Search. Consider an
optimal solution C⇤ and set:

r

⇤ =
2✓

1p
a

+ 1p
b

◆✓
1p
a

+ 2d
p

a + 1p
b

◆ f (C⇤). (A.4.8)

By submodularity we know that m  f (C⇤)  mk, where k is an upper bound on the
cardinality of the largest feasible solution, and m is the maximum value of any singleton
element. Hence:

2m✓
1p
a

+ 1p
b

◆✓
1p
a

+ 2d
p

a + 1p
b

◆  r

⇤  2mk✓
1p
a

+ 1p
b

◆✓
1p
a

+ 2d
p

a + 1p
b

◆ .

220

A.4. Proofs from Chapter 9

Thus there is a run of the algorithm with density threshold r 2 R such that:

r  r

⇤  (1 + e)r. (A.4.9)

For the run of the algorithm corresponding to r, we call the solution of the first instance
IndStreamDensity1, S

r

. If IndStreamDensity1 terminates by exceeding some
knapsack capacity, we know that for one of the knapsacks j 2 [d], we have cj(Sr

) > 1,
and hence also Âd

j=1 cj(Sr

) > 1 (W.l.o.g. we assumed the knapsack capacities are 1). On
the other hand, the extra density threshold we used for selecting the elements tells us

that for any e 2 S
r

, we have
fS

r

(e)

Âd
j=1 cje

� r. I.e., the marginal gain of every element added

to the solution S
r

was greater than or equal to r Âd
j=1 cje. Therefore, we get:

f (S
r

) � Â
e2S

r

�
r

d

Â
j=1

cje
�
> r.

Note that S
r

is not a feasible solution, as it exceeds the j-th knapsack capacity. However,
the solution before adding the last element e to S

r

, i.e. T
r

= S
r

� {e}, and the last
element itself are both feasible solutions, and by submodularity, the best of them provide
us with the value of at least

max{ f (T
r

), f ({e f })} �
r

2
.

On the other hand, if IndStreamDensity1 terminates without exceeding any knap-
sack capacity, we divide the elements in C⇤ \ S

r

into two sets. Let C⇤<r

be the set of
elements from C⇤ which cannot be added to S

r

because their density is below the

threshold, i.e.,
fS

r

(e)

Âd
i=1 cje

< r and C⇤�r

be the set of elements from C⇤ which cannot be

added to S
r

due to independence system constraints. For the elements of the optimal
solution C⇤ which cannot be added to S

r

because their density is below the threshold,
we have:

fS
r

(C⇤<r

)  Â
e2C<r

r

d

Â
j=1

cje = r

d

Â
j=1

Â
e2C<r

cje

221

Appendix A. Proofs

Since C<r

is a feasible solution, we know that Âe2C<r

cje  1, and therefore:

fS
r

(C⇤<r

)  dr  r

d

Â
j=1

Â
e2C<r

cje  dr  dr

⇤ (A.4.10)

On the other hand, if the ground set was restricted to elements that pass the den-
sity threshold, then S

r

would be a subset of that ground set, and the approximation
guarantee of IndStream1 still holds; hence from Eq. A.7.3 we know that:

f (S
r

) � a f (S
r

[C⇤�r

),

and thus we obtain:

fS
r

(C⇤�r

) = f (S
r

[C⇤�r

)� f (S
r

) 
�1

a

� 1
�

f (S
r

). (A.4.11)

Adding Eq A.7.1 and A.7.2, and using submodularity we get:

f (S
r

[C⇤)� f (S
r

)  fS
r

(C⇤<r

)+ fS
r

(C⇤�r

) 
�1

a

� 1
�

f (S
r

) + dr

Therefore,

f (S
r

) � a f (S
r

[C⇤)� adr. (A.4.12)

Now, using a similar argument as in the proof of Theorem 22, we have:

(r� 1) f (C⇤) 
r

Â
i=1

f (Si [C⇤) By Eq. A.4.3


r

Â
i=1

f (Si [Ci) +
r

Â
i=1

i�1

Â
j=1

f (C⇤ \ Sj) By Eq. A.4.6

 1
a

r

Â
i=1

[f (Si) + adr] +
1
b

r

Â
i=1

i�1

Â
j=1

f (S0j) By Eq. A.4.12

 1
a

r

Â
i=1

[f (S) + adr] +
1
b

r

Â
i=1

i�1

Â
j=1

f (S) By definition of S in Algorithm 10

=

✓
r
a

+
r(r� 1)

2b

◆
f (S) + rdr

222

A.4. Proofs from Chapter 9

Hence, we have:

f (S) � r� 1
r/a + r(r� 1)/2b

f (C⇤)� rdr

r/a + r(r� 1)/2b

f (C⇤)

From Eq. A.4.9, we know that r � (1� #)r⇤. Using Eq. A.4.8, we get:

f (S) � r� 1
r/a + r(r� 1)/2b

f (C⇤)�
2rd(1�#)

(1/
p

a+1/
p

b)(1/
p

a+2d
p

a+1/
p

b)

r/a + r(r� 1)/2b

f (C⇤)

Plugging in r =
⇠q

2b

a

+ 1
⇡

and simplifying, we get the desired result:

f (S) �

q
2b

a

�
2d
✓q

2b

a

+1
◆
(1�#)

✓
1p
a

+ 1p
b

◆✓
1p
a

+2d
p

a+ 1p
b

◆

1
a

q
2b

a

+ 2
a

+
q

1
2ba

f (C⇤)

=

p
2b

✓
1p
a

+ 1p
b

◆✓
1p
a

+ 2d
p

a + 1p
b

◆
� 2d(1� #)

�p
2b +

p
a

�

✓p
2b

a

+ 2p
a

+
q

1
2b

◆✓
1p
a

+ 1p
b

◆✓
1p
a

+ 2d
p

a + 1p
b

◆ f (C⇤)

� 1� #

(1/
p

a + 1/
p

b)(1/
p

a + 2d
p

a + 1/
p

b)
f (C⇤)

For b = 1/2 from [Buc+15], we get the desired result:

f (S) � 1� e

(1 + 1/
p

a)(1 + 2d
p

a + 1/
p

a)
f (C⇤)

Corollary 25 follows by replacing a = 1/4p from [CGQ15] and b = 1/2 from [Buc+15]:

f (S) � 1� #

1 + 4p + 4pp + d(2 + 1/pp)
f (C⇤)

The average update time for one run of the algorithm corresponding to a r 2 R can be

223

Appendix A. Proofs

calculated as in the proof of Theorem 22. We run the algorithm for log(k)/# different
values of r, and hence the average update time of Streaming Local Search

per element is O(rT log(k)/#). However, the algorithm can be run in parallel for the
log(k)/# values of r (line 7 of Algorithm 10), and hence using parallel processing, the
average update time per element is O(rT).

A.5 Proofs from Chapter 10

Proof of Theorem 27

Approximation guarantee. First, we proof that Robust -Streaming provides an a-
approximation guarantee, using O(r.M) memory. Note that since we experience at most
m adversarial deletions, for r = m + 1, one of the (m + 1) instances of StreamingAlg

has never experienced any deletion. Hence, there is at least one instance left. We
show that among all instances left (i.e., did not face any deletions from their memory),
the one with the lowest index provides the claimed approximation guarantee. Let
us assume that at time t the instance i of StreamingAlg is the remaining one
with lowest index. As a result, the content of all M(1)

t , M(2)
t , . . . , M(i�1)

t memories (in
some order) has been passed to M(i)

t . This implies that M(i)
t has seen all the elements

in the data stream Vt except the ones deleted Dt by time t. Since StreamingAlg

provides an a approximation for reading any sequence (independent of the order of
reading its elements), the instance i of StreamingAlg provides an a approximation
for reading Vt \ Dt. Hence f (S(i)

t) � aOPTt where OPTt is the optimum solution for
the constrained optimization problem (10.1.2) when we have m deletions. Clearly, in
order to run Robust -Streaming we need O(r · M) memory as we have at most r
instances of StreamingAlg running simultaneously, each requiring memory of size
M.

Update time. We now calculate an upper bound on the update time of the algorithm.
The new element received from the stream is first processed by StreamingAlg

(1).
If it is accepted, it may result in discarding at most M elements from the memory
M(1)

t of StreamingAlg

(1). In the worst case, the discarded elements from M(1)
t

result in discarding all the M elements from the memory M(2)
t of StreamingAlg

(2),
which in turn may result in discarding all the M elements from the memory M(3)

t of

224

A.5. Proofs from Chapter 10

StreamingAlg

(3). This process continues until all the elements int the memory of
all the StreamingAlg s are discarded. Taking a sum over the number of discarded
elements, the update time will be scaled by

Mr + M(r� 1) + M(r� 2) + M = O(M.r2) (A.5.1)

The update time in case of a deletion can be calculated in a similar manner. For
calculating the average update time, we note that in the worst case, every element can
go through the entire chain of r instances of StreamingAlg s. Therefore, if all the
elements gets discarded by all the instances of StreamingAlg at some point during
the run of Robust -Streaming, we have a total running time of O(n.r.T), where n is
the size of the stream. Hence, the average update time per element is O(r.T).

Proof of Theorem 28

If each element has probability p of being deleted, the probability that no elements is
deleted from the solution set of at least one of the streaming algorithms is

1�
⇣

1�
�
1� p

�k
⌘r

and we want this probability to be greater than 1� d. Hence, we have

1�
⇣

1�
�
1� p

�k
⌘r
� 1� d

�
⇣

1�
�
1� p

�k
⌘r
� �d

r log
⇣

1�
�
1� p

�k
⌘�1
� log(1/d)

r(1� p
�k � log(1/d)

r � (1� p
��k log(1/d)

Having p = a

n  1, r is inversly proportional to (1� a

n)
k. Therefore, for fixed k, d and p,

a constant number r is sufficient to support m = pn independently of n.

