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• 3b: Data-efficient Training of Large Language Models
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Data is the Fuel for Machine Learning

Object detection performance in mAP@[.5,.95] on COCO minival [                   , 2017]

Example: object detection



How Big Are We Now?
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frankdenneman.nl

https://frankdenneman.nl/
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Increasing model size is a proxy for increasing performance 
(power-law between model size and performance)

[Kaplan et al 2020]

How Big Are We Now?
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Data is as important as scaling model size!
“For 2x model size, data should also be 2x”

[Hoffmann et al 2022]

How Big Are We Now?



Datasets are Growing very Rapidly

• Vision and language datasets have historically grown at 0.1 
and 0.2 orders of magnitude (OOM) per year, respectively.


• There is a transition around 2014-2015, after which training 
datasets became much bigger

8
https://www.lesswrong.com/posts/asqDCb9XzXnLjSfgL/trends-in-training-dataset-sizes
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Data requirement is too big to train models 
sustainably and deploy them safely!



Problem 1: Training on Large Data is Expensive
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$191M
$78M

By 2025, we may have a $10 billion model

Source: Spectrum



And Produces a lot of CO2!
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2019 2024

400K-700K tons!



7B model [DataComp-LM’24]

• Data Filtering (filtering noisy, duplicate, or irrelevant data)

• Contrastive Language-Image Pretraining (CLIP)

• Training Large Language Models (LLMs)

Problem 2: Smaller Higher-quality Data Yield 
Better Performance (& Efficiency)
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Problem 2: Smaller Higher-quality Data Yield 
Better Performance (& Efficiency)
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Pythia-410M, MathInstruct [ArXiv’23]
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CLIP-R50, CC3M [AISTATS’24]

50%

89%

(30K)

• Data Selection (eliminating redundancy & outliers)

• Contrastive Language-Image Pretraining (CLIP)

• Training Large Language Models (LLMs)
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Problem 3: Real-world Datasets are Biased

Example: self driving data 

5%
1%

14%

80%

• Model performs poorly on minorities (Fairness, Safety)

• Spurious biases (& generally feature imbalance) impede out-of-

distribution (OOD) performance



Problem 4: Real Data is Unlabeled
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Example: crowed-sourcing, automated labeling, …

Over-parameterized models overfit and memorize the 
mislabeled data

• We label the data automatically



Problem 5: Examples May be Corrupted

16

Example: large Image and NLP datasets, …

Adversarial attacks change the prediction of a test-time 
target example and cannot be visually identified

• Many large datasets are collected from Internet or users
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Can we select smaller subsets of large data 
to improve efficiency, performance and 

robustness of learning from large datasets?

Today: Efficiency & performance (problem 1&2)!



Why Smaller Data Can Yield Better 
Performance?

Key insight: the non-redundant information content is 
asymptotically a diminishing return as data volume increases

18

Diminishing  
returns

Information

Size

Data Volume Information Volume

By training on the subset, the model can learn the information 
volume better!



Data Quality vs Quantity!

• How can we find high-quality subsets of large datasets?


• Data filtering methods


• Can only filter obvious issues, but cannot eliminate 
redundancy

19

• Finding smallest subsets that generalize on par with 
full data


• Finding a curriculum that ensures faster and better 
generalization

Our focus!
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How can we find smallest subsets that generalize on 
par with full data?
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How to Find the Most Beneficial Subsets?

V={ } S*={ }

• The most informative subset ,    s.t.   S* = arg maxS⊆VF(S) |S | ≤ k
• What is a good choice for F(S)?

• Can speed up training by up to .|V | / |S |

Set function
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1. How to chose an informative subset for training?

Which Subsets are Most Beneficial for Training?

• Points close to decision boundary vs. a diverse subset?

