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Data is the Fuel for Machine Learning

Example: object detection
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How Big Are We Now?
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Increasing model size is a proxy for increasing performance

(power-law between model size and performance)
[Kaplan et al 2020]
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Data is as important as scaling model size!

“For 2x model size, data should also be 2x”
[Hoffmann et al 2022]



Datasets are Growing very Rapidly

Vision and language datasets have historically grown at 0.1
and 0.2 orders of magnitude (OOM) per year, respectively.

There is a transition around 2014-2015, after which training
datasets became much bigger
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Figure 1: Training datasets for language (left) and vision (right).

https://www.lesswrong.com/posts/asqDChb9XzXnLjSfglL/trends-in-training-dataset-sizes



Data requirement is too big to train models

sustainably and deploy them safely!




Problem 1: Training on Large Data is Expensive
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Source: Spectrum Training Cost ( in US Dollars)

By 2025, we may have a $10 billion model
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And Produces a lot of CO2!
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Problem 2: Smaller Higher-quality Data Yield
Better Performance (& Efficiency)

Data Filtering (filtering noisy, duplicate, or irrelevant data)
Contrastive Language-Image Pretraining (CLIP)
- Training Large Language Models (LLMs)
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Problem 2: Smaller Higher-quality Data Yield
Better Performance (& Efficiency)

Data Selection (eliminating redundancy & outliers)
Contrastive Language-Image Pretraining (CLIP)
Training Large Language Models (LLMs)
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Problem 3: Real-world Datasets are Biased

Model performs poorly on minorities (Fairness, Safety)

Spurious biases (& generally feature imbalance) impede out-of-
distribution (OOD) performance

Example: self driving data
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Problem 4: Real Data is Unlabeled

+ We label the data automatically

Example: crowed-sourcing, automated labeling, ...

Over-parameterized models overfit and memorize the
mislabeled data
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Problem 5: Examples May be Corrupted

Many large datasets are collected from Internet or users

Example: large Image and NLP datasets, ...

Adversarial attacks change the prediction of a test-time
target example and cannot be visually identified
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Can we select smaller subsets of large data
to improve efficiency, performance and
robustness of learning from large datasets?

Today: Efficiency & performance (problem 1&2)!

17



Why Smaller Data Can Yield Better
Performance?

Key insight: the non-redundant information content is
asymptotically a diminishing return as data volume increases

Data Volume Information Volume
Information - . o e

/'— - . .:., ..

Diminishing
returns

Size

By training on the subset, the model can learn the information
volume better!
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Data Quality vs Quantity!

- How can we find high-quality subsets of large datasets?

- Data filtering methods

- Can only filter obvious issues, but cannot eliminate
redundancy

Finding smallest subsets that generalize on par with
full data

Finding a curriculum that ensures faster and better
generalization

Our focus!

19



How can we find smallest subsets that generalize on

par with full data?

20



How to Find the Most Beneficial Subsets?

The most informative subset §* = arg max s.t. |S| <k

What is a good choice for F(5)? Set function

Can speed up training by upto |V |/|S].

21



Which Subsets are Most Beneficial for Training?

1. How to chose an informative subset for training?

Points close to decision boundary vs. a diverse subset?

2. Finding $* must be fast

Otherwise we don’t get any speedup

3. We need theoretical guarantees

For the quality of the trained model

For convergence of incremental gradient method on the subset

22
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Setting: Training Machine Learning Models

Often reduces to minimizing a regularized empirical risk function

Feature Label

vy

Training data volume: {(x;,y,),i € V}

Regularizer
:
we € argmin, o, fw),  fw) = X fw) +r(w),  fiw) = l(w, (x5 1)
i€V 4

Loss function associated with
training example i € V

Examples:

Convex f(w): Linear regression, logistic regression, ridge regression,
regularized support vector machines (SVM)

Non-convex f(w): Neural networks

24



Setting: Training Machine Learning Models

Incremental gradient methods are used to train on large data

Sequentially step along the gradient of functions f;

k _ .k
wi =w,_ — o Viw;_y)

They are slow to converge




Proposed Framework: Learning from Coresets

Idea: select the smallest subset $* and weights y that closely
estimates the full gradient
§* =argming, ;1S st max| D VEw) = D VWl <e.
WeT ey 4 ies
Full gradient Gradient of S

Solution: for every w € %', S* is the set of medoids of all the
data points in the gradient space

Training Data: {(x,y,),i € V} Vi={Vjw),ie V]
1Ll Frey Gradients at w o o

4
.

: o:. 9 '.‘? y

° 0:'\.'.‘... ® .
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Our Approach: Learning from Coresets

How can we find medoids/exemplars in big datasets?

- Exemplar clustering is submodular!

F(§%) = ), min|[Vf(w) = V)l < e
iev /S [ICML tutorial’13]

Submodularity is a natural diminishing returns property
VACBandBzx: FAU{x})-FA)=FBU{x})-F(B)

A simple greedy algorithm can find exemplars $* in large datasets

However, S* depends on w!