225

Appendix A. Proofs

A.6 Proofs from Chapter 12

The following lemma gives us the approximation guarantee.

Lemma 51. Given a current solution A, the expected gain of Stochastic -Greedy in one
step is at least 1�e

k Âa2A⇤\A D(a|A).

Proof. Let us estimate the probability that R \ (A⇤ \ A) 6= ∆. The set R consists of
s = n

k log 1
e

random samples from V \ A (w.l.o.g. with repetition), and hence

Pr[R \ (A⇤ \ A) = ∆] =

✓
1� |A⇤ \ A|

|V \ A|

◆s

 e�s |A
⇤\A|

|V\A|

 e�
s
n |A⇤\A|.

Therefore, by using the concavity of 1 � e�
s
n x as a function of x and the fact that

x = |A⇤ \ A| 2 [0, k], we have

Pr[R \ (A⇤ \ A) 6=∆]�1� e�
s
n |A⇤\A|� (1� e�

sk
n)

|A⇤ \ A|
k

.

Recall that we chose s = n
k log 1

e

, which gives

Pr[R \ (A⇤ \ A) 6= ∆] � (1� e)
|A⇤ \ A|

k
. (A.6.1)

Now consider Stochastic -Greedy: it picks an element a 2 R maximizing the
marginal value D(a|A). This is clearly as much as the marginal value of an element
randomly chosen from R\ (A⇤ \ A) (if nonempty). Overall, R is equally likely to contain
each element of A⇤ \ A, so a uniformly random element of R \ (A⇤ \ A) is actually a
uniformly random element of A⇤ \ A. Thus, we obtain

E[D(a|A)] � Pr[R \ (A⇤ \ A) 6= ∆]⇥ 1
|A⇤ \ A| Â

a2A⇤\A
D(a|A).

Using (A.6.1), we conclude that E[D(a|A)] � 1�e

k Âa2A⇤\A D(a|A).

Now it is straightforward to finish the proof of Theorem 29. Let Ai = {a1, . . . , ai} denote

226

A.7. Proofs from Chapter 13

the solution returned by Stochastic -Greedy after i steps. From Lemma 51,

E[D(ai+1|Ai) | Ai] �
1� e

k Â
a2A⇤\Ai

D(a|Ai).

By submodularity,

Â
a2A⇤\Ai

D(a|Ai) � D(A⇤|Ai) � f (A⇤)� f (Ai).

Therefore,

E[f (Ai+1)� f (Ai) | Ai] = E[D(ai+1|Ai) | Ai]

� 1� e

k
(f (A⇤)� f (Ai)).

By taking expectation over Ai,

E[f (Ai+1)� f (Ai)] �
1� e

k
E[f (A⇤)� f (Ai)].

By induction, this implies that

E[f (Ak)] �

1�
✓

1� 1� e

k

◆k
!

f (A⇤)

�
⇣

1� e�(1�e)
⌘

f (A⇤) � (1� 1/e� e) f (A⇤).

A.7 Proofs from Chapter 13

Proof of theorem 30

The proof is divided into two cases.

Case One: This is when Fantom terminates by exceeding some knapsack capacity.
Let S

r

be the set when Fantom exceeds capacity for some i 2 [d] for the first time, i.e.,
ci(Sr

) > 1. Then we also have that Âd
i=1 ci(Sr

) > 1. Since every element that we include

227

Appendix A. Proofs

satisfies fS(j)
Âd

i=1 cij
� r, with respect to the current solution S we obtain:

f (S
r

) � r

d

Â
i=1

Â
j2S

r

cij > r.

However, S
r

is infeasible as it exceeds the capacity. But if j is the last added item, both
j and T

r

= S
r

� {j} should be feasible. Then we get

max{ f (T
r

), f ({j})} � 1
2
�

f (T
r

) + f ({j})
�

� 1
2
�

f (T
r

[{j}) + f (f)
�

By submodularity

=
1
2

f (S
r

)

� 1
2

r.

Case Two: This is when Fantom terminates as it cannot add items due to p-system
constraint and never exceeds any knapsack capacity. Let S

r

be the set returned. Consider
set C as described in the statement of the theorem and divide it into two sets. Let C<r

be the set of elements from C which cannot be added because their density is below

the threshold, i.e.,
fS

r

(j)

Âd
i=1 cij

< r and C�r

be the set of elements from C which cannot be

added due to p-system constraint. Then we first derive inequalities with respect to each
of these sets. First consider the set C<r

. We obtain

fS
r

(C<r

)  Â
e2C<r

fS
r

(e) (By submodularity)

 Â
e2C<r

r

d

Â
i=1

cie (By definition C<r

)

= r

d

Â
i=1

Â
e2C<r

cie

 r

d

Â
i=1

1 (As C<r

is a feasible solution)

= rd. (A.7.1)

Now consider the set T = S
r

[C�r

. This time if we run greedy algorithm on T with

228

A.7. Proofs from Chapter 13

p-system constraints and no knapsack constraints then we still get S
r

as the solution.
Hence, by lemma 3.2 of [Gup+10b] we get that

f (S
r

) � 1
p + 1

f (S
r

[C�r

).

By rewriting we obtain

fS
r

(C�r

) = f (S [C�r

)� f (S
r

)  p f (S
r

). (A.7.2)

Adding Eq A.7.1 and A.7.2, and using submodularity we get

f (S
r

[C)� f (S
r

) fS
r

(C<r

)+ fS
r

(C�r

)  rd+p f (S
r

).

Hence,

f (S
r

) � 1
p + 1

f (S
r

[C)� rd
p + 1

.

Proof of theorem 31

Let Ti = [i
j=1Sj. For the remaining part of the proof we assume that for each i, f (Si) �

f (Si[(C�Ti�1))
p+1 � dr

p+1 (or else by the proof of Theorem 30 the proof is simple). Now we
obtain a list of inequalities. For each i by assumption we have

f (Si) �
f (Si [(C� Ti�1))

p + 1
� dr

p + 1
. (A.7.3)

Also, for each i by the fact about unconstrained maximization from [Buc+15] we have

f (S0i) �
1
2

f (Si \ C). (A.7.4)

Now by induction we prove that 8t 2 [2, p + 1] we have

t

Â
i=1

f (Si [(C� Ti�1)) + (t� i) f (Si \ C) � (t� 1) f (C) + f (Ti [C).

229

Appendix A. Proofs

First, consider the base case t = 2:

f (S1 [C) + f (S2 [(C� S1)) + f (S1 \ C)

� f (S1 [S2 [C)+ f (C� S1)+ f (S1 \ C) (By submodularity)

� f (S1 [S2 [C) + f (C) (By submodularity)

= f (T2 [C) + f (C).

Now, we prove the inductive case:

t

Â
i=1

[f (Si [(C� Ti�1)) + (t� i) f (Si \ C)]

�
t�1

Â
i=1

[f (Si [(C� Ti�1)) + (t� 1� i) f (Si \ C)]

+ f (St [(C� Tt�1)) +
t�1

Â
i=1

f (Si \ C)

� (t� 2) f (C) + f (Tt�1 [C)

+ f (St [(C� Tt�1)) +
t�1

Â
i=1

f (Si \ C) (By induction)

� (t� 2) f (C) + f (Tt [C)

+ f (C� Tt�1) +
t�1

Â
i=1

f (Si \ C) (By submodularity)

� (t� 2) f (C) + f (Tt [C) + f (C) (By submodularity)

= (t� 1) f (C) + f (Tt [C). (A.7.5)

By multiplying Eq. A.7.3 by p + 1 and Eq. A.7.4 by 2(p + 1� i) we obtain

(p + 1)
p+1

Â
i=1

f (Sj) +
p+1

Â
i=1

2(p + 1� i) f (S0j) �
p+1

Â
i=1

{ f (Si [(C� Ti�1))� dr}

+
p+1

Â
i=1

(p + 1� i) f (Si \ C)

� p f (C)� (p + 1)dr. (from equation A.7.5)

Taking a max over the left hand side of the equation we get the following inequality

(p + 1)2+2

p+1

Â
i=1

(p+1� i)

!
max

i
(f (Si), f (S0i)) � p f (C)�(p + 1)d.

230

A.7. Proofs from Chapter 13

Hence,

max
i

(f (Si), f (S0i)) �
p

(p + 1)(2p + 1)
f (C)� dr

2p + 1
.

Proof of theorem 32

Let r = 2·p· f (C)
(p+1)(2p+2d+1) . Consider the value of r 2 R such that r  r  (1 + e)r.

Substituting this value in Theorem 31 we complete the proof.

Name of the recommended movies in table 13.1.