2. Finding  must be fastS*
• Otherwise we don’t get any speedup

3. We need theoretical guarantees
• For the quality of the trained model 
• For convergence of incremental gradient method on the subset
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Often reduces to minimizing a regularized empirical risk function

w* ∈ arg minw∈𝒲 f(w), f(w) = ∑
i∈V

fi(w) + r(w), fi(w) = l(w, (xi, yi))

Loss function associated with 
training example i ∈ V

Regularizer

• Convex : Linear regression, logistic regression, ridge regression, 
regularized support vector machines (SVM) 

f(w)

• Non-convex : Neural networksf(w)

Examples:

Setting: Training Machine Learning Models

Training data volume: {(xi, yi), i ∈ V}
Feature Label
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Incremental gradient methods are used to train on large data

• They are slow to converge

wk
i = wk

i−1 − αk ∇fi(wi−1)
• Sequentially step along the gradient of functions  fi

Setting: Training Machine Learning Models
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Idea: select the smallest subset  and weights  that closely 
estimates the full gradient

S* γ

S* = arg minS⊆V,γj≥0 ∀j |S | , s.t. max
w∈𝒲

∥ ∑
i∈V

∇fi(w) − ∑
j∈S

γj ∇fj(w)∥ ≤ ϵ .

V={ } S*={ }
Gradients at w

Solution: for every ,  is the set of medoids of all the 
data points in the gradient space

w ∈ 𝒲 S*

={V′ }

Full gradient Gradient of S

Training Data: {(xi, yi), i ∈ V} V′ = {∇fi(w), i ∈ V}

Proposed Framework: Learning from Coresets
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How can we find medoids/exemplars in big datasets?

• Exemplar clustering is submodular!

F(S*) = ∑
i∈V

min
j∈S*

∥∇fi(w) − ∇fj(w)∥ ≤ ϵ

However,  depends on !S* w
• We have to update  after every SGD updateS*

Slow! :(

Our Approach: Learning from Coresets

Submodularity is a natural diminishing returns property

∀ A ⊆ B and B ∌ x :      F(A ∪ {x}) - F(A) ≥ F(B ∪ {x}) - F(B)

A simple greedy algorithm can find exemplars  in large datasetsS*

[ICML tutorial’13]
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Solution: find upper-bounds 

Can we find a subset  that bounds the estimation error for 
all ?

S*
w∈𝒲

F(S*) = ∑
i∈V

min
j∈S*

∥∇fi(w) − ∇fj(w)∥ ≤ ϵ

Idea: consider worst-case approximation of the estimation 
error over the entire parameter space 𝒲

F(S*) = ∑
i∈V

min
j∈S*

∥∇fi(w) − ∇fj(w)∥ ≤ ∑
i∈V

min
j∈S*

max
w∈𝒲

∥∇fi(w) − ∇fj(w)∥ ≤ ϵ

: upper-bound on the gradient difference 
over the entire parameter space 

dij
𝒲

Our approach: Learning from Coresets

dij
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Solution: find upper-bounds 

How can we efficiently find upper-bounds ?dij

dij ≤ const. ∥xi − xj∥

               [KF’19]dij ≤ const. (∥∇z(L)
i

fi(w) − ∇z(L)
j

fj(w)∥)
Input to the last layer

Feature vector

• Convex : Linear/logistic/ridge regression, regularized SVMf(w)

• Non-convex : Neural networksf(w)

  can be found as a preprocessing stepS*

  is cheap to compute, but we have to update dij S*

Our approach: Learning from Coresets



CRAIG: Learning from Coresets
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Idea: select a weighted subset that closely estimates the full gradient

• (2) weight every elements of  by the size of the corresponding clusterS*
• (3) apply weighted incremental gradient descent on S*

1 epoch

w=0.05

w=0.1

w=0.2

➤

w=0.3

➤
Loss functionGradients of data points i ∈ V

• (1) use greedy to find the set of exemplars  from dataset  S* V
Algorithm:

Coresets for Data-efficient Training of Machine Learning Models, ICML 2020

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=x63j7HEAAAAJ&sortby=pubdate&citation_for_view=x63j7HEAAAAJ:YOwf2qJgpHMC


CRAIG: Learning from Coresets

31

Idea: select a weighted subset that closely estimates the full gradient

• (2) weight every elements of  by the size of the corresponding clusterS*
• (3) apply weighted incremental gradient descent on S*

• (1) use greedy to find the set of exemplars  from dataset  S* V
Algorithm:

Coresets for Data-efficient Training of Machine Learning Models, ICML 2020

Theorem: For a -strongly convex loss function, CRAIG with decaying 
step-size  converges to a  neighborhood of the 
optimal solution, with a rate of 