- We have to update S* after every SGD update

27



Our approach: Learning from Coresets

Can we find a subset S* that bounds the estimation error for

alwe#w?
F(S*) = Z min || Vfi(w) = VE(W)|| <€

es*
icv’

Idea: consider worst-case approximation of the estimation
error over the entire parameter space %'

F($*) = ) min [|Vfi(w) = VW)

eS*
icv’

dl-j: upper-bound on the gradient difference

over the entire parameter space %' N



Our approach: Learning from Coresets

How can we efficiently find upper-bounds dij?

- Convex f(w): Linear/logistic/ridge regression, regularized SVM

Feature vector
d;; < const. |[x; — xﬂl/

™ S* can be found as a preprocessing step

- Non-convex f(w): Neural networks Input to the last layer
o
dij < const. (llei(L)fi(W) — VZJ_(L)];(W)”) [KF’19]

™ dl-j is cheap to compute, but we have to update S*
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CRAIG: Learning from Coresets

Idea: select a weighted subset that closely estimates the full gradient

Algorithm:

- (1) use greedy to find the set of exemplars $* from dataset V
- (2) weight every elements of $* by the size of the corresponding cluster
- (3) apply weighted incremental gradient descent on §*

vy VY '

o w=0.2 1 epoch /

w=03 @
0
O
o ® w=0.05
w=0.1
Gradients of data pointsi € V Loss function

30
Coresets for Data-efficient Training of Machine Learning Models, ICML 2020


https://scholar.google.com/citations?view_op=view_citation&hl=en&user=x63j7HEAAAAJ&sortby=pubdate&citation_for_view=x63j7HEAAAAJ:YOwf2qJgpHMC

CRAIG: Learning from Coresets

Idea: select a weighted subset that closely estimates the full gradient

Algorithm:

- (1) use greedy to find the set of exemplars S* from dataset V
- (2) weight every elements of $* by the size of the corresponding cluster

- (3) apply weighted incremental gradient descent on $*

Theorem: For a u-strongly convex loss function, CRAIG with decaying

step-size ®(1/k"), 7 < 1 converges to a 2¢/u neighborhood of the

optimal solution, with a rate of O(1/k")

Coresets for Data-efficient Training of Machine Learning Models, ICML 2020 31
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Application of CRAIG to Logistic Regression

Training on subsets of various size of ljcnn1 with 50K points

(Imbalanced)

_ —— SGD+CRAIG
— | 10% —+— SGD+Random subset
'g 10_3§ 30% 90%
) J 50%
&J 70%
" 10%
n
o
210~
,% ] SGD+
C 20% All data
\
30% °
102 |
Time (sec)

Up to 7x faster than training on the full data, with the same accuracy




Application of CRAIG to Neural Networks

Training on MNIST with a 2-layer neural network with 50K points
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2x-3x faster than training on the full data, with better generalization
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Can we find coresets for training deep networks”

34



Coresets for Data-efficient Deep Learning

Can we find coresets for minimizing a non-convex loss?

Challenges: \

(1) Loss changes very rapidly \ ‘ ,,."

\
- When should we update the coresets? \ o/
\/

(2) Deep networks are trained with (mini-batch) SGD

(Mini-batch) SGD requires unbiased gradient estimates with
small variance

35



CREST: Coresets for Data-efficient Deep Learning

Change 1: loss changes very rapidly

When should we update the coresets?

Solution:

1- Modeling the non-convex loss as piece-wise convex
1
F(6) = 55TH55 + g6 + L (w)
2- Selecting one subset per convex region /IT
3- Train on it as long as the convex S .‘

approximation is valid « °l / ."

| F1(8) — L(w+6)| =
<7
ZLw+9) '

36



CREST: Coresets for Data-efficient Deep Learning

Can we find coresets for minimizing a non-convex loss?

- Challenges: \
- (1) Loss changes very rapidly \

When should we update the coresets?

(2) Deep networks are trained with (mini-batch) SGD \/

(Mini-batch) SGD requires unbiased gradient estimates with
small variance

Mini-batches selected from coresets that capture the full
gradient has a large bias and variance




CREST: Coresets for Data-efficient Deep Learning

Change 2: SGD requires unbiased gradient estimates

Can we find mini-batch coresets with small
bias & variance?

Solution:
1- Select multiple random subsets of size r ”;I
/N
2- Find a coreset of mini-batch size m from  /
each random subset \ \
3- Make a convex approximation to the ,
union of the mini-batch coresets S, St -, S \ /
\\ /'
4- Randomly sample mini-batch corsets and keep \J

training on them as long as the approximation is valid

38



CREST: Coresets for Data-efficient Deep Learning

Crest algorithm:

1- Modeling the non-convex loss as piece-wise convex

2- Find mini-batch coresets of size m from larger random
subsets of size » (have nearly-unbiased gradients)

3- Randomly select and train on mini-batch corsets as long as
the convex approximation is valid

Theorem (informal): Training with SGD on Crest mini-batch
corsets guarantees convergence to an e-stationary point of a non-
convex loss, r/im times faster than random mini-batches of size m:

_ ok 2
@<L(3(w0) Al (;2)>

€2 re

Towards Sustainable Learning: Coresets for Data-efficient Deep Learning (ICML’23) 3



CREST: Coresets for Data-efficient Deep Learning

DATASET BACKPROP | RANDOM CRAIG GRAD-MATCH* GLISTER* | CREST(OURS)
CIFAR-10 10% 5.25 10.90 6.15 2.07 3.36
CIFAR-100 10% 11.27 20.72 26.65 33.02 7.35
TINYIMAGENET 10% 16.31 49.86 21.71 44.89 13.22
SNLI (FINETUNE) 10% 1.5 - - - 0.54

Achieves much higher test acc!