1- Serenity (2005)
2- Presto (2008)
3- How to Train Your Dragon (2010)
4- Snow White: A Tale of Terror (1997)
5- Tom and Jerry: The Movie (1992)
6- Spirited Away (Sen to Chihiro no kamikakushi) (2001)
7- Raiders of the Lost Ark (1981)
8- Three Musketeers, The (1948)
9- Pirate Movie, The (1982)
10- Spy Kids 3-D: Game Over (2003)
11- Pokemon Heroes (2003)
12- Barney’s Great Adventure (1998)
13- Son of the Mask (2005)
14- Pokemon 4 Ever (a.k.a. Pokemon 4) (2002)
15- Turbo: A Power Rangers Movie (1997)
16- Porco Rosso (Crimson Pig) (Kurenai no buta) (1992)
17- Watership Down (1978)
18- Sholay (1975)
19- Bolt (2008)
20- Mummy, The (1999)
21- Twelve Tasks of Asterix (1976)
22- The Lego Movie (2014)
23- Laputa: Castle in the Sky (1986)

231

Appendix A. Proofs

24- Interstate 60 (2002)
25- Super Mario Bros. (1993)

232

List of Tables

1.1 Summary of key contributions. n is the size of the dataset, m is the
number of muchines, k is the size of the summary, r is the size of the
largest feasible solution, Q is the desired utility, a is the approximation
guarantee for streaming monotone submodular maximization algorithms
under a collection of independence systems, d is the number of knapsack
constraints, p is the ratio of the size of the largest vs. smallest independent
sets in a p-system. 14

2.1 Approximation guarantees (t) for monotone and non-monotone sub-
modular maximization under different constraints. 27

2.2 Approximation guarantees for distributed monotone and non-monotone
submodular maximization under different constraints. r[z] is the maxi-
mum size of the desired solution, and bounds for randomized algorithms
that hold in expectation are marked (R). 31

2.3 Approximation guarantees, memory and update time for single-pass
monotone and non-monotone streaming submodular maximization un-
der different constraints. Bounds for randomized algorithms that hold
in expectation are marked (R). a, M, T is the approximation guarantee,
memory, and update time of the streaming monotone submodular max-
imization under a collection of independent systems and d knapsack
constraints. 34

2.4 Comparison of running times and approximation ratios for non-monotone
submodular maximization under different constraints. 36

233

List of Tables

9.1 Performance of various video summarization methods with segment size
10 on YouTube and OVP datasets, measured by F-Score (F), Precision (P),
and Recall (R). The methods marked by (c) are centralized. 125

10.1 Robust -Streaming can be combined with the existing one-pass
streaming algorithms in order to make them robust against m dele-
tions. a, M is the approximation guarantee, and memory for streaming
monotone submodular maximization under a collection of independence
systems and d knapsack constraints. 141

13.1 Movies recommended by Fantom vs. Greedy and Density Greedy using
Eq. 3.6.1, and Eq. 3.6.2 for m = 5 and c= 1. There are 19 genres in total:
Action(1), Adventure(2), Animation (3), Children (4), Comedy (5), Crime
(6), Documentary (7), Drama (8), Fantasy (9), Film-Noir (10), Horror
(11), Musical (12), Mystery (13), Romance (14), Sci-Fi (15), Thriller (16),
War (17), Western (18), IMAX (19). The user is interested in adventure,
animation, and fantasy movies (genres 1,2,9). See the Appendix for a
complete list of movie names. 175

234

List of Figures

1.1 Illustration of a distributed framework. 5

1.2 Illustration of an streaming framework. 6

1.3 Cluster exemplars (left column) discovered by our distributed algorithm
GreeD i described in Chapter 5 applied to the Tiny Images dataset
[TFF08], and a set of representatives from each cluster. 9

1.4 (a) Example of an active set selected from a subset of the Yahoo! Web-
scope dataset [Yah12], and the corresponding decision boundary of the
kernelized SVM classifier trained on the selected subset. For the sake of
presentation, the data is projected onto its 2 largest principal components.
(b) Example of a dominating set (marked as red) in a graph. The coverage
of u, v is the set of their neighbors and is shown by $({u, v}). 10

1.5 (a) A summary obtained by our Robust -Streaming algorithm de-
scribed in Chapter 10 from the geo-location trace of a bike route around
Zurich [Fat15], (b) Example sensor placement obtained by our algorithm
Stochastic -Greedy introduced in Chapter 12, in a realistic water
network [Kra+08a]. 11

235

List of Figures

1.6 (a) Revenue maximization with 2 products. The shaded blue and red
regions indicate the influence spread from nodes s1 and s2 to buy product
1, 2 respectively. Here, node u has some value to buy both of the products.
(b) Personalized movies recommendation using our algorithm Fantom

described in Chapter 13 from MovieLens dataset [Mov]. Movies are
from 19 genres: Action(1), Adventure(2), Animation (3), Children (4),
Comedy (5), Crime (6), Documentary (7), Drama (8), Fantasy (9), Film-
Noir (10), Horror (11), Musical (12), Mystery (13), Romance (14), Sci-Fi
(15), Thriller (16), War (17), Western (18), IMAX (19). The user is interested
in adventure, animation, and fantasy movies (genres 1,2,9). 13

5.1 Cluster exemplars (left column) discovered by our distributed algorithm
GreeDi described in Section 5.2 applied to the Tiny Images dataset
[TFF08], and a set of representatives from each cluster. 57

5.2 Illustration of our two-round algorithm GreeD i 63

5.3 Illustration of our two-round algorithm GreeD i for decomposable func-
tions . 67

5.4 Performance of GreeD i compared to the other benchmarks. a) and
b) show the mean and standard deviation of the ratio of distributed
vs. centralized solution for global and local objective functions with
budget k = 50 and varying the number m of partitions. c) and d) show
the same ratio for global and local objective functions for m = 5 partitions
and varying budget k, for a set of 10,000 Tiny Images. 73

5.5 Performance of GreeD i compared to the other benchmarks. a) shows
the distributed solution with m = 8000 and varying k for local objective
functions on the whole dataset of 80,000,000 Tiny Images. b) shows a set of
cluster exemplars discovered by GreeD i, and each column in c) shows
100 images nearest to exemplars 26 and d) shows 100 images nearest to
exemplars 63 in b). 75

5.6 Performance of GreeD i compared to the other benchmarks. a) shows
the ratio of distributed vs. centralized solution with k = 50 and varying
m for Parkinsons Telemonitoring. b) shows the same ratio with m = 10 and
varying k on the same dataset. 76

236

List of Figures

5.7 Performance of GreeD i with m = 32 and varying budget k compared
to the other benchmarks on Yahoo! Webscope data. 76

5.8 Running time of GreeD i compared to the centralized greedy algo-
rithm. a) shows the ratio of centralized vs. distributed solution with
k = 64, 128, 256 and up to m = 32 machines for Yahoo Webscope data. b)
shows the same ratio with k = 64, 128, 256 and up to m = 512 machines
on the same dataset. Both experiments are performed on a cluster of 8
quad core machines. 77

5.9 Performance of GreeD i compared to the other benchmarks. a) shows
the mean and standard deviation of the ratio of distributed to centralized
solution for budget k = 20 with varying number of machines m and b)
shows the same ratio for varying budget k with m = 10 on Facebook-like
social network. 78

5.10 Performance of GreeD i compared to the GreedyScaling algorithm of
[Kum+13] (as reported in their paper). a) shows the ratio of distributed
to centralized solution on Accidents dataset with 340,183 elements and
b) shows the same ratio for Kosarak dataset with 990,002 elements. The
results are reported for varying budget k and varying number of ma-
chines m = n/µ where µ = O(knd log n) and n is the size of the dataset.
The results are reported for d = 1/2. Note that the results presented by
[Kum+13] indicate that GreedyScaling generally requires a substantially
larger number of MapReduce rounds compared to GreeD i. 79

6.1 Illustration of our multi-round algorithm D isCover, assuming it termi-
nates in two rounds (without doubling search for `). 89

6.2 Performance of D isCover compared to the centralized solution. a, b)
show the solution set size vs. the number of rounds for various a, for a
set of 10,000 Tiny Images and Parkinsons Telemonitoring. c) shows the same
quantities for the Friendster network with 65,608,366 vertices. 91

7.1 Performance of FastCover vs. other baselines. a), b), c) solution set
size vs. number of rounds for personalized location recommendation
on a set of 3,056 GPS measurements, for covering 60%, 80%, 90% of the
maximum utility of each user. 102

237

List of Figures

7.2 Performance of FastCover vs. other baselines. Solution set size vs.
number of rounds for personalized movie recommendation on a set of
1000 movies, 138,493 users and 20,000,263 ratings, for covering a) 10%, b)
20%, c) 30% of the maximum utility of each user. 103

7.3 Performance of FastCover vs. other baselines. a) solution set size vs.
coverage for simultaneously covering all users vs. covering users one by
one and taking the union. The recommendation is on a set of 1000 movies
for 1000 users. b) Exponential speedup of FastCover over D isCover

on a subgraph of 14M nodes. 104

7.4 Performance of FastCover vs. other baselines. Solution set size vs. the
number of rounds for covering a) 30%, b) 40%, c) 50% of the Friendster
network with 65,608,366 vertices. d) solution set size vs. the number
of rounds for FastCover and D isCover for covering 50% of the
Friendster network. 106

9.1 Performance of Streaming Local Search compared to the other bench-

marks. a) shows the ratio of the F-score obtained by Streaming Local Search and

Fantom vs. the F-score obtained by the method of [Gon+14], using the sequential

DPP objective and linear embeddings on YouTube dataset. b) shows the relative

F-scores for non-linear features from a one-hidden-layer neural network. c), d)

show the speed up of Streaming Local Search and Fantom over the

method of [Gon+14]. 126

9.2 Performance of Streaming Local Search compared to the other bench-

marks. a) shows the ratio of the F-score obtained by Streaming Local

Search and Fantom vs. the F-score obtained by the method of [Gon+14],

using the sequential DPP objective and linear embeddings on OVP dataset.

b) shows the relative F-scores for non-linear features from a one-hidden-layer

neural network. c), d) show the speedup of Streaming Local Search and Fantom

over the method of [Gon+14]. 127

238

List of Figures

9.3 Performance of Streaming Local Search compared to the other bench-

marks. a), c) show the utility and running time for Streaming Local

Search and random selection vs. the utility and running time of Fantom,

using the original DPP objective and linear embeddings on YouTube and OVP

datasets. b), d) show similar qualities using non-linear features from a one-

hidden-layer neural network. 128

9.4 Summary focused on judges, and singer for YouTube video 106. 129

9.5 Summary produced by method of [Gon+14] (top row), vs. Streaming Local

Search (middle row), and a user selected summary (bottom row), for YouTube

video 105. 129

10.1 Robust -Streaming uses r instances of a generic StreamingAlg

to construct r non-overlapping memories at any given time t, i.e., M(1)
t ,

M(2)
t , . . . , M(r)

t . Each instance produces a solution S(i)
t and the solution

returned by Robust -Streaming is the first valid solution St={S(i)
t |i=

min j2 [1 · · ·r], M(i)
t 6=null}. 138

10.2 Performance of Robust -Streaming vs S ieve -Streaming for dif-
ferent deletion strategies (SG, RG) on a collection of 100 images. Here
we fix k = 5 and r = 3. a) performance of Robust -Streaming and
S ieve -Streaming normalized by the utility obtained by greedy that
knows the deleted elements beforehand. b) updated solution of size
k = 5 returned by Robust -Streaming after deleting the 1 image from
the summary. 143