μ
Θ(1/kτ), τ < 1 2ϵ/μ

𝒪(1/kτ)

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=x63j7HEAAAAJ&sortby=pubdate&citation_for_view=x63j7HEAAAAJ:YOwf2qJgpHMC
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Up to 7x faster than training on the full data, with the same accuracy

10%

30%
50%

70%

90%

10%

20%

30%
90%

SGD+
All data

Application of CRAIG to Logistic Regression

Training on subsets of various size of Ijcnn1 with 50K points
(Imbalanced)
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2x-3x faster than training on the full data, with better generalization

Application of CRAIG to Neural Networks

Training on MNIST with a 2-layer neural network with 50K points
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Can we find coresets for training deep networks?



Coresets for Data-efficient Deep Learning

• Can we find coresets for minimizing a non-convex loss?

35

• Challenges: 

• (2) Deep networks are trained with (mini-batch) SGD

• (Mini-batch) SGD requires unbiased gradient estimates with 

small variance


• (1) Loss changes very rapidly

• When should we update the coresets?



CREST: Coresets for Data-efficient Deep Learning

36

S1

S2

• Change 1: loss changes very rapidly

• When should we update the coresets?

• Solution:
• 1- Modeling the non-convex loss as piece-wise convex


• 2- Selecting one subset per convex region

ℱl(δ) = 1
2 δTHSδ + gSδ + ℒ(w)

|ℱl(δ) − ℒ(w + δ) |
ℒ(w + δ) ≤ τ

• 3- Train on it as long as the convex 
approximation is valid

τ



CREST: Coresets for Data-efficient Deep Learning

• Can we find coresets for minimizing a non-convex loss?
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• Challenges: 

• (2) Deep networks are trained with (mini-batch) SGD

• (Mini-batch) SGD requires unbiased gradient estimates with 

small variance

• (1) Loss changes very rapidly

• When should we update the coresets?

• Mini-batches selected from coresets that capture the full 
gradient has a large bias and variance

Can we find mini-batch coresets with small bias & variance?



CREST: Coresets for Data-efficient Deep Learning
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• Change 2: SGD requires unbiased gradient estimates 

• Can we find mini-batch coresets with small      

bias & variance?
• Solution:

• 1- Select multiple random subsets of size r

• 2- Find a coreset of mini-batch size m from 

each random subset

• 3- Make a convex approximation to the 

union of the mini-batch coresets

• 4- Randomly sample mini-batch corsets and keep 
training on them as long as the approximation is valid

S1
1 , S2

1 , ⋯, Sk
1

S1
2 , S2

2 , ⋯, Sk
2τ
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• Crest algorithm:

Theorem (informal): Training with SGD on Crest mini-batch 
corsets guarantees convergence to an -stationary point of a non-
convex loss, r/m times faster than random mini-batches of size m:

ϵ

�̃� ( L(ℒ(w0) − ℒ*)
ϵ2 (1 + σ2

rϵ2
))

CREST: Coresets for Data-efficient Deep Learning

Towards Sustainable Learning: Coresets for Data-efficient Deep Learning (ICML’23)

• 1- Modeling the non-convex loss as piece-wise convex

• 2- Find mini-batch coresets of size m from larger random 

subsets of size r (have nearly-unbiased gradients) 
• 3- Randomly select and train on mini-batch corsets as long as 

the convex approximation is valid
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CREST: Coresets for Data-efficient Deep Learning

Achieves much higher test acc!

Scales to very large data!2-3x speedup!

570k
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CREST: Coresets for Data-efficient Deep Learning

Trains on difficult-to-learn examples!

Crest updates more in the beginning and less later in training
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Similar framework can be used for 
learning robustly against noisy labels 

and data poisoning attacks



Smaller Higher-quality Data Improve Robustness

43

• Coresets for robust training of deep neural networks against noisy labels [ICML’20]

• Not all poisons are created equal: Robust training against data poisoning [ICML’22]

• Better Safe than Sorry: Pre-training CLIP against Targeted Data Poisoning and Backdoor 

Attacks [ICML’23]

The subsets (center of gradient 
clusters) are not noisy Poisons are gradient 

clusters of size 1
Balance gradient clusters 

early in training



There are also several heuristics!