TinylmageNet

Metric
B Speedup
B Rel Acc

Craig GradMatch Glister
Method

2-3x speedup! W Scales to very large data!

SNLI

970k

Metric

B Speedup [
B Rel Acc
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CREST: Coresets for Data-efficient Deep Learning

w
o
o

I

- Crest w/o Smoo
= Crest First
w——  Crest

Total Updates
N
o
o

[
o
o

o

th

0 2000 4000 6000 8000

training step (min-batch)

Crest updates more in the beginning and less later in training

80
;\5 60
O
< 40 -  Crest w/o Smooth
= Crest First
20 w— Crest
0 100 200 300
updates

214 | —— Crest
0 —— Random
=12
e
0]
5 10
O
n
g8
] —
)
o 6
o
L
0 50 100 150
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Trains on difficult-to-learn examples!
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Similar framework can be used for
learning robustly against noisy labels
and data poisoning attacks

42



Smaller Higher-quality Data Improve Robustness

robustness
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Coresets for robust training of deep neural networks against noisy labels [[CML20]
Not all poisons are created equal: Robust training against data poisoning [ICML’22]

Better Safe than Sorry: Pre-training CLIP against Targeted Data Poisoning and Backdoor .
Attacks [ICML’23]



There are also several heuristics!

Intuition: Find difficult-to-learn examples...



- Forgetting event: when a data point is misclassified after begin
correctly classified

Forgettability score

- Unforgettables: data points that have no forgetting event

fraction of examples
e © o =
N o)) (o¢] o

o
o

Figure 1: Histograms of forgetting events on (from left to right) MNIST, permutedMNIST and
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An Empirical Study of Example Forgetting during Deep Neural Network Learning [ICLR’19]
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Selecting forgettable examples

Let’s drop examples that are unforgettable (over multiple seeds)!

S —— selected removed
B — random removed

© ©
a o
w o
i
I
I
I
I
I
i
© ©
o o
o N
1

test accuracy
O
=N
w
O
v
(o0]

- none removed

test classification accuracy

93.0 4 — selected removed
— random removed 95.2
92.5 1 — . i . . | . | | | | |
0 10 20 30 40 50 60 0 5 10 15 20
percentage of training set removed average number of forgetting events in removed subset

Figure 5: Left Generalization performance on CIFAR-10 of ResNetl8 where increasingly larger sub-
sets of the training set are removed (mean +/- std error of 5 seeds). When the removed examples are
selected at random, performance drops very fast. Selecting the examples according to our ordering
can reduce the training set significantly without affecting generalization. The vertical line indicates
the point at which all unforgettable examples are removed from the training set. Right Difference
in generalization performance when contiguous chunks of 5000 increasingly forgotten examples are
removed from the training set. Most important examples tend to be those that are forgotten the most.

46



How about noisy-labeled examples?

-+ Noisy-labeled examples are more forgettable

o
>
o

examples before noise
examples after noise

regular examples
noisy examples
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o
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Figure 3: Distributions of forgetting events across training examples in CIFAR-10 when 20% of
labels are randomly changed. Left. Comparison of forgetting events between examples with noisy
and original labels. The most forgotten examples are those with noisy labels. No noisy examples
are unforgettable. Right. Comparison of forgetting events between examples with noisy labels and
the same examples with original labels. Examples exhibit more forgetting when their labels are

changed.



GraND and EL2N score

. GraNd score of a training example (x, y) at time t: -WtHgt(X, Wl

Gradient of loss w.r.t input to the last layer

- EI2N score of a training example (x, y) at time t:|E|[p(w,, x) — y||,
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Deep Learning on a Data Diet: Finding Important Examples Early in Training [NeurlPS’21] e



How about noisy-labeled examples?

+ Noisy-labeled examples have higher EI2ZN score

0% Labels Randomized 10% Labels Randomized
0.96 0.95
> 0.94 -
2R S A S R A - A 0.85 -
O 0.92 -
é 0.75 -
4qm-; 0.90 .
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TCD ' — = None 0.651 —~ None
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- EL2N Score 0.55 4 —— EL2N Score \
084 T T T T T T T T T T T T T T
0.0 0.1 0.2 03 04 05 0.6 0.0 0.1 0.2 03 04 05 0.6
Fraction Dataset Offset Fraction Dataset Offset

Figure 2: ResNetl8 trained on a 40% subset of CIFAR-10 with
clean (left) and 10% randomized labels (right). The training subset
contains the lowest scoring examples after examples with scores
below the offset are discarded. Scores computed at epoch 10.
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Dataset Cartography

- High variability (ambiguous): true class probabilities fluctuate
¢ . _ . : — i
requently during training \/ X EAESEID RS WANTIES

- High confidence, low variability: model predicts them
correctly and consistently

- low confidence, low variability: many of them are mislabeled
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Does Not Work for Selecting Small Subsets
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Figure 5: Dataset pruning at ImageNet scale. A: Spearman’s rank correlation between all pairs of
ImageNet metric scores, along with hierarchical clustering (as provided by seaborn.clustermap).
B: Benchmarking supervised metrics on ImageNet (top-5 validation accuracy). C: Comparing
top-5 performance on ImageNet when pruning according to the best existing supervised metric
(memorization) and our supervised and self-supervised prototype metrics. In all 3 cases, training on
80% of ImageNet matches training on 100%. See App. B for pruning and training details.