10.3 Robust -Streaming vs S ieve -Streaming and Stream -Greedy

for different deletion strategies (SG, RG) on geolocation data. We fix
k=20 and r=5. a) and c) show the performance of robustified S ieve -
Streaming, whereas b) and d) show performance for robustified
Stream -Greedy. a) and b) consider the performance after deletions
at the end of the stream, while c) and d) consider average performance
while deletions happen during the stream. 145

239

List of Figures

10.4 Robust -Streaming vs S ieve -Streaming and Stream -Greedy

for different deletion strategies (SG, RG) on geolocation data. We fix
k=20 and r=5. a) red and green triangles show a set of size 10 found
by S ieve -Streaming and the updated solution found by Robust -
Streaming where 70% of the points are deleted. b) set found by
Streaming -Greedy, constrained to pick at most 1 point per grid cell
(matroid constraint). Here r = 5, and we deleted the shaded area. . . . 146

10.5 Robust -Streaming vs random unbalanced and balanced selection
and S ieve -Streaming selecting equal numbers of clicked and not-
clicked data points, on 45,811,883 feature vectors from Yahoo! Webscope
data. We fix k = 10, 000 and delete 99% of the data points. 147

12.1 Performance comparisons. a), and b) show the performance of all the
algorithms for different values of k on Parkinsons Telemonitoring, and a
set of 10,000 Tiny Images respectively. c), and d) show the cost of all the
algorithms for different values of k on the same datasets. 161

12.2 Performance comparisons. a), and b) show the performance of all the
algorithms for different values of k on Water Network, and a set of 50,000
Tiny Images respectively. c) and d) show the cost of all the algorithms for
different values of k on the same datasets. 162

12.3 Performance comparisons. The utility obtained versus cost for a fixed
k = 200 on a) Parkinsons Telemonitoring, b) a set of 10,000 Tiny Images, c)
Water Network, d) and a set of 50,000 Tiny Images respectively. 163

13.1 Performance of Fantom compared to the benchmarks for movie recom-
mendation from a set of 10,437 movies from MovieLens. a) shows the
performance of Fantom based on Eq. 3.6.1 for recommending movies
from three genres: adventure, animation, and fantasy for m = 3, and
varying knapsack limit c. b) shows the same quantity for c = 1, and
varying the matroid limits m. c) shows the solution value based on Eq.
3.6.2 with m = 3, and varying c. d) shows the same quantity for c = 1,
and varying m. 174

240

List of Figures

13.2 Performance of Fantom compared to the benchmarks for revenue
maximization on top 5000 communities of YouTube with 39,841 nodes
and 224,235 edges. a) shows the performance of Fantom for selling
q = 10 product types, with x = 50 available items per product, matroid
limit m = 5 for all communities, user constraint u = 3, and varying
knapsack limit c. b) shows the same quantity for c = 0.1, q = 10, x = 50,
u = 3 and varying m. c) shows the solution value for c = 0.2, q = 10,
x = 50, m = 3, and varying u. d) shows the same quantity for c = 0.2,
q = 10, m = 5, u = 3 and varying x. 177

13.3 Performance of Fantom compared to the benchmarks for personalized
image summarization: a) shows the solution value for summarizing three
categories airplane, automobile, and bird for m = 3, and varying the
knapsack limit c. b) shows the same quantity for c = 0.1, and varying
the matroid limits m. 178

241

List of Algorithms

1 Inefficient Distributed Submodular Maximization 61

2 Greedy Distributed Submodular Maximization (GreeD i) 62

3 GreeD i under General Constraints . 69

4 Approximate Submodular Cover . 85

5 Approximate OptCard . 85

6 D isCover . 87

7 FastCover . 99

8 ThresholdSample . 100

9 Streaming Local Search for independence systems 119

10 Streaming Local Search for independence systems I and d knapsacks122

11 Robust -Streaming . 140

12 Stochastic -Greedy . 158

13 GDT - Greedy with density threshold . 170

14 IGDT: Iterated greedy with density threshold 171

15 Fantom . 171

243

Bibliography

[Aga+13] Pankaj K Agarwal, Graham Cormode, Zengfeng Huang, Jeff M Phillips,
Zhewei Wei, and Ke Yi. “Mergeable summaries”. In: ACM Transactions on
Database Systems (TODS) 38.4 (2013), p. 26 (cit. on p. 20).

[AMT13] Zeinab Abbassi, Vahab S Mirrokni, and Mayur Thakur. “Diversity max-
imization under matroid constraints”. In: Proceedings of the 19th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM. 2013, pp. 32–40 (cit. on p. 24).

[Bab+13] Mahmoudreza Babaei, Baharan Mirzasoleiman, Mahdi Jalili, and Moham-
mad Ali Safari. “Revenue maximization in social networks through dis-
counting”. In: Social Network Analysis and Mining 3.4 (2013), pp. 1249–1262
(cit. on p. 46).

[Bad+14] Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi, and
Andreas Krause. “Streaming submodular maximization: Massive data
summarization on the fly”. In: Proceedings of the 20th ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining. ACM. 2014,
pp. 671–680 (cit. on pp. 17, 33, 34, 115, 121, 123, 141, 142, 166).

[Bal+16] Eric Balkanski, Baharan Mirzasoleiman, ETHZ CH, and Yaron Singer.
“Learning sparse combinatorial representations via two-stage submodu-
lar maximization”. In: Proceedings of The 33rd International Conference on
Machine Learning. 2016, pp. 2207–2216 (cit. on p. 17).

[Bar+15] Rafael Barbosa, Alina Ene, Huy L Nguyen, and Justin Ward. “The power
of randomization: Distributed submodular maximization on massive
datasets”. In: International Conference on Machine Learning. 2015, pp. 1236–
1244 (cit. on pp. 30, 31, 67, 84, 88).

245

BIBLIOGRAPHY

[BEM16] MohammadHossein Bateni, Hossein Esfandiari, and Vahab Mirrokni. “Dis-
tributed Coverage Maximization via Sketching”. In: arXiv preprint arXiv:1612.02327
(2016) (cit. on p. 20).

[BHZ10] MohammadHossein Bateni, MohammadTaghi Hajiaghayi, and Morteza
Zadimoghaddam. “Submodular secretary problem and extensions”. In:
Proceedings of the 13th international conference on Approximation, and 14 the
International conference on Randomization, and combinatorial optimization: algo-
rithms and techniques. Berlin, Heidelberg, 2010, pp. 39–52 (cit. on p. 35).

[Bia+17] Yatao Bian, Baharan Mirzasoleiman, Joachim M Buhmann, and Andreas
Krause. “Guaranteed non-convex optimization: Submodular maximization
over continuous domains”. In: (2017) (cit. on p. 17).

[Bod12] Ferenc Bodon. Kosarak Dataset. 2012. url: http://fimi.ua.ac.be/data/

(cit. on p. 78).

[Bog+17] Ilija Bogunovic, Slobodan Mitrovic, Jonathan Scarlett, and Volkan Cevher.
“Robust Submodular Maximization: A Non-Uniform Partitioning Ap-
proach”. In: The 34th International Conference on Machine Learning (ICML).
EPFL-CONF-229153. 2017 (cit. on p. 28).

[BPT11] Guy E. Blelloch, Richard Peng, and Kanat Tangwongsan. “Linear-work
greedy parallel approximate set cover and variants”. In: SPAA. 2011 (cit. on
p. 31).

[BRS89] Bonnie Berger, John Rompel, and Peter W Shor. “Efficient NC algorithms
for set cover with applications to learning and geometry”. In: Foundations
of Computer Science, 1989., 30th Annual Symposium on. IEEE. 1989, pp. 54–59
(cit. on pp. 31, 32).

[Buc+] Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. “Sub-
modular Maximization with Cardinality Constraints”. In: SODA 2014
(cit. on p. 36).

[Buc+12] Niv Buchbinder, Michael Feldman, Joseph Naor, and Roy Schwartz. “A
tight linear time (1/2)-approximation for unconstrained submodular max-
imization”. In: 53rd Annual Symposium on Foundations of Computer Science
(FOCS). IEEE. 2012, pp. 649–658 (cit. on p. 26).

246

http://fimi.ua.ac.be/data/

BIBLIOGRAPHY

[Buc+14] Niv Buchbinder, Moran Feldman, Joseph Seffi Naor, and Roy Schwartz.
“Submodular maximization with cardinality constraints”. In: Proceedings
of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms.
Society for Industrial and Applied Mathematics. 2014, pp. 1433–1452 (cit.
on pp. 24, 27, 78, 142, 218).

[Buc+15] Niv Buchbinder, Moran Feldman, Joseph Seffi, and Roy Schwartz. “A tight
linear time (1/2)-approximation for unconstrained submodular maximiza-
tion”. In: SIAM Journal on Computing (2015) (cit. on pp. 36, 120, 220, 223,
229).

[BV14] Ashwinkumar Badanidiyuru and Jan Vondrák. “Fast algorithms for maxi-
mizing submodular functions”. In: Proceedings of the Twenty-Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and
Applied Mathematics. 2014, pp. 1497–1514 (cit. on pp. 5, 27, 35, 115, 121,
159, 166, 169).

[Cal+11] Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. “Maxi-
mizing a monotone submodular function subject to a matroid constraint”.
In: SIAM Journal on Computing 40.6 (2011), pp. 1740–1766 (cit. on pp. 24,
25, 27).

[CC84] Michele Conforti and Gérard Cornuéjols. “Submodular set functions, ma-
troids and the greedy algorithm: tight worst-case bounds and some gener-
alizations of the Rado-Edmonds theorem”. In: Discrete Applied Mathematics
7.3 (1984), pp. 251–274 (cit. on p. 25).