Intuition: Find difficult-to-learn examples…



Forgettability score

• Forgetting event: when a data point is misclassified after begin 
correctly classified


• Unforgettables: data points that have no forgetting event


•

45
An Empirical Study of Example Forgetting during Deep Neural Network Learning [ICLR’19]



Selecting forgettable examples

• Let’s drop examples that are unforgettable (over multiple seeds)!

46



How about noisy-labeled examples?

• Noisy-labeled examples are more forgettable

47



GraND and EL2N score
• GraNd score of a training example (x, y) at time t: 


• El2N score of a training example (x, y) at time t: 

𝔼wt
∥gt(x, y)∥2

𝔼∥p(wt, x) − y∥2

48

Gradient of loss w.r.t input to the last layer

Deep Learning on a Data Diet: Finding Important Examples Early in Training [NeurIPS’21]



How about noisy-labeled examples?

• Noisy-labeled examples have higher El2N score

49



Dataset Cartography
• High variability (ambiguous): true class probabilities fluctuate 

frequently during training


• High confidence, low variability: model predicts them 
correctly and consistently


• low confidence, low variability: many of them are mislabeled

50
Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics [ACL’20]



Does Not Work for Selecting Small Subsets

51

All fail here badly!

Beyond neural scaling laws: beating power law scaling via data pruning, [NeurIPS’22]



How Much Can We Prune?

• If one does not have much data to start with, it is better to 
keep the easiest examples to avoid overfitting


•  With abundant (scarce) initial data, one should retain only 
hard (easy) examples.

52



Any problem?


Submodular optimization does!

 None of the previous metrics consider similarity between data points!!             



Selecting Coresets with Submodular Maximization 
Yields a Curriculum

• Early in training, the most effective subsets for learning deep models are 
easy-to-learn examples. 


• As training proceeds, the model learns the most from examples with 
increasing levels of learning difficulty. 


• Interestingly, the model never requires training on easiest-to-learn 
examples

54



• Motivation: why is data-efficiency important?


• Part 1: Data-efficient Supervised Learning


• Part 2: Data-efficient self-supervised Contrastive Pretraining


• Part 3: Foundation Models


• 3a: Data-efficient Contrastive Language-Image Pretraining


• 3b: Data-efficient Training of Large Language Models

Outline
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Self-Supervised Learning on Large Datasets 

• Supervised Learning requires high-quality labels


• Getting high-quality labels can be very expensive!


• Mislabeled examples drastically affect the performance


• How can we learn from massive datasets without 
labels?

56

• Pre-training with Self-Supervision: Learning from 
large datasets without explicit labels!



SSL Pre-training on Large Datasets 

• Benefits:


1. No labels needed


2. Fast adaptation to new tasks 


3. Superior robustness to distribution shift 

• SSL Pre-Training:


• Contrastive Learning (CL) self-supervised by 
augmentations of a large pool (e.g. 1M) of images

57



Self-supervised Contrastive Learning

58

• Contrastive Learning learns an encoder by:


• Pulling augmentations from the same example closer together


• Pushing augmentations from different examples further away 



Evaluation: Linear Probe

• 2- Linear probe: A linear model (linear probe) is trained 
on representations of the pre-trained encoder

59

V={ } ={Z }

Training Data: {xi, i ∈ V} Z = {f(xi), i ∈ V}Contrastive 
Learning

Train a linear model on 
the representations

• 1- Pretraining: Learn representations for training data 
with CL



However, CL is Very Expensive!

60

Supervised 
learning

Contrastive 
learning

1x

10x

Cost
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Can we Improve the Data-efficiency of 
SSL Pre-training without Losing 

Performance?



Self-supervised Contrastive Learning

• Minimizing the contrastive loss: 

62

• Unfortunately 

• Loss and gradient of every example depends on all the 
other examples!


• Even other metrics (that are popular for supervised learning) 
cannot be used to identify importance of examples for CL



• Minimizing the contrastive loss:


• (1) Alignment: Aligns augmentations of the same example


• (2) Divergence: Pushes centers of latent class representations apart

How does Self-supervised Contrastive Learning 
work?