Beyond neural scaling laws: beating power law scaling via data pruning, [NeurlPS’22]
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How Much Can We Prune?

If one does not have much data to start with, it is better to
keep the easiest examples to avoid overfitting

With abundant (scarce) initial data, one should retain only
hard (easy) examples.

ResNet18 on CIFAR-10
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Any problem?

None of the previous metrics consider similarity between data points!!

Submodular optimization does!



Selecting Coresets with Submodular Maximization
Yields a Curriculum

Early in training, the most effective subsets for learning deep models are
easy-to-learn examples.

- As training proceeds, the model learns the most from examples with
increasing levels of learning difficulty.

Interestingly, the model never requires training on easiest-to-learn
examples

214 | —— Crest
3 ——— Random
& 12
o
)
5 10
()
AN
c 8
> 6| | |
S
L
0 2000 4000 6000

training step (min-batch)
Figure 5: Average forgettability score of CREST coresets
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Outline

Motivation: why is data-efficiency important?
Part 1. Data-efficient Supervised Learning
Part 2: Data-efficient self-supervised Contrastive Pretraining
Part 3: Foundation Models
3a: Data-efficient Contrastive Language-Image Pretraining

3b: Data-efficient Training of Large Language Models
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Self-Supervised Learning on Large Datasets

+ Supervised Learning requires high-quality labels

- Getting high-quality labels can be very expensive!
Mislabeled examples drastically affect the performance

How can we learn from massive datasets without
labels?

Pre-training with Self-Supervision: Learning from
large datasets without explicit labels!
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SSL Pre-training on Large Datasets

- Benefits:

1. No labels needed
2. Fast adaptation to new tasks

3. Superior robustness to distribution shift

- SSL Pre-Training:

-+ Contrastive Learning (CL) self-supervised by
augmentations of a large pool (e.g. 1M) of images
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Self-supervised Contrastive Learning

Contrastive Learning learns an encoder by:

Pulling augmentations from the same example closer together

Pushing augmentations from different examples further away

exp(sim(z;, 2;)/7)

Zifl 1 (x4 exp(sim(z;, 2x)/T)
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Evaluation: Linear Probe

1- Pretraining: Learn representations for training data
with CL

2- Linear probe: A linear model (linear probe) is trained
on representations of the pre-trained encoder

Training Data: {x;, i € V} Contrastive Z=1{f(x),i €V}
. - o w B . 3
o Learning &iﬁ

Train a linear model on

the representations _



However, CL is Very Expensive!

Cost

>

10x
TR SR T LR >
Supervised Contrastive

learning learning
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Can we Improve the Data-efficiency of
SSL Pre-training without Losing
Performance”?
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Self-supervised Contrastive Learning

Minimizing the contrastive loss:

exp(sim(z;, 2;)/7)

>kt Liksa) exp(sim(2s, 2x) /7)

Ei,j = — log

Unfortunately

Loss and gradient of every example depends on all the
other examples!

Even other metrics (that are popular for supervised learning)
cannot be used to identify importance of examples for CL
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How does Self-supervised Contrastive Learning
work?

+ Minimizing the contrastive loss:

exp(sim(z;, 2;)/7)

Ziﬁl 1 (x4 exp(sim(z;, 2x)/T)

Ei,j = — log

- (1) Alignment: Aligns augmentations of the same example

- (2) Divergence: Pushes centers of latent class representations apart

f(xl) Hi

- Average representation
X1 ‘) v ;@ of latent Cat class
/xZ) Ce, =
AU
X2 m ® g
my 9
[ 4

2
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Can we find a coreset that preserves
alignment and divergence of full data?
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Which Examples Contribute the Most to CL?

Definition: Expected augmentation distance (a useful notion of
similarity)

L . L .

augmentations of x

di,j — ExEA(xi),x’EA(x-) HX o X/H

Data-Efficient Contrastive Self-supervised Learning: Most Beneficial Examples for Supervised

Learning Contribute the Least [ICML’23]
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Ensuring Alignment of Augmented Views

(1) How can we preserve alignment of augmentations?

Idea: For every example that we discard, ensure there is
an example in the subset with similar augmentations!

min dl.j <6,Vie V\S, Derivation in
IS Paper.
-

"_ - '_‘-__‘3
N
'S

Intuition: select a diverse set of example in every latent class!