[CGQ15] Chandra Chekuri, Shalmoli Gupta, and Kent Quanrud. “Streaming Al-
gorithms for Submodular Function Maximization”. In: International Collo-
quium on Automata, Languages, and Programming. Springer. 2015, pp. 318–
330 (cit. on pp. 33, 34, 115, 120–123, 141, 142, 220, 223).

[Chi+15] Flavio Chierichetti, Alessandro Epasto, Ravi Kumar, Silvio Lattanzi, and
Vahab Mirrokni. “Efficient algorithms for public-private social networks”.
In: Proceedings of the 21th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining. ACM. 2015, pp. 139–148 (cit. on pp. 93,
94).

247

BIBLIOGRAPHY

[Chu+07] Cheng Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary Bradski,
Andrew Y Ng, and Kunle Olukotun. “Map-reduce for machine learning
on multicore”. In: Advances in Neural Information Processing Systems 19
(2007), p. 281 (cit. on p. 29).

[CJV15] Chandra Chekuri, TS Jayram, and Jan Vondrák. “On multiplicative weight
updates for concave and submodular function maximization”. In: Proceed-
ings of the 2015 Conference on Innovations in Theoretical Computer Science.
ACM. 2015, pp. 201–210 (cit. on p. 37).

[CK14] Amit Chakrabarti and Sagar Kale. “Submodular maximization meets
streaming: Matchings, matroids, and more”. In: Mathematical Programming
154.1-2 (2014), pp. 225–247 (cit. on pp. 33, 34, 115, 141).

[CKT10] Flavio Chierichetti, Ravi Kumar, and Andrew Tomkins. “Max-cover in
map-reduce”. In: Proceedings of the 19th International Conference on World
Wide Web. ACM. 2010, pp. 231–240 (cit. on pp. 32, 47).

[CNZ16] Jiecao Chen, Huy L. Nguyen, and Qin Zhang. “Submodular Maximization
over Sliding Windows”. In: arXiv preprint arXiv:1611.00129 (2016) (cit. on
p. 34).

[CR09] Emmanuel J Candès and Benjamin Recht. “Exact matrix completion via
convex optimization”. In: Foundations of Computational mathematics (2009)
(cit. on p. 96).

[CR12] Emmanuel Candes and Benjamin Recht. “Exact matrix completion via
convex optimization”. In: Communications of the ACM 55.6 (2012), pp. 111–
119 (cit. on p. 45).

[CVZ] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. “Submodular Func-
tion Maximization via the Multilinear Relaxation and Contention Resolu-
tion Schemes”. In: SIAM J. Comput. 2014 () (cit. on pp. 36, 37).

[DA+11] Sandra Eliza Fontes De Avila, Ana Paula Brandão Lopes, Antonio da Luz,
and Arnaldo de Albuquerque Araújo. “VSUMM: A mechanism designed
to produce static video summaries and a novel evaluation method”. In:
Pattern Recognition Letters 32.1 (2011), pp. 56–68 (cit. on p. 124).

[DF07a] Delbert Dueck and Brendan J. Frey. “Non-metric affinity propagation for
unsupervised image categorization”. In: ICCV. 2007 (cit. on p. 3).

248

BIBLIOGRAPHY

[DF07b] Delbert Dueck and Brendan J Frey. “Non-metric affinity propagation for
unsupervised image categorization”. In: Computer Vision, 2007. ICCV 2007.
IEEE 11th International Conference on. IEEE. 2007, pp. 1–8 (cit. on pp. 46,
166).

[DG08] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data process-
ing on large clusters”. In: Communications of the ACM 51.1 (2008), pp. 107–
113 (cit. on pp. 5, 29, 55, 82).

[DK11] Abhimanyu Das and David Kempe. “Submodular meets Spectral: Greedy
Algorithms for Subset Selection, Sparse Approximation and Dictionary
Selection”. In: Proceedings of the 28th International Conference on Machine
Learning (ICML-11). 2011, pp. 1057–1064 (cit. on p. 81).

[DKR13a] Anirban Dasgupta, Ravi Kumar, and Sujith Ravi. “Summarization Through
Submodularity and Dispersion”. In: ACL. 2013 (cit. on p. 3).

[DKR13b] Anirban Dasgupta, Ravi Kumar, and Sujith Ravi. “Summarization Through
Submodularity and Dispersion”. In: ACL. 2013 (cit. on pp. 165, 166).

[Du+13] Nan Du, Yingyu Liang, Maria Florina Balcan, and Le Song. “Budgeted in-
fluence maximization for multiple products”. In: arXiv preprint arXiv:1312.2164
(2013) (cit. on pp. 21, 25, 27).

[DVV03] Sven De Vries and Rakesh V Vohra. “Combinatorial auctions: A survey”.
In: INFORMS Journal on Computing 15.3 (2003), pp. 284–309 (cit. on p. 47).

[EA+09] Khalid El-Arini, Gaurav Veda, Dafna Shahaf, and Carlos Guestrin. “Turn-
ing Down the Noise in the Blogosphere”. In: KDD. Paris, France, 2009
(cit. on pp. 3, 21).

[EAG11] Khalid El-Arini and Carlos Guestrin. “Beyond Keyword Search: Discover-
ing Relevant Scientific Literature”. In: KDD. 2011 (cit. on pp. 3, 166).

[Epa+16] Alessandro Epasto, Silvio Lattanzi, Sergei Vassilvitskii, and Morteza Zadi-
moghaddam. “Submodular Optimization over Sliding Windows”. In: arXiv
preprint arXiv:1610.09984 (2016) (cit. on p. 33).

[EPF08] Jaliya Ekanayake, Shrideep Pallickara, and Geoffrey Fox. “Mapreduce for
data intensive scientific analyses”. In: IEEE Fourth International Conference
on eScience. IEEE. 2008, pp. 277–284 (cit. on p. 29).

249

BIBLIOGRAPHY

[EU15] Council of the European Union. http://data.consilium.europa.eu/

doc/document/ST-9565-2015-INIT/en/pdf. 2015 (cit. on p. 131).

[Fat15] Philipe Fatio. https://refind.com/fphilipe/topics/open-data. 2015
(cit. on pp. 11, 12, 144).

[Fei98] Uriel Feige. “A threshold of ln n for approximating set cover”. In: Journal
of the ACM (1998) (cit. on pp. 4, 22, 23, 82, 83).

[FHK17] Moran Feldman, Christopher Harshaw, and Amin Karbasi. “Greed is
Good: Near-Optimal Submodular Maximization via Greedy Optimization”.
In: arXiv preprint arXiv:1704.01652 (2017) (cit. on pp. 130, 219).

[FMV11] Uriel Feige, Vahab S Mirrokni, and Jan Vondrak. “Maximizing non-monotone
submodular functions”. In: SIAM Journal on Computing (2011) (cit. on
pp. 36, 118).

[FNS11a] Moran Feldman, Joseph Naor, and Roy Schwartz. “A unified continuous
greedy algorithm for submodular maximization”. In: Foundations of Com-
puter Science (FOCS), 2011 IEEE 52nd Annual Symposium on. IEEE. 2011,
pp. 570–579 (cit. on pp. 24, 25, 27, 33).

[FNS11b] Moran Feldman, Joseph Naor, and Roy Schwartz. “Nonmonotone Sub-
modular Maximization via a Structural Continuous Greedy Algorithm -
(Extended Abstract)”. In: ICALP (1). 2011, pp. 342–353 (cit. on p. 36).

[FNW78] Marshall L. Fisher, George L. Nemhauser, and Laurence A. Wolsey. “An
analysis of approximations for maximizing submodular set functions - II”.
In: Mathematical Programming Study 8 (1978), pp. 73–87 (cit. on pp. 24, 25,
27).

[FPZ03] Robert Fergus, Pietro Perona, and Andrew Zisserman. “Object class recog-
nition by unsupervised scale-invariant learning”. In: Computer Vision and
Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference
on. Vol. 2. IEEE. 2003, pp. II–II (cit. on p. 44).

[Geu+03] Karolien Geurts, Geert Wets, Tom Brijs, and Koen Vanhoof. “Profiling of
high-frequency accident locations by use of association rules”. In: Trans-
portation Research Record: Journal of the Transportation Research Board 1840
(2003), pp. 123–130 (cit. on p. 78).

250

http://data.consilium.europa.eu/doc/document/ST-9565-2015-INIT/en/pdf
http://data.consilium.europa.eu/doc/document/ST-9565-2015-INIT/en/pdf
https://refind.com/fphilipe/topics/open-data

BIBLIOGRAPHY

[GK04] Michael B Greenwald and Sanjeev Khanna. “Power-conserving computa-
tion of order-statistics over sensor networks”. In: Proceedings of the twenty-
third ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems. ACM. 2004, pp. 275–285 (cit. on p. 20).

[GK10] Ryan Gomes and Andreas Krause. “Budgeted Nonparametric Learning
from Data Streams”. In: ICML. 2010 (cit. on pp. 3, 32, 46, 142, 166).

[GKP01] Rahul Garg, Vijay Kumar, and Vinayaka Pandit. “Approximation algo-
rithms for budget-constrained auctions”. In: Approximation, Randomization,
and Combinatorial Optimization: Algorithms and Techniques. Springer, 2001,
pp. 102–113 (cit. on p. 26).

[GKT12a] Jennifer Gillenwater, Alex Kulesza, and Ben Taskar. “Discovering diverse
and salient threads in document collections”. In: Proceedings of the 2012
Joint Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning. Association for Computational
Linguistics. 2012, pp. 710–720 (cit. on p. 41).

[GKT12b] Jennifer Gillenwater, Alex Kulesza, and Ben Taskar. “Near-optimal map
inference for determinantal point processes”. In: Advances in Neural Infor-
mation Processing Systems. 2012, pp. 2735–2743 (cit. on p. 21).