63

Average representation 
of latent Cat class
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Can we find a coreset that preserves 
alignment and divergence of full data?



Which Examples Contribute the Most to CL?

65

di,j = E x∈A(xi),x′ ∈A(xj) ∥x − x′ ∥
augmentations of x

• Definition: Expected augmentation distance (a useful notion of 
similarity)

Data-Efficient Contrastive Self-supervised Learning: Most Beneficial Examples for Supervised 
Learning Contribute the Least [ICML’23]



Ensuring Alignment of Augmented Views

• (1) How can we preserve alignment of augmentations?


66

• Idea: For every example that we discard, ensure there is 
an example in the subset with similar augmentations!

min
j∈Sk

di,j ≤ δ, ∀i ∈ Vk∖Sk

Intuition: select a diverse set of example in every latent class!

Derivation in 
Paper. 

Data-Efficient Contrastive Self-supervised Learning: Most Beneficial Examples for Supervised 
Learning Contribute the Least [ICML’23]



Ensuring Divergence of Class Centers 

• (2) How can we preserve divergence of class centers?

67

Intuition: select the most central example in every latent class!

• Idea: Find a subset that preserves centers of latent 
classes of full data!

• Distance between centers of subset and full data can 
be bounded by expected augmentation distance


νμ = ∥μk − μS
k ∥ ≤ c . 𝔼i∈V,j∈Sdi,j

Derivation in 
Paper. 

Data-Efficient Contrastive Self-supervised Learning: Most Beneficial Examples for Supervised 
Learning Contribute the Least [ICML’23]



SAS: Which Examples Contribute the Most to CL?

68

 

• Examples that contribute the most:

• Preserving alignment: Select a diverse subset from every 

latent class 
• Preserving divergence: Select central examples in every 

latent class

Sk = arg minS⊆V,|S|≤rk ∑
i∈Vk∖Sk

∑
j∈Sk

di,j

di,j = E x∈A(xi),x′ ∈A(xj) ∥x − x′ ∥
Expected augmentation distance

augmentations of x

Submodular!!



SAS: Which Examples Contribute the Most to CL?

69

• Two practical considerations:

1. How do we compute “Expected Augmentation Distance”


2. How do we approximate latent classes? We don’t have 
labels!

di,j = E x∈A(xi),x′ ∈A(xj) ∥x − x′ ∥
Expected augmentation distance

augmentations of x

Can use a cheap proxy model (i.e. much smaller or partially trained model)!

Cheap Proxy Model + K-Means or Linear Probe with 1% labels  
or  

Guess latent classes using foundational models like CLIP 



SAS: Which Examples Contribute the Most to CL?

• Intuition: Are representative of the all subclasses in a latent class


• Theory: (1) Align all the examples in the latent class


   (2) Preserves the centers of latent classes


   (3) Guarantee generalization on full data

70

Theorem (informal): Contrastive learning on the subset grantees 
downstream generalization on the full data:

ξ(gS
f (V )) ≤ (1 − σ) + Rϵ + νR

Data-Efficient Contrastive Self-supervised Learning: Most Beneficial Examples for Supervised 
Learning Contribute the Least [ICML’23]



Easy Examples Contribute the Most to CL

71Better than full data!

Up to 40% of examples can be excluded!



Which Examples Contribute the Most to CL?

• Easy-to-learn examples  
(for supervised learning) 
contribute the most to CL!

• In contrast: easy-to-learn 

examples can be excluded 
without harming supervised 
learning

72



Which Examples Contribute the Most to CL?

• Easy-to-learn examples  
(for supervised learning) 
contribute the most to CL!

• In contrast: easy-to-learn 

examples can be excluded 
without harming supervised 
learning

73



Data-efficient Self-supervised Contrastive 
Learning

74

Speeds up Training by 40%



• Motivation: why is data-efficiency important?


• Part 1: Data-efficient Supervised Learning


• Part 2: Data-efficient self-supervised Contrastive Pretraining


• Part 3: Foundation Models


• 3a: Data-efficient Contrastive Language-Image Pretraining


• 3b: Data-efficient Training of Large Language Models

Outline
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• Motivation: why is data-efficiency important?