Data-Efficient Contrastive Self-supervised Learning: Most Beneficial Examples for Supervised
Learning Contribute the Least [ICML’23]

66



Ensuring Divergence of Class Centers

(2) How can we preserve divergence of class centers?

Idea: Find a subset that preserves centers of latent
classes of full datal

Distance between centers of subset and full data can
be bounded by expected augmentation distance

- ¢ Derivation in
v, = ”ﬂk — My | <c. [EiEV,jESdiaj Paper.

Intuition: select the most central example in every latent class!

Data-Efficient Contrastive Self-supervised Learning: Most Beneficial Examples for Supervised

Learning Contribute the Least [ICML’23]
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SAS: Which Examples Contribute the Most to CL?

Examples that contribute the most:

Preserving alignment: Select a diverse subset from every
latent class

Preserving divergence: Select central examples in every
latent class

Sk—argm1nSCV|S|<k 2 Zd

Submodular!! i€V, \S, JES,

augmentations of x

di i = Encamweam) X — x|

Expected augmentation distance
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SAS: Which Examples Contribute the Most to CL?

Two practical considerations:

1. How do we compute “Expected Augmentation Distance”

augmentations of x

di i = Evcatoneam) lx — x|

Expected augmentation distance

Can use a cheap proxy model (i.e. much smaller or partially trained model)!

2. How do we approximate latent classes? We don’t have
labels!

Cheap Proxy Model + K-Means or Linear Probe with 1% labels
or
Guess latent classes using foundational models like CLIP
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SAS: Which Examples Contribute the Most to CL?

Intuition: Are representative of the all subclasses in a latent class

Theory: (1) Align all the examples in the latent class
(2) Preserves the centers of latent classes

(3) Guarantee generalization on full data

Theorem (informal): Contrastive learning on the subset grantees
downstream generalization on the full data:

EgS(V)) < (1 —0) + R+ 1

Data-Efficient Contrastive Self-supervised Learning: Most Beneficial Examples for Supervised
Learning Contribute the Least [ICML’23] 70
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Up to 40% of examples can be excluded!
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Better than full data! 71




Which Examples Contribute the Most to CL?

Easy-to-learn examples
(for supervised learning)
contribute the most to CL!

In contrast: easy-to-learn
examples can be excluded
without harming supervised
learning
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Which Examples Contribute the Most to CL?

Easy-to-learn examples
(for supervised learning)
contribute the most to CL!

In contrast: easy-to-learn
examples can be excluded
without harming supervised
learning
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not selected
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Data-efficient Self-supervised Contrastive
Learning

% of Examples Discarded without affecting downstream accuracy
40 -

% of Examples
N W
o o

-
o

CIFAR100 STL10 TinylmageNet
Datasets

Speeds up Training by 40%
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Outline

Motivation: why is data-efficiency important?
Part 1. Data-efficient Supervised Learning
Part 2: Data-efficient self-supervised Contrastive Pretraining
Part 3: Foundation Models
3a: Data-efficient Contrastive Language-Image Pretraining

3b: Data-efficient Training of Large Language Models
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Outline

Motivation: why is data-efficiency important?
Part 1. Data-efficient Supervised Learning
Part 2: Data-efficient self-supervised Contrastive Pretraining
Part 3: Foundation Models
3a: Data-efficient Contrastive Language-Image Pretraining

3b: Data-efficient Training of Large Language Models
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Contrastive Language-Image Pre-training (CLIP)

CLIP learns image and text encoders by:
Pulling representations of paired image-captions closer together

Pushing representations of unpaired image-captions further away

Pepper the h
. } Text
ssssss pup ’| Encoder l i i B l
///////”’//// T, T, T3 - TN
—> 1 LTy | LT | T L LTy
—> b LTy | LTy | LTy . | IrIy
Image > I | |LT |LT, |ITs I3 Ty

Encoder




Contrastive Language-Image Pre-training (CLIP)

(2) Create dataset classifier from label text

plane \\\\\\\\\\\
A photo of ) Text
> a {object}. Encoder
bird /
Use for zero-shot prediction
Image > 1

Enables zero-shot transfer of the model to downstream tasks




CLIP Pre-training on Large Datasets

- Benefits:

1. Zero-shot classification

2. Even better robustness to distribution shift

However, CLIP requires a LOT more data!
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Cost

However, CLIP is Very Expensive!

>

1x
| SRR

10x

Supervised
learning

400x

Contrastive
learning

Multimodal
Contrastive learning
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Can we find a coreset that guarantees
similar zero-shot performance to
training on full data?
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Contrastive Language-Image Pre-training (CLIP)

N
1 exp ((21,2]) /7)
Lcrp = ToON E :log
=1 Zk 1 €XP ((z 2.) /7)
Pepper the Text
aussie pup > Encoder
I \ 4 Y \ 4 Y
/ T, T, T3 TN
—> LTy | LT LT3 | . | LTy
> I LT | LTy | Ty | o LTy
Elrr::i%(:r —> b LT | T [T . |I3Ty
>» IN INTy | InT2 | INT3 INTN

e

> -1 exp ((2]

Loss and gradient of
every example
depends on all the
other examples!

Cannot rely on loss or gradient again!
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How does CLIP work?