[GNR15] Anupam Gupta, Viswanath Nagarajan, and R Ravi. “Robust and MaxMin
Optimization under Matroid and Knapsack Uncertainty Sets”. In: ACM
Transactions on Algorithms (TALG) 12.1 (2015), p. 10 (cit. on p. 36).

[Gon+14] Boqing Gong, Wei-Lun Chao, Kristen Grauman, and Fei Sha. “Diverse
sequential subset selection for supervised video summarization”. In: Ad-
vances in Neural Information Processing Systems. 2014, pp. 2069–2077 (cit. on
pp. 41, 123–127, 129).

[GRLK10] Manuel Gomez Rodriguez, Jure Leskovec, and Andreas Krause. “Inferring
networks of diffusion and influence”. In: Proceedings of the 16th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM. 2010, pp. 1019–1028 (cit. on p. 47).

[Gup+10a] Anupam Gupta, Aaron Roth, Grant Schoenebeck, and Kunal Talwar. “Con-
strained non-monotone submodular maximization: Offline and secretary
algorithms”. In: Internet and Network Economics. Springer, 2010, pp. 246–257
(cit. on pp. 26, 27, 30, 35, 118, 119).

251

BIBLIOGRAPHY

[Gup+10b] Anupam Gupta, Aaron Roth, Grant Schoenebeck, and Kunal Talwar. “Con-
strained Non-monotone Submodular Maximization: Offline and Secretary
Algorithms”. In: WINE. 2010 (cit. on pp. 36, 37, 169, 171, 229).

[HMS08] Jason Hartline, Vahab Mirrokni, and Mukund Sundararajan. “Optimal
marketing strategies over social networks”. In: Proceedings of the 17th
International Conference on World Wide Web. ACM. 2008, pp. 189–198 (cit. on
pp. 14, 46).

[HPM04] Sariel Har-Peled and Soham Mazumdar. “On coresets for k-means and k-
median clustering”. In: Proceedings of the thirty-sixth annual ACM symposium
on Theory of computing. ACM. 2004, pp. 291–300 (cit. on p. 20).

[IB13] Rishabh K Iyer and Jeff A Bilmes. “Submodular optimization with sub-
modular cover and submodular knapsack constraints”. In: Advances in
Neural Information Processing Systems. 2013, pp. 2436–2444 (cit. on pp. 84,
93, 96).

[KG05a] Andreas Krause and Carlos Guestrin. A Note on the Budgeted Maximization
on Submodular Functions. Tech. rep. CMU-CALD-05-103. Carnegie Mellon
University, 2005 (cit. on p. 26).

[KG05b] Andreas Krause and Carlos Guestrin. “Near-optimal Nonmyopic Value of
Information in Graphical Models”. In: Proceedings of Uncertainty in Artificial
Intelligence (UAI). 2005, p. 5 (cit. on pp. 23, 26, 40).

[KG10] Andreas Krause and Ryan G Gomes. “Budgeted nonparametric learning
from data streams”. In: Proceedings of the 27th International Conference on
Machine Learning (ICML-10). 2010, pp. 391–398 (cit. on pp. 9, 21, 42, 66).

[KG11] Andreas Krause and Carlos Guestrin. “Submodularity and its applications
in optimized information gathering”. In: ACM Transactions on Intelligent
Systems and Technology (TIST) 2.4 (2011), p. 32 (cit. on p. 21).

[KG13] Andreas Krause and Daniel Golovin. “Submodular Function Maximiza-
tion”. In: Tractability: Practical Approaches to Hard Problems. Cambridge
University Press, 2013 (cit. on pp. 3, 22, 58, 135).

[KH09] Alex Krizhevsky and Geoffrey Hinton. “Learning multiple layers of fea-
tures from tiny images”. In: (2009) (cit. on p. 177).

252

BIBLIOGRAPHY

[KKT03] David Kempe, Jon Kleinberg, and Éva Tardos. “Maximizing the spread
of influence through a social network”. In: Proceedings of the ninth ACM
SIGKDD. 2003 (cit. on pp. 20, 81).

[KLQ95] Chun-Wa Ko, Jon Lee, and Maurice Queyranne. “An exact algorithm for
maximum entropy sampling”. In: Operations Research 43.4 (1995), pp. 684–
691 (cit. on p. 41).

[KR09] Leonard Kaufman and Peter J Rousseeuw. Finding groups in data: an
introduction to cluster analysis. Vol. 344. Wiley-Interscience, 2009 (cit. on
pp. 9, 41).

[Kra+08a] Andreas Krause, Jure Leskovec, Carlos Guestrin, Jeanne VanBriesen, and
Christos Faloutsos. “Efficient Sensor Placement Optimization for Securing
Large Water Distribution Networks”. In: Journal of Water Resources Planning
and Management 134.6 (2008), pp. 516–526 (cit. on pp. 11, 12, 43, 81).

[Kra+08b] Andreas Krause, H Brendan McMahan, Carlos Guestrin, and Anupam
Gupta. “Robust submodular observation selection”. In: Journal of Machine
Learning Research 9.Dec (2008), pp. 2761–2801 (cit. on pp. 28, 93, 96, 97).

[KST09] Ariel Kulik, Hadas Shachnai, and Tami Tamir. “Maximizing submodular
set functions subject to multiple linear constraints”. In: Proceedings of the
Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms. Society for
Industrial and Applied Mathematics. 2009, pp. 545–554 (cit. on pp. 26, 27).

[KSV10] Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. “A model of
computation for MapReduce”. In: Proceedings of the Twenty-First Annual
ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and
Applied Mathematics. 2010, pp. 938–948 (cit. on p. 29).

[KT+12] Alex Kulesza, Ben Taskar, et al. “Determinantal point processes for ma-
chine learning”. In: Foundations and Trends R� in Machine Learning 5.2–3
(2012), pp. 123–286 (cit. on pp. 41, 118).

[Kum+13] Ravi Kumar, Benjamin Moseley, Sergei Vassilvitskii, and Andrea Vattani.
“Fast greedy algorithms in MapReduce and streaming”. In: Proceedings
of the 25th ACM Symposium on Parallelism in Algorithms and Architectures.
ACM. 2013, pp. 1–10 (cit. on pp. 29–34, 78, 79, 166).

253

BIBLIOGRAPHY

[Lat+11] Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and Sergei Vassilvit-
skii. “Filtering: a method for solving graph problems in mapreduce”. In:
Proceedings of the Twenty-Third Annual ACM Symposium on Parallelism in
Algorithms and Architectures. ACM. 2011, pp. 85–94 (cit. on p. 42).

[LB11a] Hui Lin and Jeff Bilmes. “A class of submodular functions for document
summarization”. In: Proceedings of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Human Language Technologies-Volume 1.
Association for Computational Linguistics. 2011, pp. 510–520 (cit. on pp. 3,
21, 35, 156).

[LB11b] Hui Lin and Jeff Bilmes. “A class of submodular functions for document
summarization”. In: Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies-Volume 1. Asso-
ciation for Computational Linguistics. 2011, pp. 510–520 (cit. on pp. 26, 45,
47, 166).

[LBK16] Mario Lucic, Olivier Bachem, and Andreas Krause. “Strong coresets for
hard and soft Bregman clustering with applications to exponential family
mixtures”. In: International Conference on Artificial Intelligence and Statistics.
2016 (cit. on p. 20).

[Lee+09] Jon Lee, Vahab S Mirrokni, Viswanath Nagarajan, and Maxim Sviridenko.
“Non-monotone submodular maximization under matroid and knapsack
constraints”. In: Proceedings of the 41st Annual ACM Symposium on Theory of
Computing. ACM. 2009, pp. 323–332 (cit. on pp. 26, 27, 130).

[Les+07] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne
VanBriesen, and Natalie Glance. “Cost-effective outbreak detection in
networks”. In: KDD ’07: Proceedings of the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. San Jose, California,
USA: ACM, 2007, pp. 420–429 (cit. on pp. 20, 23, 47, 55, 58, 156).

[LGG12] Yong Jae Lee, Joydeep Ghosh, and Kristen Grauman. “Discovering impor-
tant people and objects for egocentric video summarization”. In: Computer
Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE. 2012,
pp. 1346–1353 (cit. on p. 129).

254

BIBLIOGRAPHY

[LK06] Tiecheng Liu and John Kender. “Optimization algorithms for the selection
of key frame sequences of variable length”. In: Computer Vision—ECCV
2002 (2006), pp. 301–305 (cit. on p. 129).

[LLS07] John Langford, Lihong Li, and Alex Strehl. Vowpal wabbit online learning
project. 2007 (cit. on p. 146).

[Low04] David G Lowe. “Distinctive image features from scale-invariant keypoints”.
In: International journal of computer vision 60.2 (2004), pp. 91–110 (cit. on
p. 124).

[Low99] David G Lowe. “Object recognition from local scale-invariant features”.
In: Computer vision, 1999. The proceedings of the seventh IEEE international
conference on. Vol. 2. Ieee. 1999, pp. 1150–1157 (cit. on p. 44).

[LSV09] Jon Lee, Maxim Sviridenko, and Jan Vondrák. “Submodular maximiza-
tion over multiple matroids via generalized exchange properties”. In:
Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques. Springer, 2009, pp. 244–257 (cit. on pp. 25, 27).

[LSV10] Jon Lee, Maxim Sviridenko, and Jan Vondrák. “Submodular Maximization
over Multiple Matroids via Generalized Exchange Properties”. In: Math.
Oper. Res. (2010) (cit. on pp. 36, 37).

[LWD15] Erik M Lindgren, Shanshan Wu, and Alexandros G Dimakis. “Sparse and
Greedy: Sparsifying Submodular Facility Location Problems”. In: NIPS
(2015) (cit. on pp. 104, 173).