• Part 1: Data-efficient Supervised Learning


• Part 2: Data-efficient self-supervised Contrastive Pretraining


• Part 3: Foundation Models


• 3a: Data-efficient Contrastive Language-Image Pretraining


• 3b: Data-efficient Training of Large Language Models

Outline

76



Contrastive Language-Image Pre-training (CLIP)
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• CLIP learns image and text encoders by:


• Pulling representations of paired image-captions closer together 

• Pushing representations of unpaired image-captions further away



Contrastive Language-Image Pre-training (CLIP)
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Enables zero-shot transfer of the model to downstream tasks



CLIP Pre-training on Large Datasets 

• Benefits:


1. Zero-shot classification


2. Even better robustness to distribution shift 
 

However, CLIP requires a LOT more data!
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However, CLIP is Very Expensive!
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Supervised 
learning

Contrastive 
learning

Multimodal 
Contrastive learning

1x

10x

400xCost
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Can we find a coreset that guarantees 
similar zero-shot performance to 

training on full data?



Contrastive Language-Image Pre-training (CLIP)
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Cannot rely on loss or gradient again!

• Loss and gradient of 
every example 
depends on all the 
other examples!



How does CLIP work?

• The cross-covariance of data determines the learning 
dynamics of CLIP [NGDJZZ ‘23]


CV
D = 1

|V | ∑
i∈V

(xi
V − μV)(xi

L − μL)T μV = 𝔼xV, μL = 𝔼xL,
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A beagle on a couch

Intuition: cross-covariance captures how keywords in the caption 
correlate with objects in the image
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Can we find a subset that preserves 
cross-covariance of full data?



 Objective: Preserving cross-covariance 

CV
D = 1

|V | ∑
i∈V

(xi
V − μV)(xi

L − μL)T μV = 𝔼xV, μL = 𝔼xL,
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• To preserve cross-covariance of data:


1. Capture cross-covariance in each latent class to ensure 
Alignment of Modalities for full data [Diversity] 


2. Preserve Latent Class Centers in both modalities 
simultaneously [Centrality]



 Cross Modal Similarity 

Definition: csim(i, j) = fV(xi
V) ⋅ fL(xj

L) + fV(xj
V) ⋅ fL(xi

L)
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• A vision encoder and language encoder trained with the CLIP ensure a 
high cosine similarity for representations of correlated captions and 
images 

• Hence, we use the representations of a proxy model  trained with 
the CLIP loss to approximate cross-modal similarity

fV, fL



 Objective: Preserving Cross-covariance 

• To preserve cross-covariance of data:


1. Capture cross-covariance in each latent class to ensure 
Alignment of Modalities for full data 
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Text

Image

S*k ∈ arg maxSk⊆Vk ∑
i∈Sk

csim(i, i)

Intuition: A good proxy results in 
high cosine similarity for central 
examples in highly correlated 
areas

(a.k.a. CLIP Score)



 Objective: Preserving Cross-covariance 

• To preserve cross-covariance of data:


2. Preserve Latent Class Centers in both modalities 
simultaneously
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Text

Image

S*k ∈ arg maxSk⊆Vk ∑
i∈Vk

∑
j∈Sk

csim(i, j)

Intuition: Selects image-caption 
pairs s.t.  the image is similar to 
many captions and caption is 
similar to many images



 ClipCov: Preserving cross-covariance 




• To preserve cross-covariance of data:


1. Capture cross-covariance in each latent class to ensure 
Alignment of Modalities for full data [Diversity]  

2. Preserve Latent Class Centers in both modalities 
simultaneously [Centrality]

CV
D = 1

|V | ∑
i∈V

(xi
V − μV)(xi

L − μL)T μV = 𝔼xV, μL = 𝔼xL,
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S*k ∈ arg maxSk⊆Vk ∑
i∈Vk,j∈Sk

csim(i, j) + ∑
i∈Sk

csim(i, i)

Non-monotone submodular function, subset can be found 
efficiently from large datasets!