- The cross-covariance of data determines the learning
dynamics of CLIP [NGDJZZ ‘23]

Z (XV ﬂv)(XL ﬂL)T Hy = [EXV9 M, = [EXL,

Cy
’ ‘V‘ eV

A beagle on a couch

Intuition: cross-covariance captures how keywords in the caption
correlate with objects in the image
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Can we find a subset that preserves
cross-covariance of full data?

84



Objective: Preserving cross-covariance

Z( Xy //tv)(xL //lL)T Hy = EXy, Y = IEX},
eV

cY
D \V\

- To preserve cross-covariance of data:

1. Capture cross-covariance in each latent class to ensure
Alignment of Modalities for full data [Diversity]

2. Preserve Latent Class Centers in both modalities
simultaneously [Centrality]
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Cross Modal Similarity

pﬁ;;ogr a A beagle on A stock photo of a

beagle a couch beagle

High Cross Modal Similarity Low Cross Modal Similarity

- A vision encoder and language encoder trained with the CLIP ensure a

high cosine similarity for representations of correlated captions and
Images

Hence, we use the representations of a proxy model fy, f; trained with
the CLIP loss to approximate cross-modal similarity

Definition: csim(i, j) = f,(xi) - f,(x)) + f(xd) - f,(x)
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Objective: Preserving Cross-covariance

- To preserve cross-covariance of data:

1. Capture cross-covariance in each latent class to ensure
Alignment of Modalities for full data

(a.k.a. CLIP Score) 4?

Sk € arg maXSkngz csim(i, 1)
1ES,

Intuition: A good proxy results in . %453 -
high cosine similarity for central .
examples in highly correlated
areas
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Objective: Preserving Cross-covariance

- To preserve cross-covariance of data:

2. Preserve Latent Class Centers in both modalities
simultaneously

Slf € argmaxg -, Z Z csim(i, J)

1€V, JES,

Intuition: Selects image-caption
pairs s.t. the image is similar to
many captions and caption is
similar to many images
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CIipCov: Preserving cross-covariance

Z( Xy ﬂv)(XL ML)T py = Exy, yu; = Ex;,

CY
P ‘V‘ ev

- To preserve cross-covariance of data:

1. Capture cross-covariance in each latent class to ensure
Alignment of Modalities for full data [Diversity]

2. Preserve Latent Class Centers in both modalities
simultaneously [Centrality]

Slf € arg maxg -, 2 csim(i, J) + 2 csim(i, 1)

1€V, JES, IES,

Non-monotone submodular function, subset can be found
efficiently from large datasets!
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CIipCov: Preserving cross-covariance

T
Cp = Z( Xy = ), — pp) py = Exy, pup, = Exg,
‘V‘ ev
- To preserve cross-covariance of data:

1. Capture cross-covariance in each latent class to ensure
Alignment of Modalities for full data [Diversity]

2. Preserve Latent Class Centers in both modalities
simultaneously [Centrality]

CLIP-Cov subsets ensure similar cross covariance

and hence similar dynamics to training on full data

Data-Efficient Contrastive Language-Image Pretraining: Prioritizing Data Quality over Quantity
[AISTATS’24]
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ClipCov: Getting Latent Classes

(2) Create dataset classifier from label text

?li:_;e \
A photo of ) Text
> a {object}. Encoder

}:i::l /
Use for zero-shot prediction v Vv v v
\ T T, T, TN
Image | I,"Ty | 1;T, | I;-T [T
-_>Encoder_)l by Py s N

/ A photo of
a dog.

We can use any fine-grained set of labels (e.g. ImageNet) and

our proxy model to get approximate latent classes
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Coresets of Different Size from CC3M

Can discard ~50% data!
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g == Random g y =e= Random g == Random
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(a) ImageNet (b) ImageNet Dist. Shift (c) Avg. over 11 Datasets

Performance across subset of different sizes selected from Conceptual
Captions (CC) 3M

Data-Efficient Contrastive Language-lmage Pretraining: Prioritizing Data Quality over Quantity
[AISTATS’24]
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Small Coresets from CC12M

Over 2x Performance on CC12M!

12 A

B Our Method @ Our Method I Our Method
s CLIP Score mm CLIP Score 16 7w CLIP Score
20 - 104
14 -
> > > 10 A
O O O
© © C .
> 10 1 -] -] 8
O O O
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5 - 4-
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0- ] .
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(a) ImageNet (b) ImageNet Dist. Shift (c) Avg. over 11 Datasets

Performance across subset of sizes 5% and 10% from CC12M

Data-Efficient Contrastive Language-lmage Pretraining: Prioritizing Data Quality over Quantity
[AISTATS 24]
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There are also several heuristics!



CLIP Score

- ldea: Select image-caption pairs with very similar image and
caption representations or high CLIP Score

Sk € arg maXSkngZ csim(i, 1)

- Note: We explained why this works (ensures alignment/
diversity)!
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SemDeDup

- ldea: Image-Caption datasets often have many duplicate
images -> can we de-duplicate them for efficiency?