[Mac75] Odile Macchi. “The coincidence approach to stochastic point processes”.
In: Advances in Applied Probability 7.01 (1975), pp. 83–122 (cit. on p. 40).

[MBK16] Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, and Amin Karbasi.
“Fast constrained submodular maximization: Personalized data summa-
rization”. In: ICLM’16: Proceedings of the 33rd International Conference on
Machine Learning (ICML). 2016 (cit. on p. 16).

[Min78] M. Minoux. “Accelerated greedy algorithms for maximizing submodular
set functions”. In: Optimization Techniques, LNCS (1978), pp. 234–243 (cit. on
pp. 5, 8, 23, 55, 58, 115, 156, 158, 159).

255

BIBLIOGRAPHY

[Mir+13] Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas Krause.
“Distributed submodular maximization: Identifying representative ele-
ments in massive data”. In: Advances in Neural Information Processing
Systems. 2013, pp. 2049–2057 (cit. on pp. 16, 166).

[Mir+15a] Baharan Mirzasoleiman, Amin Karbasi, Ashwinkumar Badanidiyuru, and
Andreas Krause. “Distributed submodular cover: Succinctly summarizing
massive data”. In: Advances in Neural Information Processing Systems. 2015,
pp. 2881–2889 (cit. on p. 16).

[Mir+15b] Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan
Vondrak, and Andreas Krause. “Lazier Than Lazy Greedy”. In: Twenty-
Ninth AAAI Conference on Artificial Intelligence. 2015 (cit. on p. 16).

[Mir+16] Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas Krause.
“Distributed submodular maximization”. In: Journal of Machine Learning
Research 17.238 (2016), pp. 1–44 (cit. on p. 16).

[MJK18] Baharan Mirzasoleiman, Stefanie Jegelka, and Andreas Krause. “Stream-
ing Non-monotone Submodular Maximization: Personalized Video Sum-
marization on the Fly”. In: Thirty-Second AAAI Conference on Artificial
Intelligence. 2018 (cit. on p. 16).

[MKK17] Baharan Mirzasoleiman, Amin Karbasi, and Andreas Krause. “Deletion
Robust Submodular Maximization: Data Summarization with the Right to
be Forgotten”. In: Proceedings of The 33rd International Conference on Machine
Learning. 2017 (cit. on p. 16).

[Mov] GroupLens. MovieLens 20M dataset. http://grouplens.org/datasets/

movielens/20m/. 2015 (cit. on pp. 13, 104, 173).

[MZ15] Vahab Mirrokni and Morteza Zadimoghaddam. “Randomized Compos-
able Core-sets for Distributed Submodular Maximization”. In: Proceedings
of the Forty-Seventh Annual ACM on Symposium on Theory of Computing.
STOC ’15. Portland, Oregon, USA: ACM, 2015, pp. 153–162 (cit. on pp. 30,
31, 67, 84, 88).

[MZK16] Baharan Mirzasoleiman, Morteza Zadimoghaddam, and Amin Karbasi.
“Fast Distributed Submodular Cover: Public-Private Data Summarization”.
In: Advances in Neural Information Processing Systems. 2016, pp. 3594–3602
(cit. on pp. 16, 130).

256

http://grouplens.org/datasets/movielens/20m/
http://grouplens.org/datasets/movielens/20m/

BIBLIOGRAPHY

[NMZ03] Chong-Wah Ngo, Yu-Fei Ma, and Hong-Jiang Zhang. “Automatic video
summarization by graph modeling”. In: Computer Vision, 2003. Proceedings.
Ninth IEEE International Conference on. IEEE. 2003, pp. 104–109 (cit. on
p. 129).

[NN12] Ramasuri Narayanam and Amit A Nanavati. “Viral marketing for product
cross-sell through social networks”. In: Machine Learning and Knowledge
Discovery in Databases. Springer, 2012, pp. 581–596 (cit. on p. 24).

[NW78] G. L. Nemhauser and L. A. Wolsey. “Best algorithms for approximating
the maximum of a submodular set function”. In: Math. Oper. Research
(1978) (cit. on pp. 4, 23).

[NWF78a] George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. “An
analysis of approximations for maximizing submodular set functions - I”.
In: Mathematical Programming (1978) (cit. on pp. 3, 21, 22, 55, 115, 193).

[NWF78b] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. “An
analysis of approximations for maximizing submodular set functions—I”.
In: Mathematical Programming 14.1 (1978), pp. 265–294 (cit. on pp. 33, 130).

[OP09] Tore Opsahl and Pietro Panzarasa. “Clustering in weighted networks”. In:
Social networks 31.2 (2009), pp. 155–163 (cit. on p. 77).

[Ost+08] Avi Ostfeld, James G Uber, Elad Salomons, Jonathan W Berry, William E
Hart, Cindy A Phillips, Jean-Paul Watson, Gianluca Dorini, Philip Jonker-
gouw, Zoran Kapelan, et al. “The battle of the water sensor networks
(BWSN): A design challenge for engineers and algorithms”. In: Journal of
Water Resources Planning and Management 134.6 (2008), pp. 556–568 (cit. on
pp. 12, 163).

[OSU16] James B Orlin, Andreas S Schulz, and Rajan Udwani. “Robust Monotone
Submodular Function Maximization”. In: Proceedings of the 18th Interna-
tional Conference on Integer Programming and Combinatorial Optimization-
Volume 9682. Springer-Verlag New York, Inc. 2016, pp. 312–324 (cit. on
pp. 28, 137).

[PD07] Florent Perronnin and Christopher Dance. “Fisher kernels on visual vo-
cabularies for image categorization”. In: Computer Vision and Pattern Recog-
nition, 2007. CVPR’07. IEEE Conference on. IEEE. 2007, pp. 1–8 (cit. on
p. 124).

257

BIBLIOGRAPHY

[Rah+10] Esa Rahtu, Juho Kannala, Mikko Salo, and Janne Heikkilä. “Segmenting
salient objects from images and videos”. In: Computer Vision–ECCV 2010
(2010), pp. 366–379 (cit. on p. 124).

[Reg12] European Data Protection Regulation. http://ec.europa.eu/justice/

data- protection/document/review2012/com_2012_11_en.pdf. 2012
(cit. on p. 131).

[RG13] Colorado Reed and Zoubin Ghahramini. “Scaling the Indian Buffet Process
via Submodular Maximization”. In: ICML. 2013 (cit. on p. 21).

[RLK12] Manuel Gomez Rodriguez, Jure Leskovec, and Andreas Krause. “Inferring
Networks of Diffusion and Influence”. In: ACM Transactions on Knowledge
Discovery from Data 5.4 (2012), 21:1–21:37 (cit. on p. 156).

[RW06] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes
for Machine Learning (Adaptive Computation and Machine Learning). 2006
(cit. on p. 10).

[See04] Matthias Seeger. Greedy Forward Selection in the Informative Vector Machine.
Tech. rep. University of California, Berkeley, 2004 (cit. on p. 10).

[SGK09] Matthew Streeter, Daniel Golovin, and Andreas Krause. “Online learning
of assignments”. In: Advances in Neural Information Processing Systems. 2009,
pp. 1794–1802 (cit. on p. 24).

[Sin+14] Adish Singla, Ilija Bogunovic, Gabor Bartok, Amin Karbasi, and Andreas
Krause. “Near-Optimally Teaching the Crowd to Classify.” In: ICML. 2014,
pp. 154–162 (cit. on pp. 21, 166).

[Sip+12a] Ruben Sipos, Adith Swaminathan, Pannaga Shivaswamy, and Thorsten
Joachims. “Temporal Corpus Summarization Using Submodular Word
Coverage”. In: CIKM. Maui, Hawaii, USA, 2012 (cit. on pp. 3, 21).

[Sip+12b] Ruben Sipos, Adith Swaminathan, Pannaga Shivaswamy, and Thorsten
Joachims. “Temporal corpus summarization using submodular word cov-
erage”. In: CIKM. 2012 (cit. on p. 166).

[SS01] Bernhard Scholkopf and Alexander J Smola. Learning with kernels: support
vector machines, regularization, optimization, and beyond. MIT press, 2001 (cit.
on p. 166).

258

http://ec.europa.eu/justice/data-protection/document/review2012/com_2012_11_en.pdf
http://ec.europa.eu/justice/data-protection/document/review2012/com_2012_11_en.pdf

BIBLIOGRAPHY

[SSS07] Ian Simon, Noah Snavely, and Steven M Seitz. “Scene summarization for
online image collections”. In: Computer Vision, 2007. ICCV 2007. IEEE 11th
International Conference on. IEEE. 2007, pp. 1–8 (cit. on pp. 45, 166).

[ST15] Stergios Stergiou and Kostas Tsioutsiouliklis. “Set cover at web scale”. In:
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM. 2015, pp. 1125–1133 (cit. on p. 31).

[Svi04] Maxim Sviridenko. “A Note on Maximizing a Submodular Set Function
Subject to Knapsack Constraint”. In: Operations Research Letters 32 (2004)
(cit. on pp. 26, 27, 121).

[TFF08] Antonio Torralba, Rob Fergus, and William T Freeman. “80 million tiny
images: A large data set for nonparametric object and scene recognition”.
In: IEEE Trans. Pattern Anal. Mach. Intell. (2008) (cit. on pp. 9, 57, 72, 74, 89,
160).

[TKC05] Ivor W Tsang, James T Kwok, and Pak-Ming Cheung. “Core vector ma-
chines: Fast SVM training on very large data sets”. In: Journal of Machine
Learning Research 6.Apr (2005), pp. 363–392 (cit. on p. 20).

[Tsa+10] Athanasios Tsanas, Max A Little, Patrick E McSharry, and Lorraine O
Ramig. “Enhanced classical dysphonia measures and sparse regression for
telemonitoring of Parkinson’s disease progression”. In: Acoustics Speech
and Signal Processing (ICASSP), 2010 IEEE International Conference on. IEEE.
2010, pp. 594–597 (cit. on pp. 74, 90, 102, 160).