 ClipCov: Preserving cross-covariance 




• To preserve cross-covariance of data:


1. Capture cross-covariance in each latent class to ensure 
Alignment of Modalities for full data [Diversity]  

2. Preserve Latent Class Centers in both modalities 
simultaneously [Centrality]

CV
D = 1

|V | ∑
i∈V

(xi
V − μV)(xi

L − μL)T μV = 𝔼xV, μL = 𝔼xL,
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CLIP-Cov subsets ensure similar cross covariance 
and hence similar dynamics to training on full data

Data-Efficient Contrastive Language-Image Pretraining: Prioritizing Data Quality over Quantity 
[AISTATS’24]



ClipCov: Getting Latent Classes
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We can use any fine-grained set of labels (e.g. ImageNet) and 
our proxy model to get approximate latent classes



Coresets of Different Size from CC3M
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Data-Efficient Contrastive Language-Image Pretraining: Prioritizing Data Quality over Quantity 
[AISTATS’24]

Can discard ~50% data!



Small Coresets from CC12M
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Performance across subset of sizes 5% and 10% from CC12M

Data-Efficient Contrastive Language-Image Pretraining: Prioritizing Data Quality over Quantity 
[AISTATS’24]

Over 2x Performance on CC12M!



There are also several heuristics!



CLIP Score
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• Idea: Select image-caption pairs with very similar image and 
caption representations or high CLIP Score 

• Note: We explained why this works (ensures alignment/
diversity)!

S*k ∈ arg maxSk⊆Vk ∑
i∈Sk

csim(i, i)



SemDeDup
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• Idea: Image-Caption datasets often have many duplicate 
images -> can we de-duplicate them for efficiency? 

• Method: Cluster images using CLIP image embeddings and 
remove examples in same cluster with cosine similarity 
greater than 1 - ϵ



C-RHO
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• Idea: Select examples that are “learnable” but “not easily 
learnt”


• Method:  

• Training Model: Partially trained model


• Validation Model: Fully (or longer) trained model 


• Score for each data point: 
CLIP Scoreval(i, i) − CLIP Scoretrain(i, i)



Coresets of Different Size from CC3M
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Performance across subset of different sizes selected from Conceptual 
Captions (CC) 3M

Data-Efficient Contrastive Language-Image Pretraining: Prioritizing Data Quality over Quantity 
[AISTATS’24]



• Motivation: why is data-efficiency important?


• Part 1: Data-efficient Supervised Learning


• Part 2: Data-efficient self-supervised Contrastive Pretraining


• Part 3: Foundation Models


• 3a: Data-efficient Contrastive Language-Image Pretraining


• 3b: Data-efficient Training of Large Language Models

Outline
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Can we corsets for training Large 
Language Models (LLMs)?



Data-efficient Fine-tuning of LLMs

• Assume we fine-tune a pretrained model with SGD/Adam on the 
following dataset:


• 𝒟 = {(x, y)}n
i=1, x = (x1, ⋯, xM), y = (y1, ⋯, yL)
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prompts responses

• Can we find a small subset that closely captures the dynamics of 
training on full data?

Loss

•
,    ℒ(θ) = − 1

n ∑
(x,yi)∈𝒟

[log pθ(y |x)] pθ(y |x) = ΠL
l=1pθ(yl |y1:l−1, x)



• Can we find a subset  that closely estimates the full gradient?S*
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S* = arg minS⊆V |S | , s.t. max
w∈𝒲

∥ 1
|V | ∑

i∈V
∇fi(w) − 1

|S | ∑
j∈S

∇fj(w)∥ ≤ ϵ .

Full gradient Gradient of S

Data-efficient Fine-tuning of LLMs

• Problem: 

• (Even last layer) Gradients are too high-dimensional!


• For example, dimensionality of the last V projection of Phi-2 has

• 6.5M dimensions when training the full parameters

• 327K dimensions when training with LoRA



Data-efficient Fine-tuning: Preliminary Results (S2L)

• Observation: 


• Fine-tuning changes the model to a small extent


• Curvature is small during fine-tuning
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Lemma (informal): Assuming a small curvature, loss 
functions with a similar trajectory (i.e. similar values at 
multiple points during fine-tuning) have similar gradients



S2L: Data-efficient Fine-tuning of LLMs

• Finding a subset that captures the gradients


• Fine-tune a small proxy model on full data and save the 
loss trajectories (e.g. at the beginning of every epoch)


• Cluster the loss trajectories


• Sample examples from every loss trajectory cluster
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Corollary (informal): As long as the proxy and the target models 
are similar enough, fine-tuning on the subset with IG converges to 
a similar solution to that of training on the full data.