- Method: Cluster images using CLIP image embeddings and
remove examples in same cluster with cosine similarity

greaterthan 1 - €

Semantic duplicate Semantically redundant data

£=0.0001 £=0.005
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C-RHO

- ldea: Select examples that are “learnable” but “not easily
learnt”

- Method:

- Training Model: Partially trained model

- Validation Model: Fully (or longer) trained model

+ Score for each data point:
CLIP Score, (i,i) — CLIP Score,,,; (i,1)

97



Relative to Full Data
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Data-Efficient Contrastive Language-lmage Pretraining: Prioritizing Data Quality over Quantity
[AISTATS 24]
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Outline

Motivation: why is data-efficiency important?
Part 1. Data-efficient Supervised Learning
Part 2: Data-efficient self-supervised Contrastive Pretraining
Part 3. Foundation Models
3a: Data-efficient Contrastive Language-Image Pretraining

3b: Data-efficient Training of Large Language Models
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Can we corsets for training Large
Language Models (LLMs)?
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Data-efficient Fine-tuning of LLMs

- Assume we fine-tune a pretrained model with SGD/Adam on the
following dataset:

2 = {(x, Y)}?=1’ X=X, %), Y= )
4 4

prompts responses

1 L
Z(0) = — " Z [log py(y |X)], pe(y|x) =1L, pe(y; | ¥1.1—1, %)

% (x,y,)ED
Loss

Can we find a small subset that closely captures the dynamics of
training on full data”?
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Data-efficient Fine-tuning of LLMs

- Can we find a subset $* that closely estimates the full gradient?

S|, s.t. max ||

Z Vi(w )——ZVf<w>||<e

§* = arg min
eV | ]ES f

scv

Full gradient Gradient of S
Problem:

(Even last layer) Gradients are too high-dimensional!

For example, dimensionality of the last V projection of Phi-2 has
6.5M dimensions when training the full parameters

327K dimensions when training with LoRA

102



Data-efficient Fine-tuning: Preliminary Results (S2L)

Observation:
Fine-tuning changes the model to a small extent

Curvature is small during fine-tuning

Lemma (informal): Assuming a small curvature, loss

functions with a similar trajectory (i.e. similar values at

multiple points during fine-tuning) have similar gradients
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S2L: Data-efficient Fine-tuning of LLMs

Finding a subset that captures the gradients

Fine-tune a small proxy model on full data and save the
loss trajectories (e.g. at the beginning of every epoch)

Cluster the loss trajectories

Sample examples from every loss trajectory cluster

Corollary (informal): As long as the proxy and the target models
are similar enough, fine-tuning on the subset with |G converges to

a similar solution to that of training on the full data.

SmallToLarge (S2L): Scalable Data Selection for Fine-tuning Large Language Models by Summarizing
Training Trajectories of Small Models, arXiv:2403.07384] (o4


https://scholar.google.com/citations?view_op=view_citation&hl=en&user=x63j7HEAAAAJ&sortby=pubdate&citation_for_view=x63j7HEAAAAJ:vV6vV6tmYwMC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=x63j7HEAAAAJ&sortby=pubdate&citation_for_view=x63j7HEAAAAJ:vV6vV6tmYwMC

S2L: Fine-tuning Pythia-410M on Mathlnstruct

- Pythia-70M — Pythia-410M
11% (30K)

(©
g 1.26 g 1.29 e Random
=1.12 — 1.13 _— Least Confidence
iz Z v,,,.ﬁi‘f ______ Middle Perplexity
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5 = 5 — DiverseEvol
o 0 g 0-6° xﬁﬁ Confidence Curriculum
f) 0 f) 0.48 x o S2L (Ours)
= 2 — Pretrained
é 0 § 0.32 _x_ __________________ Full Data
0.16
15% 23% 31% 15% 23% 31%
Data Size Data Size
(g) In-domain Avg (h) Avg

ID: GSM8K, MATH, NUMGLUE

GSM8K, MATH, NUMGLUE OOD: SVAMP, MATHEMATICS, SIMULEQ
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S2L: Fine-tuning Phi-2, Phi-3 on Mathlnstruct

. Pythia-410M — Phi-2 (2.7B), Phi-3-Mini (3.8B)

1. Same number of iterations (mini-batches): 50K subset matches full data

TARGET FINE-TUNING IN-DOMAIN OUT-DOMAIN
MODEL DATA GSM8K MATH NUMGLUE | AvG | SVAMP MATHEMATICS SIMULEQ | AVG
(PRETRAINED) 53.4 16.1 34.9 34.8 67.9 31.1 27.4 38.5
PHI-2 (2.7B) RANDOM 67.9 30.1 60.7 52.9 77.1 51.2 37.5 54.1
HIGH LEARNABILITY 59.4 25.2 62.1 48.9 76.6 41.8 27.2 48.7
MIDDLE PERPLEXITY 66.4 29.5 54.1 50.0 74.8 50.4 39.8 52.5
LEAST CONFIDENCE 61.7 24.7 67.0 51.1 76.5 43.3 52.5 54.3
FACILITY LOCATIONS 66.2 31.3 62.4 53.3 74.4 58.4 34.6 54.5
S2L(OURS) 69.1 32.6 65.7 55.8 79.6 56.4 40.1 57.3
FUuLL-262K 68.3 32.6 64.3 55.1 78.4 58.4 44.2 57.7