[Tsc+14] Sebastian Tschiatschek, Rishabh K Iyer, Haochen Wei, and Jeff A Bilmes.
“Learning mixtures of submodular functions for image collection sum-
marization”. In: Advances in neural information processing systems. 2014,
pp. 1413–1421 (cit. on pp. 43, 143, 165, 166).

[Uij+13] Jasper RR Uijlings, Koen EA Van De Sande, Theo Gevers, and Arnold
WM Smeulders. “Selective search for object recognition”. In: International
journal of computer vision 104.2 (2013), pp. 154–171 (cit. on p. 129).

[Vit85] Jeffrey S Vitter. “Random sampling with a reservoir”. In: ACM Transactions
on Mathematical Software (TOMS) 11.1 (1985), pp. 37–57 (cit. on p. 123).

259

BIBLIOGRAPHY

[VJ04] Paul Viola and Michael J Jones. “Robust real-time face detection”. In:
International journal of computer vision 57.2 (2004), pp. 137–154 (cit. on
p. 128).

[WDJ11] Christian Wengert, Matthijs Douze, and Hervé Jégou. “Bag-of-colors for
improved image search”. In: Proceedings of the 19th ACM international
conference on Multimedia. ACM. 2011, pp. 1437–1440 (cit. on p. 44).

[Web11] Rolf H Weber. “The right to be forgotten”. In: More than a Pandora’s Box 2
(2011) (cit. on p. 132).

[Wei+13] Kai Wei, Yuzong Liu, Katrin Kirchhoff, and Jeff Bilmes. “Using document
summarization techniques for speech data subset selection”. In: Proceedings
of NAACL-HLT. 2013, pp. 721–726 (cit. on pp. 35, 47, 156).

[WIB14] Kai Wei, Rishabh K Iyer, and Jeff A Bilmes. “Fast Multi-stage Submodular
Maximization”. In: ICML. 2014, pp. 1494–1502 (cit. on pp. 35, 166).

[Wol82] Laurence A. Wolsey. “An analysis of the greedy algorithm for the sub-
modular set covering problem”. In: Combinatorica (1982) (cit. on pp. 22, 82,
83).

[Yah12] Yahoo. Yahoo! Academic Relations. R6A, Yahoo! Front Page Today Module User
Click Log Dataset, Version 1.0. 2012. url: http://Webscope.sandbox.yahoo.

com (cit. on pp. 10, 11, 74, 144).

[YL15] Jaewon Yang and Jure Leskovec. “Defining and evaluating network com-
munities based on ground-truth”. In: Knowledge and Information Systems
42.1 (2015), pp. 181–213 (cit. on pp. 10, 14, 90, 105, 176).

[Zah+10] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker,
and Ion Stoica. “Spark: Cluster Computing with Working Sets.” In: Hot-
Cloud 10.10-10 (2010), p. 95 (cit. on pp. 74, 82, 90, 94, 101).

260

http://Webscope.sandbox.yahoo.com
http://Webscope.sandbox.yahoo.com

	Contents
	I Background and Survey
	1 Introduction
	1.1 Thesis Statement and Main Contributions
	1.1.1 Distributed Algorithms for Submodular Summarization
	1.1.2 Streaming Algorithms for Submodular Summarization
	1.1.3 Fast Centralized Algorithms for Submodular Summarization
	1.1.4 Applications and Empirical Studies

	1.2 Summary of Key Contributions
	1.3 Organization of this Dissertation
	1.4 Publications

	2 Background and Related Work
	2.1 Data Summarization
	2.1.1 Geometric Data Summarization
	2.1.2 Submodular Data Summarization

	2.2 Data Summarization by Submodular Optimization
	2.2.1 Constrained Maximization vs. Coverage
	2.2.2 (Non-monotone) Maximization with General Constraints
	2.2.3 Deletion-Robust Submodular Maximization

	2.3 Large Scale Submodular Maximization
	2.3.1 Distributed Algorithms
	2.3.2 Streaming Algorithms
	2.3.3 Fast Centralized Algorithms

	3 Applications of Large Scale Submodular Summarization
	3.1 Nonparametric Learning
	3.1.1 Active Set Selection in Sparse Gaussian Processes (GPs).
	3.1.2 Inference for Determinantal Point Processes.

	3.2 Exemplar Based Clustering
	3.3 Dominating Sets in Social Networks
	3.4 Sensor Placement
	3.5 Summarizing Image Collections
	3.6 Movie Recommendation
	3.7 Diversified Image summarization
	3.8 Revenue Maximization with Multiple Products
	3.9 Other Examples

	II Distributed Algorithms
	4 Overview of part II
	5 Distributed Submodular Maximization
	5.1 Submodular Maximization
	5.1.1 Greedy Submodular Maximization
	5.1.2 Distributed Submodular Maximization
	5.1.3 Naive Approaches to Distributed Submodular Maximization

	5.2 The GreeDi Approach for Distributed Submodular Maximization
	5.2.1 An Intractable, yet Communication Efficient Approach
	5.2.2 Our GreeDi Approximation
	5.2.3 Performance on Datasets with Geometric Structure
	5.2.4 Performance Guarantees for Very Large Datasets
	5.2.5 Handling Decomposable Functions
	5.2.6 Performance of GreeDi on Random Partitions Without Geometric Structure

	5.3 (Non-Monotone) Submodular Functions with General Constraints
	5.3.1 GreeDi Approximation Guarantee under More General Constraints

	5.4 Experiments
	5.4.1 Exemplar Based Clustering
	5.4.2 Active Set Selection
	5.4.3 Non-Monotone Submodular Function (Finding Maximum Cuts)
	5.4.4 Comparision with Greedy Scaling.

	5.5 Summary

	6 Distributed Submodular Cover: Succinctly Summarizing Massive Data
	6.1 The Distributed Submodular Cover Problem
	6.1.1 Naive Approaches Towards Distributed Submodular Cover

	6.2 DisCover Algorithm for Distributed Submodular Cover
	6.2.1 Estimating Size of the Optimal Solution
	6.2.2 Handling Approximations for Submodular Maximization
	6.2.3 Trading Off Communication Cost and Number of Rounds
	6.2.4 DisCover

	6.3 Experiments
	6.3.1 Exemplar based Clustering
	6.3.2 Active Set Selection
	6.3.3 Large Scale Dominating Set with Spark

	6.4 Summary

	7 Fast Distributed Submodular Cover: Public-Private Data Summarization
	7.1 Problem Statement: Public-Private Summarization
	7.2 Applications of Pubic-Private Data Summarization
	7.2.1 Personalized Movie Recommendation
	7.2.2 Personalized Location Recommendation

	7.3 FastCover for Fast Distributed Submodular Cover
	7.4 Experiments
	7.4.1 Personalized Location Recommendation with Spark
	7.4.2 Personalized Movie Recommendation with Spark
	7.4.3 Large Scale Dominating Set with Spark

	7.5 Summary

	III Streaming Algorithms
	8 Overview of part III
	9 Constrained Streaming Submodular Maximization
	9.1 Streaming Submodular Maximization
	9.2 Video Summarization with DPPs
	9.3 Streaming algorithm for constrained submodular maximization
	9.3.1 Streaming Local Search for a collection of independence systems
	9.3.2 Streaming Local Search for independence systems and multiple knapsack constraints

	9.4 Experiments
	9.5 Related Work
	9.5.1 Video Summarization
	9.5.2 Local Search

	9.6 Summary

	10 Deletion-Robust Submodular Maximization
	10.1 Deletion-Robust Model
	10.1.1 Dynamic Data: Additions and Deletions
	10.1.2 Dealing with Limited Time and Memory

	10.2 Example Applications
	10.2.1 Summarizing Click-stream and Geolocation Data
	10.2.2 Summarizing Image Collections

	10.3 Robust-Streaming Algorithm
	10.3.1 Increasing the Solution Size Does Not Help
	10.3.2 Building Multiple Solutions
	10.3.3 Dealing with Deletions

	10.4 Experiments
	10.4.1 Image Collection Summarization
	10.4.2 Summarizing a stream of geolocation data
	10.4.3 Large scale click through prediction

	10.5 Summary

	IV Fast Centralized Algorithms
	11 Overview of part IV
	12 Lazier than Lazy Greedy
	12.1 Greedy Algorithm
	12.1.1 Lazy-Greedy

	12.2 Stochastic-Greedy Algorithm
	12.2.1 Random Sampling
	12.2.2 Random Sampling with Lazy Evaluation

	12.3 Experimental Results
	12.3.1 Nonparametric Learning
	12.3.2 Exemplar-based clustering
	12.3.3 Sensor Placement

	12.4 Summary

	13 Fast Constrained Submodular Maximization: Personalized Summarization
	13.1 Constrained Submodular Maximization
	13.2 Applications of Personalized Data Summarization
	13.3 Our Algorithm: Fantom
	13.3.1 Greedy with Density Threshold (GDT)
	13.3.2 Iterated Greedy with Density Threshold (IGDT)
	13.3.3 Fantom

	13.4 Experiments
	13.4.1 Personalized movie recommendation
	13.4.2 Revenue maximization with multiple products
	13.4.3 Personalized image summarization

	13.5 Summary

	V Conclusion and Future Research Directions
	14 Conclusions
	14.1 Summary
	14.1.1 Distributed Algorithms
	14.1.2 Streaming Algorithms
	14.1.3 Fast Centralized Algorithms
	14.1.4 Applications

	14.2 Future Research Directions

	Appendices
	A Proofs
	A.1 Proofs from Chapter 5
	A.2 Proofs from Chapter 6
	A.3 Proofs from Chapter 7
	A.4 Proofs from Chapter 9
	A.5 Proofs from Chapter 10
	A.6 Proofs from Chapter 12
	A.7 Proofs from Chapter 13

	Lists of Tables
	Lists of Figures
	Lists of Algorithms
	Bibliography
	Bibliography