SmallToLarge (S2L): Scalable Data Selection for Fine-tuning Large Language Models by Summarizing 
Training Trajectories of Small Models, arXiv:2403.07384]

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=x63j7HEAAAAJ&sortby=pubdate&citation_for_view=x63j7HEAAAAJ:vV6vV6tmYwMC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=x63j7HEAAAAJ&sortby=pubdate&citation_for_view=x63j7HEAAAAJ:vV6vV6tmYwMC


S2L: Fine-tuning Pythia-410M on MathInstruct

• Pythia-70M  Pythia-410M→
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GSM8K, MATH, NUMGLUE ID: GSM8K, MATH, NUMGLUE
OOD: SVAMP, MATHEMATICS, SIMULEQ

11% (30K)



S2L: Fine-tuning Phi-2, Phi-3 on MathInstruct

• Pythia-410M  Phi-2 (2.7B), Phi-3-Mini (3.8B)→
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1. Same number of iterations (mini-batches): 50K subset matches full data

2. Smaller number of epochs: 50% subset matches full data



S2L: Fine-tuning Phi-2 on MIMIC-III

107

• Clinical text summarization on MIMIC-III

• Pythia-410M  Pythia-1B→

50% subset outperforms full data!
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Can we find small subsets that 
guarantee the performance when 

training with mini-batch SGD?



Data-efficient Training of LLMs

• Can we (iteratively) find subsets that closely estimates 
the gradient of a larger random subset?
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S* = arg minS⊆Vr
|S | , s.t. max

w∈𝒲
∥ 1

|Vr | ∑
i∈Vr

∇fi(w) − 1
|S | ∑

j∈S
∇fj(w)∥ ≤ ϵ .

Gradient of the 
random subset

Gradient of S

• Problem: 

• (Even last layer) Gradients are too high-dimensional!



Data-efficient Training: Preliminary results (SSM)

• Finding lower-dimensional gradient estimates
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• (2) Sparsify the above gradient estimate


• Consider the dimensions with largest gradient magnitude

• (1) Use the V-Projection matrix at the last layer


• Stacks with LoRA and other memory-efficient methods


• Can be calculated with only one forward pass, using zeroth-order 
gradient calculation



Preliminary results (SSM): Finding a Curriculum

• Select Small Mini-batches (SSM)


1. Finding lower-dimensional gradient estimates


• Use the V-Projection matrix at the last layer


• Sparsify the above gradient estimate


2. Find mini-batch subsets from larger random subsets
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[Memory efficient Training of LLMs with Larger Mini-batches, arXiv:2407.19580]



There are Several Heuristics…

• Pretraining 

• Perplexity, Error L2-Norm (EL2N), and memorization ranking => middle 
perplexity works best [Marion et al, NeurIPS’23]


• Deduplication [Tirumala et al, NeurIPS’23]
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• Assuming access to target tasks (not comparable to above methods):


• Using influence functions [Xia et al, ICML’2024], datamodels [Engstrom et al, 
ICML’2024], Finding similar examples to target [Xie et al., 2023, Brown et al, 
2020]

• Fine-tuning 

• Manual curation [Zhou et al, NeurIPS’23], Select data via other LLMs like 
GPT or Chat GPT [Eldan & Li, 2023;Li et al., 2023a; Chen et al., 2024]


• Selecting centroid of hidden states [Bhatt et al, 2024]



Further Directions

1. Modifying the training data distribution can improve the in-
distribution performance

• Idea: reducing the simplicity bias early in training allows finding a more 

generalizable solution


• Check out this preliminary result: arXiv preprint arXiv:2404.17768


2. Directly generating high-quality data (not to confuse with dataset 
distillation)

• Supervised-learning, self-supervised learning, Multimodal models, 

Generative models


3. Finding subsets for other optimizers like Adam


4. Improve existing solutions 
113
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Personalized medicine Robotics

Finance Autonomous cars
Less Data Can be More!



Thank You!
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