2. Smaller number of epochs: 50% subset matches full data

TARGET FINE-TUNING IN-DOMAIN OUT-DOMAIN
MODEL DATA GSMS8K MATH NUMGLUE | AvG | SVAMP MATHEMATICS SIMULEQ | AVG
(PRETRAINED) 74.5 26.5 52.1 51.1 83.7 44.3 34.8 52.7
PHI-3-MINI (3.8B) S2L-50% (OURS) 76.3 42.5 76.4 65.1 83.8 62.1 51.6 65.4
FuLL 76.4 42.9 75.3 64.9 84.6 60.2 51.9 65.2
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S2L: Fine-tuning Phi-2 on MIMIC-III

»  Clinical text summarization on MIMIC-III

Pythia-410M — Pythia-1B

50% subset outperforms full data!

80.0
79.5
79.0

78.5

(a) BLEU (b) ROUGE-L (c) BERTScore
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Can we find small subsets that
guarantee the performance when
training with mini-batch SGD?
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Data-efficient Training of LLMs

- Can we (iteratively) find subsets that closely estimates
the gradient of a larger random subset?

S*:argminsgvrlSl, S.t. maXII |V Z Viw )— ZVf(w)||<€.
eV, ]ES
Gradient of the Gradient of S

random subset

Problem:

- (Even last layer) Gradients are too high-dimensional!
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Data-efficient Training: Preliminary results (SSM)

Finding lower-dimensional gradient estimates
(1) Use the V-Projection matrix at the last layer

Stacks with LoRA and other memory-efficient methods

Can be calculated with only one forward pass, using zeroth-order
gradient calculation

L(O+ez)— L(O—ez)

5 z ~zz' g(0). z~N(0,Zg)
€

g-(0) =

g:(8) L(O+ez;B)—L(0—€zB) _ E(O—I—em@z;B)—E(O—em@z;B), S—mo 2.

2€ 2€ m € {0, 1}d

(2) Sparsify the above gradient estimate

Consider the dimensions with largest gradient magnitude
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Preliminary results (SSM): Finding a Curriculum

- Select Small Mini-batches (SSM)

1. Finding lower-dimensional gradient estimates

- Use the V-Projection matrix at the last layer

- Sparsify the above gradient estimate

2. Find mini-batch subsets from larger random subsets

Step | Method In-domain Out-domain Avg
GSM8K MATH NumGLUE  Avg | SVAMP  Math. SimulEq  Avg
Pretrained 52.9 16.4 35.0 34.8 67.9 31.9 28.8 42.9
bs=64 66.5+0.8 28.440.3 90.240.9 48.3402 | 79.2404 9524408 24.1+15 51.9402 | 50.140.2
1K bs=128 | 67.4+05 28.84053 93.241.2 49.8405 | 804413 99.6404 299424 955.3+10 | 52.6405
SSM 67.8+05 30.010.4 53.5+0.8 50.410.2 | 80.2404 98.0+18 3959426 058.0+16 | 54.240.8
bs=64 67.9+04 29.3+0.7 57.6+0.6 51.6+02 | 80.1+04 57.9400 42.2414 60.1405 | 55.9+0.2
2K bs=128 | 67.7+0.8 30.3+0.4 58.440.8 52.1+03 | 79.5+04 57.9+05 45.54+07 60.940.4 | 56.5+0.3
SSM 68.1+2 30.8+0.2 58.241.1 524402 | 80.1+0.7 58.7+08 46.44+07 61.8+0.3 | 57.140.2

[Memory efficient Training of LLMs with Larger Mini-batches, arXiv:2407.19580]



There are Several Heuristics...

* Pretraining

- Perplexity, Error L2-Norm (EL2N), and memorization ranking => middle
perplexity works best [Marion et al, NeurlPS’23]

- Deduplication [Tirumala et al, NeurlPS’23]

Fine-tuning

Manual curation [Zhou et al, NeurlPS’23], Select data via other LLMSs like
GPT or Chat GPT [Eldan & Li, 2023;Li et al., 2023a; Chen et al., 2024]

Selecting centroid of hidden states [Bhatt et al, 2024]

Assuming access to target tasks (not comparable to above methods):

Using influence functions [Xia et al, ICML2024], datamodels [Engstrom et al,
ICML’2024], Finding similar examples to target [Xie et al., 2023, Brown et al,
2020]
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Further Directions

. Modifying the training data distribution can improve the in-
distribution performance

Idea: reducing the simplicity bias early in training allows finding a more
generalizable solution

- Check out this preliminary result: arXiv preprint arXiv:2404.17768

. Directly generating high-quality data (not to confuse with dataset
distillation)

- Supervised-learning, self-supervised learning, Multimodal models,
Generative models

. Finding subsets for other optimizers like Adam

. Improve existing solutions
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Personalized medicine Robotics

)
=

Sept 2018 : Massive
Price Breakdown
Predicted

upport
Q1/Q2 2018

Price Basing and ULTIMATE
LOW Predicted Near Nov 2018
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Thank You!
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